
MVA2002 IAPR Workshop on Machine Vision Applications, Dec. 11- 13, 2002, Nara- ken New Public Hall, Nara, Japan 

3-24 An Optimal Low Cost Solution For The 3D Free Form Object 
Recovering Pose Problem 

Fakhreddine Ababsa, David Roussel, Malik Mallem 
Laboratoire Systkmes Complexes, CNRS FRE 2494 

Universitk d'Evry, FRANCE 

Abstract 

This paper present an efficient low cost solution for the 
3D free form object recovery problem. We first describe 
the realized active vision system used to measure the 3D 
range image of the object, this system consists of a laser 
grid projector and a CCD camera. We present a robust 
sub-pixel method in order to detect image features. In the 
second part of this paper we present a 3D free form object 
recovery method, for that we elaborate a 3D13D automatic 
matching technique based on invariant. We demonstrate 
the effectiveness and the optimality of our 3D recovery 
solution while implementing it with complex free form 
objects 

1 Introduction 

3D recovery of free form objects is an important 
research topic in robotics and computer vision. To 
successfully perform this task, 3D accurate measurements 
systems are needed. Triangulation with structured light is 
a well-established technique for acquiring 3D information 
on scene objects [1,2]. It projects a regular pattern of light 
onto the scene and hence creates artificial features on the 
surfaces of the objects that are easy to extract from the 
image. 

In this paper, we first present a low cost and accurate 
3D active vision system. It consists of a laser projector 
and a CCD camera. A regular grid of lines is projected 
onto the scene, intersect the surface of the objects and 
traces out a deformed grid. Such an encoded scene is then 
recorded by the camera. In our approach we consider the 
projected grid as a graph taking into account only nodes 
(lines grid intersection points) and the topological 
relationship between them. One of the major contribution 
of this work is the development of a robust sub-pixel 
model based approach [3] to extract grid nodes from 
captured images and also a solution for solving the 

according to two directions, in this way several regions of 
the scene's objects can be scanned. The projector projects 
a square grid of both five horizontal and vertical lines on 
the target object. Both the projector and the camera can 
translate along d, direction which allow us to bring the 
vision system closer to the worktable and therefore allow 
us to scan smaller objects. 

2.2 System Calibration 
The coordinate systems used in calibration procedure 

are illustrated in figure (1). The developed calibration 
method is based on pin-hole optical models of the camera 
and projector. - rmdrr 

Fig. 1 : Coordinates system 

2.2.1 Camera calibration: 
Let P(x,y,z) be a 3D point in the world coordinate system 
(see figure 2), the relationship between P and its 
corresponding image point is expressed as [5]: 

[S.U S.V s ~ = M , . [ P  IT (1) 

where s is a scale factor, M, is a (3x4) calibration matrix. 
Camera calibration involves estimating elements of the 

matrix M,. By measuring enough known 3D points (we 
used 126 points) and their corresponding image points, Mc 
can be determined using least-square solution to linear 
equation (1). Practically, we use the grid projector to 
generate 3D. 

correspondence problem between projected and original 2.2.2 Projector calibration 
grid. The is then Our projector can rotate along two axe. p and 8 in the 
triangulation of registered features. 

rotating turret coordinate system. Angles y7 and 8 can be In the second part of this paper we present a 3D free form 
controlled with highest precision (0.010), so we have object recovery method which uses 3D measurements 
developed a method which allow to calibrate the projector obtained by our vision system to determine the current 

position of the 3D object in the scene. for any values of p and 8. 
First we calibrate the projector in its initial position 

2 Vision System (y7=8.0), the relationship between 3D grid node and its 
image grid point satisfies: 

2.1 Vision Workbench C.ug t.vg ~ P = M ~ . [ P  1~ (2) 
Our vision workbench is constituted of a grid projector where t is a scale factor, M, is a (3x4) calibration matrix. 

mounted on a two dof turret allowing its rotation 
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As well as for the camera calibration, we generates 
several 3D points by the same method explained above. 
For each 3D point we know its corresponding grid node, 
we use least-square solution to linear equation (2) to 
estimate Mp elements. When the projector rotates along 
(O,,,Xm) or (OmYm), only extrinsic parameters (i.e. the 
rotation and the translation between the world coordinate 
system and a projector coordinate system) change. So 
from Mp we extract intrinsic (i.e. projector internal 
parameters) and extrinsic matrices Ip(3x4) and AP(4x4) 
respectively [6 ] .  We can write then: 

M P =I,xAp (3) 
and 

where R3,rJ and T3.[, are the rotation matrix and the 
translation vector respectively from the world coordinate 
system to the projector one. When the turret rotates with 
angles y, and Q according to (OJm) and (OmY,,,) axes 
respectively, The rotation matrix becomes: 

In the same way, translation vector becomes: 

T ' = C ~ , ~ X (  I ~ v x % l x  'PIm) ( 6 )  
where C,,,,,,, expresses the transformation from the turret 
coordinate system to the world coordinate one. Equation 
( 6 )  means that we calculate coordinates of the projector 
center first in the turret coordinate system, then we 
multiply them by Cm,, matrix in order to obtain T' in 
world coordinate frame. Thus, the new extrinsic matrix 
A, expressed in world coordinate system can then be 
written as: 

Finally, the global transformation matrix M; of the 
projector on its current position is given by: 

This equation allows us to recalibrate the projector in any 
position without having to perform all the calibration 
procedure again. 

2.3 Imaged Grid Extraction 
In this section we will describe algorithms developed to 
extract the imaged grid with the highest precision and the 
ordering procedure. The imaged grid extraction procedure 
consists in two steps: 

Nodes detection. 
Grid reconstruction. 

2.3.1 Nodes detection 
Each node of the imaged grid is, locally, considered as a 
cross center. Thus, we propose a model based method to 
detect the cross center in a gray level image and which 
takes as a basis the optical response of target objects. The 
proposed luminance model allows the modeling of an any 
shape cross (right or oblique cross) and is given by the 
following equation: 

This model applies to images containing only one 
cross which is not the case here where we have the whole 
imaged grid, so we must first extract from the original 
image, small images that we will call "sub-image" 
containing only one cross at a time. 
Thus, the accurate nodes detection includes the following 
steps: 

Approximate detection of grid nodes. 
For each node, we extract a sub-image centered on it. 
We determine the model parameters of equation (9) 
using a non linear optimization method in order to fit 
the sub-image luminance surface. 
We compute the exact node position in the original 
image from computed parameters of the model. 

For each isolated cross sub-image I(i,j), we use 
Levenberg-Marquardt method to determine optimal 
parameters of the model which minimize the following 
criterion: 

2.3.2 Grid reconstruction 
The procedures described above allow us to obtain a list 
of nodes that we must order to reconstruct the projected 
grid. We suppose that ordering constraint is respected. 
Therefore detected nodes in the "projected grid image" 
will appear in the same order that nodes in "source grid". 
In practice this constraint is always verified because scene 
objects have piecewise smooth surfaces which undulate 
slowly with respect to the grid spacing. 

To organize detected nodes, we first extract, from the 
skeleton image of projected grid, horizontal and vertical 
grid curves, point per point. Then we select only curves 
which contains grid nodes. We organize these imaged 
curve nodes from left to right and from top to bottom. We 
reconstruct the projected grid by the determination of 
intersection nodes between ordered horizontal and vertical 
node curves. Finally, projected grid reconstruction 
provides solution for the correspondence problem between 
projected grid and original one, which allow us to achieve 
3D points reconstruction. 

3 3D Recovery 

The main objective of 3D recovering is to find the 
geometric transformation (namely translation + rotation) 
applied on a known object in the world coordinate system. 
This process is performed by matching features extracted 
from the object model with features extracted from the 
object wherever it may be within the world coordinate 
system. Our matching method is based on the following 
concept: Since a free form object has a well defined 
surface normal that is continuous almost everywhere 
except at vertices, edges and cusps [7 ] ,  hence, we can 
consider some particular object regions that we call 
surface patches and we determine the distribution of 
angles between the patch surface normal and the normal 



vectors directly around it. Such an angles distribution is 
invariant with respect to rotation and translation. Each 
surface patch in the object has its own angle distribution 
which could be identified even though the object changes 
position. The architecture of our 3D recovery system is 
presented in figure (2), it is a Model-based architecture 
using range images. 

3.1 Model Data Base 
Objects used in this study are modeled with a triangular 
mesh achieved from scattered 3D points of the object 
measured with our system vision and expressed on the 
world coordinate system. Accordingly, the model object is 
defined by a pair of. We also compute for each surface 
patch gaussian curvature ( K=Kl * K2 ) and mean curvature 

( H =(K, + ~ ~ ) / 2  ) where K, and K2 are the principal 
curvature. In practice, we use a discrete curvature [8] that 
applies directly to triangulated data. 

patches and which allow to displace them from their initial 
positions to their current positions with respect to the 
world coordinate system. Such a problem can be 
formulated as follow: 
Let V;: be a 3D point of the object in its initial position 

(object model). ( be the point V;: displaced by the model 

transformation we are loolang for, and let 
+, # , 

c;(N,; N, N,Y and N;(N,, N, Ni i r  the normal to 

V;: and ( respectively. ii coordinates are given in world 

coordinate system by: 
- I  - 
Ni/~,=RxNi/~, (I1) 

In order to determine R, we have to minimize the 
following criterion 

where N, denotes the number of matched surface patches. 
We use the rotation axis and angle representation to 
express the rotation matrix R. A least square method is 
used to compute an approximate solution for such a 
problem. 

To determine the translation vector T, we notice that 

the V;: points coordinates are given in the world 

coordinate system by: + 
c-l 

lo..1mum 
vnh dnra c-l~.~h-ah 
..dm- mr-.- 

V;:/R,=R~~~XV~/R,+T (13) 

however, the coordinates of the matched vertices V;. and 
Fig.2: 3D recovery system architecture 

3.2 3Dl3D Matching and Verification 
At recovering time, we use our vision system described in 
section (2) to extract several surface patches of the object, 
we choose to reconstruct local regions of the object of 
high curvature because in such regions angular 
distribution and curvatures are more discriminate and are 
relatively easy to identify in the hash table. For each 
reconstructed surface patch, we compute its angular 
distribution and curvatures, their values are compared to 
the ones stored in the model data base, if a correspondence 
occurs, a surface patch recognition hypothesis is 
generated. The verification module allow to discard all 
implausible recognition hypotheses and to only retain the 
good one. To achieve this, for each generated hypotheses 
we compute the corresponding geometric transformation, 
we back project the model features onto the image plane, 
and then retain the hypotheses for which back-projected 
features are the most close to their corresponding features 
[9]. The verification module needs to use the 3D 
localization one. 

3.3 3D Localization 
Let consider a matching hypotheses case generated by 
3D/3D Matching module described above. Each 
correspondence between surface model patch and 
extracted one allow to identify a vertex and its normal 
when the object is in its new position. So 3D localization 
problem consists in finding the geometric transformation 
(translation T and rotation R) applied to the surface 

V;: in the world coordinate system are known. So for each 

two matched vertices, we compute the corresponding 
translation vector 7;. as: 

Finally, the optimal translation vector is given by: 

3.4 3D Refine Localization 
When we apply the computed transformation to the model 
vertices and back project the transformed vertices onto the 
image plane we note an error between image features (in 
this case accurate nodes) and their corresponding imaged 
model features, this is due to the computation errors 
introduced by the data processing algorithms used in the 
several modules of our recovery. So to refine the 
computed transformation, we use the Levenberg- 
Marquardt method to minimize the mean square distance 
between accurate nodes extracted from scene image and 
their corresponding imaged model vertices. 
Let D the criterion to minimize, it is defined as: 

where Gi are the accurate nodes extracted from the object 

image and rni(ui,vi)are given by: 



where M c ~ ~ ~  is the global transformation defined by the 

camera calibration, R and T are the refine rotation and 
translation to determine. We use unit quaternion to define 
rotation R. A good initialization of the parameter vector P 
is necessary to assure the convergence of the algorithm. 
We use the transformation ( h P ,  , Top,) obtained by the 3D 
localization module to initialize the vector P. 

3.5 Experimental Results 

The method presented in this paper to solve 3D recovery 
problem has been tested on a real free form object in this 
case a mask of a lion. So, we have first created the object 
data base, for that we have digitized the object using our 
vision system and meshed the obtained range image. We 
used at every time 25 vertices to constitute the several 
surface patches. Then, we have constructed a hash table as 
explained in subsection (3.1). 

6) extrncrcd parch 
9 

c) angulnr distribution d )  angulnr distribution 
( D O ,  H<O) ( D O ,  H>O) 

Fig.3: extracted object patches 

Fig.4: Object recovering 

To perform localization of the object when it changes 
position, we scan at least two local regions of the object 
and we construct from extracted points the object surface 
patches that we try to recognize in the hash table. 
Figure (3), depicts the image of the object in its current 
position and in which regions to be extracted are marked 
by squares. Figures (3-a), (3-b), (3-c) and (3-d) illustrate 
the extracted surface patches and their angular 
distributions and surface curvatures. Using these features, 
our matching algorithm has well identify the extracted 
patches with model ones in hash table. 

Once the 3Dl3D matching is done, matched features are 
feeding to the 3D localization algorithm in order to find 
the current position of the object. 
Figure (4) shows that when we apply the refine 
transformation to the model surface patches and re-project 
the obtained points onto the image, they well correspond 
to the extracted surface patches. This demonstrate the 
robustness and the pose accuracy of our method. 

4 Conclusion 
We have presented an efficient method to solve the 3D 
free form object recovery problem; To achieve our 
solution, we conceived a low cost vision system based on 
manufactured grid projector and a CCD camera. 
Calibration procedure of such a system has been also 
studied. We have developed a robust sub-pixel model 
based approach to extract grid nodes from captured 
images. Elaborated method is used in both camera 
calibration and 3D points reconstruction procedures. In 
the second part of this paper, we have presented in details 
the architecture of our recovery system. We described 
how, from 3D scattered points, we construct the object 
data base. We give also the mathematical solution of the 
localization and refine localization problems. The 
experimental results are very satisfying, the algorithm 
succeeds in determining the object pose by matching 
extracted surface patches with model ones using only their 
angular distributions and surface curvature. The obtained 
transformation is used to refine the object pose, this 
increases the robustness of our algorithm to noise and 
computation errors. The proposed method can be applied 
even though the object is partially occluded. 
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