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Abstract 

A method to separate diffuse and specular reflec- 
tion components is presented. The method is based 
on color, particularly on surface color ratio and chro- 
maticity. We define surface color ratio as an invariant 
to specularity, shading and shadow and use it to de- 
tect diffuse pixels. There are three principle steps in 
our method: diffuse pixels identification, image nor- 
malization and reflection components separation. The 
experimental results show that the proposed method 
is very accurate and robust for uniform colored dielec- 
tric inhomogeneous surfaces under single colored scene 
illumination. 

1 Introduction 

Many computer vision algorithms assume perfectly 
diffuse surfaces and deem s~ecular reflection as an noise 
or outliers. However, the presence of specularity is in- 
evitable, since in real world there are many dielectric 
inhomogeneous objects, which have both diffuse and 
specular reflection components. To properly handle 
these objects, we need a method to separate the two 
components robustly. 

There are many works on reflection components s e p  
aration based on color (11 [8] (9) [lo]. Early work of 
using color includes Klinker et al. [8], where they pro- 
pose a separation algorithm based on the dichromatic 
reflectance model [ll]. The key of their method is to 
find the distribution of diffuse and specular pixels in 
a skewed-T shape in RGB color space. However, for 
many real images, this T shape is hardly extractable 
due to noise etc. Recently, Lin et al. [lo] proposed a 
method using at  least two images of an object taken 
under different illuminant positions with same viewing 
direction. By expressing the equation of dichromatic 
model in terms of spectral basis functions, the combi- 
nation of the diffuse and specular equations provides a 
closed form solution to derive the specular component. 
Their method is applied on a pixel base, hence it is 
applicable to highly textured surfaces. One drawback 
is that it requires multiple images of the same object. 

Bajscy et al. [l] proposed a method using a three 
dimensional space composed of lightness, saturation 
and hue. This method only requires a single image 
as the input. First, the input image has to be neu- 
tralized to pure-white illumination. The neutralization 
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is done using linear basis functions of both illumina- 
tion spectral energy distribution and surface spectral 
reflectance, where the weighting factors of illumination 
basis functions are computed by using a white reference 
surface captured under the same illumination. After 
this neutralization, the weighting factors of all pixels 
of surface reflectance basis functions are projected into 
a three-dimensional space. In this space, the specular 
and diffuse reflections are identifiable, as their satura- 
tion values are different. This method is more accurate 
than the method of Klinker et al. [8]. However, there 
are several weaknesses in this method. First, the use 
of basis functions to approximate illumination spectral 
energy distribution is sometimes crude. For uncommon 
illumination spectral energy distribution, e.g. green il- 
lumination, there are no basis functions that can a p  
proximate the illumination. Secondly, camera sensi- 
tivity data is required to calculate weighting factors 
of illumination linear basis functions using white ref- 
erence, and as a result, tedious calibration procedures 
are required. 

The outline of our method can be depicted as Fig- 
ure 6. The key of our separation method is in the 
analysis of differences of saturation values between dif- 
fuse and specular reflection. Given a single image with 
uniform surface color taken under single colored illumi- 
nation, we first group the image pixels based on their 
surface color ratio values. From each group, we detect 
the diffuse pixels using the camera noise characteristic. 
Then, these diffuse pixels are divided by estimated il- 
lumination chromaticity, which is derived using a color 
constancy algorithm. We call this process as normal- 
ization. This normalization is also applied to the input 
image. After computing the normalized diffuse pixels 
and the normalized image, the separation can be done 
in a straightforward manner by using what we refer to 
specular-to-diffuse mechanism. Finally the separated 
diffuse and specular reflections of normalized image can 
be renormalized back by multiplying each pixel with 
the estimated illumination chromaticity. 

The rest of the paper is organized as follows. In 
Section 2, we discuss the dichromatic model of inho- 
mogeneous materials and image color formation. In 
Section 3, we explain the method in detail, describing 
the derivation of the theory and the algorithm for s e p  
mating diffuse and specular reflection components. We 
provide a brief description of the implementation of the 
method, experimental results and their evaluations for 
both synthetic and real images, in Section 4. Finally 
in Section 5, we offer our conclusions. 



2 Reflection Models 

Surface reflection on most inhomogeneous materials 
can be described with the dichromatic reflection model, 
which states that the light reflected from an object is a 
linear combination of diffuse and specular reflections: 

where x = {x, y, z ) ,  the position of the surface point in 
a three-dimensional world coordinate system. wd(x) is 
the geometrical weighting factor for diffuse reflection. 
Also 6, (x) = w, (x) k, (x) , where k, (x) is the scene ra- 
diance to surface irradiance ratio of specular surface 
which is ideally constant w.r.t. wavelength. w,(x) 
is geometrical weighting factor for specular reflection. 
Sd(X, x) is the diffuse surface spectral reflectance func- 
tion, and E(X,x) is the spectral energy distribution 
function of the illumination. In this paper we assume 
that the input is an object with a uniform surface 
color under a single illumination color, so that the de- 
pendence on location x for surface spectral reflectance 
and illumination spectral energy distribution can be re- 
moved. If the reflected light is captured by a camera, 
by ignoring camera noise and camera gain, the camera 
output can be described as: 

where jz = {s, t ) ,  the two dimensional image coordi- 
nates, qc is the three-element-vector of sensor sensitiv- 
ity and c represents the type of sensors (R, G, and B). 
The integration is done over the visible spectrum (a). 
Equation (2) can be simplified as: 

where md(jz) = wd(jz)L(n)kd, with L(Z) is the spectral 
magnitude of the surface irradiance on a plane perpen- 
dicular to the light source direction, kd is the scene 
radiance to surface irradiance ratio of diffuse surface. 
m, = G,(R)L(R). A, = SR s(X)e(X)q,(X)dX; with s(A) 
is the normalized surface reflectance spectral function, 
e(X) is the normalized illumination spectral energy di* 
tribution. r, = J, e(X)q,(X)dX. 

Several researchers in color constancy 15, 14, 101 
use narrow band sensor sensitivity assumption in their 
analysis, where they can use Dirac delta function, 
q,(X) = 6(X - A,), for the sensitivity. With narrow 
band assumption equation (2) can be written as, 

The Dirac delta assumption for sensor sensitivity 
simplifies the image formation equation, while it is an 
idealization. However, it has been shown that most 
cameras can be approximated with this assumption 
15, 141. Even when the approximation does not hold, 
Finlayson et al. [4] and Barnard et al. (21 proposed a 
method to make it hold, by applying an appropriate 
change of sensor basis, which is referred to as sensor 
sharpening. 

Now, if we define S, as the normalized surface color 
in RGB channels, E, as the normalized illumination 

color in RGB channels and L(X) as the illuminant mag- 
nitude (intensity or brightness), if can rewrite equation 
(5) as: 

This equation can be simply described as, 

Ic (n) = md (jz) ScEc + m, (%) E,. (6) 

Hence we have two versions of dichromatic model, i.e.: 
dichromatic model without narrow band assumption 
(3) and dichromatic model with narrow band assump- 
tion (6). 

From color constancy algorithms, we can estimate 
the illumination chromaticity. The estimated illumina- 
tion chromaticity will be 11, = n .fo e(X)q, (X)dX, where 
the value of n is a positive real number (0 < n 5 1). 
In fact, the exact value of n is unknown, as the magni- 
tude of incident light cannot be recovered with current 
color constancy algorithms. Fortunately, this value is 
not necessary, because we only require the ratio of illu- 
mination color. Then, using 11, can normalize equation 
(3) w.r.t. the illumination color as: 

where I,(%) = y; A,(%) = 

m, = %. Equation (7) shows that the specular reflec- 
tion component becomes pure-white color. 

An alternative method to obtain pure white color 
of specular reflection component is using narrow band 
sensor sensitivity assumption. Finlayson [5] developed 
a color constancy method based on the assumption 
by directly dividing the input image with normalized 
illumination color to discount the illumination color. 
Then, based on the same assumption, we can also nor- 
malize equation (6) as: 

fc (n) = md (n) S, + 7% (Z) . (8) 

Of course, if it is allowed, we can always use an 
image of a white reference surface captured under the 
illumination whose color is to be estimated to obtain 
a robust estimate of the illuminant color. This will 
improve the result of separation, particularly for an 
image with high intensity of specular pixels as we will 
see later. 

3 Separation Method 

3.1 Chromaticity and Problem Definition 

Following Wyszecki et al. (151, we define chromatic- 
ity for a normalized image as: 

f, (n) e(n) = - cli (jz) 

where c&(z) = &(x) + I,(%) + I*(%). For a uni- 
formly colored surface lit with a single colored illumi- 
nation, the chromaticity values of diffuse regions will 
be constant, regardless of the variance of Ad(%). In 
constrast, the chromaticity values of specular regions 
will vary with regards to the variance of m,(X). Fig- 
ure 2.a shows the projection of diffuse and specular 



Figure 1: Specular-to-diffuse mechanism, a. the two 
pixels have same diffuse component, b. the two pixels 
have different diffuse component 

regions in ha, - I space, where La,(%) = M; 
fmax (Z) = maz [i, ( jz) , ig (Z) , i b  (z)] and I(%) = xii ( jz) . 
As can be observed in the figure, the diffuse regions 
form a vertical line, while the specular regions form a 
curve line cluster. This different characteristic of dif- 
fuse and specular regions will lead us to obtain the 
specular reflection component as well as the diffuse re- 
flection component. The detail is a? follows: 

If there are two pixels, a specular pixel (iC-,,,,) and 
a diffuse pixel (I,-dif ), with the same values of dif- 
fuse reflection component (mdAc), then by projecting 
them into c,,, - I space, we will find that the diffuse 
point is located a t  the right side of the specular point. 
In Figure l.a, these two points are depicted by square 
points. If we subtract all channels of the specular pixel 
intensity with a small positive real number - - . . 

( 6 ) :  I: = Ic-S,,c - E ,  and project the subtracted pixel 
into the space, then the point will be located near the 
original specular point. Moreover, if the subtraction is 
applied iteratively and infinitely by increasing the sub- 
tracting number linearly, as: 1; = L-,,,, - (€ x i) , 
where i is the natural number denoting count number 
of iterative looping, the projection of the subtracted 
pixels will form a curve line that pass through the dif- 
fuse point, as depicted in Figure 1.a. 

A point in the curve line that lies on top of the 
diffuse point has 6, = 0 and its subtracting num- 
ber ( E  * i) equals to m, of the original specular pixel. 
This means, the task of estimating the specular com- 
ponent of the original specular pixel is completed, as 
we have obtained the value of the specular component 
( 6 ,  = E x i). However, this happens if &dAc of both 
pixels are the same. Otherwise, the curve line will not 
pass through the point of the diffuse pixel. To solve 
this case, we create a vertical line crossing the diffuse 
point, as shown in Figure 1.b. This vertical line will be 
intersected by the curve line a t  a certain point, which 
indicates m, = 0. Then, using the same mechanism of 
subtraction, fis of the specular pixel can be obtained. 
We call this mechanism as specular-to-diffuse mech- 
anism. This mechanism requires a camera that has 
linear outputs for each color channel. 

Therefore, based on the specular-to-diffuse mecha- 
nism, the problem of reflection components separation 
can be defined as: how to identify the diffuse pixels 
(or c,,, of the diffuse pixels) from given both spec- 
ular and diffuse pixels of uniform surface color under 
a single illumination color. This implies that we need 
pixels that have only diffuse reflection to accomplish 

Figure 2: a. The projection of synthetic image pixel 
into chromaticity-intensity space. b. The projection of 
real image pixel into chromaticity-intensity space. 

reflection components separation using color. 
For synthetic images, which have no noise, the sepa- 

ration problem can be solved easily. As shown in Figure 
2.a, using the definition ha,, the diffuse points will al- 
ways be located a t  the right most of the point cloud. 
Unfortunately, for real images, the diffuse points are 
not always a t  the most right side (Figure 2.b). This is 
due to imaging noises. Therefore, to robustly obtain 
the diffuse chromaticity, we must include noise in our 
analysis. We will focus on the algorithm to accomplish 
this in the following sections. 

Chromaticity is usually used to specify colors in two- 
dimensional space (chromaticity space). A point in 
chromaticity space represents the values of both hue 
and saturation. Several researchers [3, 11 have shown 
the correlation of specularity, hue and saturation. For 
a uniform color object under pure-white illumination, 
the hue values of the specular and diffuse reflections 
are the same, but their saturation values are different. 
This difference is due to the intensity variation of spec- 
ular reflection components. On the other hand, diffuse 
reflections have constant saturation values. Therefore, 
saturation becomes important for the separation, be- 
cause by knowing the saturation value of diffuse pixels 
of a uniform surface color we can infer the values of the 
specular component. In this paper we describe the sat- 
uration in the context of one-dimensional chromaticity. 

3.2 Surface Color Ratio 

We define surface color ratio as: 

the location parameter Z is removed, since we work on 
each pixel independently. If r, = rg = rb in equation 
(3), then u can be expressed as: 

Or, using narrow band assumption from equation (6) 
with E, = Eg = Eb, we obtain: 

We call u as surface color ratio, because as shown in 
equation (12), u is a function of only the surface color, 



Figure 3: (a). real input image (b). The projection of 
the pixels of Figure 3.a into u-intensity 

An important property of u is its invariance property 
against shadows, shading and specularity. The invari- 
ance against shadow is fulfilled if the ambient illumi- 
nation has the same spectral energy distribution to  the 
direct illumination [6]. For the sake of generality of our 
discussion (without assuming narrow band sensor sen- 
sitivity), in the subsequent explanations, we will use 
equation (11) instead of equation (12). 

Using u in equation ( l l ) ,  we define a two- 
dimensional space, u - I space, with u as x-axis and 
I (= I, + I, + Ib) as y-axes. By projecting each pixel 
of a real image into this space, we obtain a cloud of 
points as shown in Figure 3.b. Ideally, if the surface 
color is perfectly unique and there is no noise from 
the camera, we should observe only a straight line in 
this space. However, as it can be seen in Figure 3, this 
does not hold for real images. This is mainly due to the 
slight variation of surface color and illumination color, 
which are insensible to human eyes, as well as the noise 
produced through the camera sensing process (camera 
noise). In our analysis we assume that the illumination 
color variance is very small, so that it can be neglected. 

By considering the camera noise, equation (3) be- 
comes: 

where a,(%) and 4,(Z) are the first and second camera 
noise in the three sensor channels, respectively. 

In section 3.1 we have assumed that the camera has 
linear outputs for each channel. It implies that the 
noise of each channel is also linear, or a t  least approx- 
imately linear. Therefore, we can set a,(%) M a,(%) x 
ab(Z) and $,(%) x $,(Z) M $b(%). These two types 
of camera noise depend on the position of the image 
%, indicating that the noise can be different for each 
location in the image. Noise model in equation (13) is 
the simplification of more complex model proposed by 
Healey et al. [7]. 

If r, = r, = rbr then the definition of u becomes: 

If we look a t  two pixels that follow equation (14), we 
can consider several cases as follows: 

Figure 4: Result of plotting pixels obtained from one 
straight line in u-intensity space (vertical line in Figure 
3.b) into ha, - I space. 

1. if Af # A:, then u1 # u2 

2. if Af = A; and a: # a:, then u1 + u2 

3. if A: = A: and a: = a: and 4; = @, then u1 = u2 

4. By defining A, = 4, + 4b - 24, and A, = 4, + 
4 b  - 24,, if A: = A2 and a: = a: and 4: # 4: 
and A: # A: and A! # A:, then u1 # u2 

5. if A: = A: and a: = a: and q5f # 4: and A: = A: 
and A: = A:, then u1 = u2. 

Case 1 is caused by non-uniformity of surface spectral 
reflectance and illumination spectral power distribu- 
tion, even though human eyes percept it as a uniform 
surface color. Case 2 and case 4 are prompted by the 
first (a,) and second (4,) types of noises, respectively. 
All of these cases (1, 2 and 4) make the u values vary. 
Case 3 and case 5 will produce the same values of u, 
but if we project the two pixels into ha, - I space, 
we will obtain a different characteristic. In case 3, the 
chromaticity values of the two pixels will be the same. 
While in case 5, the pixels will give different values of 
chromaticity, and make the diffuse pixels behave like 
specular pixels: (Z) = md(%)Acuc(Z) + q5,(%); 
where the values of &(%) vary. Furthermore, because 
in case 5 (A: = A:), (A: = A:) and (&(%) x 4,(%) = 
qlb(%)), the; in each group of u, there are many pixels 
that &(%) = 4,(%) = &,(%). It is like specular pixels 
under pure-white illumination. 

Figure 4 shows a projection of pixels in a group of 
u into G,, - I space. Ideally, without the existence 
of the camera noise (case 5), the diffuse points should 
form a single vertical line with the same value of chro- 
maticity. The occurrence of curve lines is due to the 
variance of the second noise values spatially, or formally 
it can be written as: Ic-diff(%) = md(jZ)Acffc(%) + 
$,(%). It also indicates that for each curve line, there 
is a single value of diffuse component md(%)Acoc(jZ), 
with +,(%)varies. 

Therefore, our surface color ratio and chromaticity 
is like filters that can separate the two types of camera 
noise. This separation of noise is useful because, from 
the second type of camera noise we can identify diffuse 
pixels. 

3.3 Diffuse Pixels Identification 

In the previous section, we have shown the charac- 
teristic of diffuse pixels that behave like specular pix- 
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Figure 5: a. Diffuse candidates amongst other pix- 
els in u - %,, space, brighter points represent diffuse 
candidates. b. The c,,,,, values of all pixels after sepa- 
ration, these points are identical with points of diffuse 
component 

els with the assumption that the specular components 
have the same color for each channel ( r ,  = rg = rb). 
For more general cases, we consider an arbitrary color 
of illumination. Under colored illumination, we cannot 
assume that the specular components have the same 
color or chromaticity for each channel. In these cases, 
the specular pixels will behave differently in U- I space 
and ha, - I space from explanation in Section 3.2. 
Fortunately, colored illumination in any way does not 
affect the characteristics of the second type of noise 
(4,) of diffuse pixels, so that the diffuse pixels still have 
the same characteristics as has been explained. This 
happens because, the noise is independent from illu- 
mination color (E(X)) and camera sensitivity (q,(X)). 
Consequently, even in an arbitrary illumination where 
(I?, # rg # rb), diffuse pixels with the same u form a 
curve line in ha, - I space. 

Therefore, the identification of diffuse pixels is iden- 
tical to finding the diffuse curve lines in ha, -I space 
for each group of u. To avoid being trapped in spec- 
ular pixels which in certain cases have r, = rg = rb, 
we chose the lowest intensity amongst the points in the 
curve line as candidate diffuse points. Thus, for each u 
we have several candidates, depending on the number 
of the curve line inside u. Figure 5.a shows the diffuse 
candidates in u - ha, space. 

3.4 Diffuse-Specular Separation 

Having obtained the diffuse pixels of arbitrary il- 
lumination, we normalize the diffuse pixels as well as 
all pixels of the input image. The normalization is 
done simply using equation (7). The values of c,,, 
of the diffuse pixels vary depending on the first type 
of noise and slight variances of surface color, as shown 
in Figure 5.a. To find a single ha, value of diffuse 
points, we use histogram analysis to find the largest 
count and use it as diffuse ha,. Then, we can separate 
the diffuse and specular component using specular-to- 
diffuse mechanism explained in subsection 3.1. Figure 
5.b shows the points in c,,, -I space after separation 
process. These points represent the diffuse components 
of the input image. 

Finally, we renormalize the specular and diffuse 
component value by multiplying them with the esti- 
mated illumination chromaticity. 

Figure 6: Flowchart of the proposed method, symbol 
(*) means normalized diffuse and specular components 

4 Experimental Results 

In this section we first briefly describe the implemen- 
tation of the proposed method, and then show several 
experimental results. 

Figure 6 shows the flowchart of the method. First, 
the pixels of an input image is grouped based on the 
value of u. For each group of u, we identify the diffuse 
pixels. Then, these diffuse pixels are normalized using 
estimated illumination chromaticity. The normaliza- 
tion is also applied to all pixels of the input image. 
From the normalized diffuse pixels, we calculate the 
diffuse chromaticity using histogram analysis. Having 
known the diffuse chromaticity, the normalized image 
can be separated using specular-to-diffuse mechanism. 
The separation yields normalized diffuse and specular 
components. To obtain the actual components, we r e  
normalized back by multiplying with the estimated il- 
lumination chromaticity. 

We have conducted several tests on both synthetic 
and real images. Synthetic images used in our ex- 
periments were rendered using the Torrance-Sparrow 
reflection model [13]. Real images were taken us- 
ing a SONY DXC-9000, a progressive 3 CCD dig- 
ital camera. To estimate illumination chromatic- 
ity, we used color constancy algorithm proposed by 
Tan et al. [12], and alternatively we also used a 
white reference from Photo Research Reflectance Stan- 
dard model: SRS-3 S/N.983901. As target objects, 
we use convex objects to avoid interreflection. For 
complete results in color, please visit: www.cvl .u- 
tokyo.ac.jp/~robby/mva02/results.html 

Figure 7.a shows a synthetic image with a green sur- 
face under incandescent light (2800 K). The separa- 
tion of the diffuse and specular reflection components 
are shown in Figure 7.b and 7.c respectively. Figure 
8.a shows a head model under two incandescent light 
sources. The specularity of this head model is low. 



Figure 7: Separation results: a. Synthetic input image 
b. diffuse reflection component c. specular reflection 
component 

Figure 9: Separation results: a. Real input image, b. 
diffuse reflection component, small error in the left-top 
of the sandal is due to saturated intensity of the input 
image, c. specular reflection component 

[5] G.D. Finlayson and S.D.Hordley. Color constancy 
Figure 8: Separation results: a. Real input image b. at  a pixel. Journal of Optics Society of America 
diffuse reflection component c. specular reflection com- A., 18(2):253-264, 2001. 
ponent 16) R. Gershon, A.D. Jepson, and J.K. Tsotsos. Am- 

bient illumination and the determination of mate- 
rial changes. Journal of Optics Society of America . . 

A., 3(10):1700-1707,1986. 
The results of separation can be observed in Figure 8.b [71 G. ~~~l~~ and R. ~ ~ ~ d ~ ~ ~ d ~ .  ~ ~ d i ~ ~ ~ t ~ i ~  ccd 
and 8.c. Figure 9.a shows a green sandal with high camera calibration and noise estimation. IEEE 
specularity under incandescent light. The results of Dam. on Pattern Analysis and Machine Intelli- 
separation can be observed in Figure 9.b and 9.c. ence, 16(3):267-276, 1994. 

5 Conclusion 

We have proposed a new method to separate dif- 
fuse and specular reflection component. The main in- 
sight of our separation method is on the analysis of 
the difference of saturation values between diffuse and 
specular reflection. Along with the method we also 
proposed surface color ratio that is invariant against 
shadows, shading and specularity. Furthermore, we 
also explained the effects of camera noises in relation 
with the surface color ratio. As future works we plan 
to exhance our framework to handle textured surfaces. 
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