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Abstract 

In this paper it is shown how to  calibrate a camera 
from a planar calibration object with known metric 
structure, when the camera (or the calibration object) 
undergoes pure translational motion. The case of pure 
translation is a degenerate case in the standard formu- 
lation of plane-based camera calibration. However, if 
it is known that the motion is a pure translation some 
additional constraints can be formulated which helps 
us solve some interesting cases. 

1 Introduction 

In many applications of computer vision, as e.g. in 
robot vision where a camera is used as a visual sen- 
sor for a robot, calibrating the camera is an important 
step towards the main objective. By calibration we 
here mean estimating the so-called intrinsic parame- 
ters. These include e.g the focal length and the aspect 
ratio, i.e. the ratio of the width and the height of the 
imaging elements in the camera. 

Traditionally calibration of a camera has been ac- 
complished by the use of a three dimensional object 
with known metric structure, usually with some sort 
of grid pattern. See e.g. the book by Faugeras [3] for 
information on this kind of calibration. In recent years, 
so-called self-calibration methods has been common, cf. 
[5, 1, 21. These methods do not need a special calibra- 
tion object and rely only on the rigidity of the scene in 
view. However, in applications requiring high precision 
measurements in performing their tasks, e.g. in most 
industrial vision systems, the use of a carefully con- 
structed calibration grid is often most reliable. Since 
very accurate knowledge of the relative 3D coordinates 
of points on the object is needed the construction of the 
grid is greatly simplified if a two dimensional planar ob- 
ject can be used. Zhang [7] and Sturm and Maybank [6] 
has independently developed principally identical algo- 
rithms for calibration from a planar object using two 
homogeneous linear constraints on the matrix describ- 
ing the image of the so-called absolute conic. These 
constraints arises from the estimated homography from 
the object plane to  the image plane a t  each position of 
the camera. By solving the linear system built up from 
these constraints and by a subsequent Cholesky factor- 
ization of the obtained matrix, the intrinsic parameters 
of the camera are obtained. 

In this paper we will examine the problem of calibra- 
tion from images of a planar object when the relative 
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orientation between the object and camera does not 
change, i.e. the motions of the camera between ob- 
taining the images are pure translations. This case is 
degenerate in the formulations of Zhang [7] and Sturm 
and Maybank [6]. Using only the results in these two 
papers a new image does not give any new constraints 
on the calibration parameters if the motion has been 
purely translational. However, using the knowledge 
that the motion is a pure translation we can set up 
some additional constraints that fits nicely with the 
previously developed theory. 

By examining the constraints and the degrees of 
freedom of the calibration problem, some interesting 
cases can be formulated. For example, using two im- 
ages where the camera has performed a pure transla- 
tion between the respective positions, we can calibrate 
the camera when the length of the translation is un- 
known and the skew parameter s is set to zero. If we 
set s = 0 and the aspect ratio -y = 1, the camera can 
be calibrated when the direction of the translation is 
unknown but the length is known. One interesting case 
is when the translation is orthogonal to  the calibration 
object. When calibrating a camera on a robot arm, we 
can then put the calibration object on the floor and let 
the robot arm perform a translational motion orthog- 
onal to  the floor. 

In Section 2 the camera model used in the paper is 
explained and a brief introduction to the plane-based 
camera calibration of Zhang and Sturm and Maybank 
is given. We continue in Section 3 by developing the 
constraints on the calibration parameters arising from 
translational motion. Next, in Section 4, the results of 
some experiments are presented and the noise sensitiv- 
ity is examined. The paper ends with some conclusions 
in Section 5. 

2 Preliminaries 

The perspective pinhole camera is used as our pro- 
jection model. That is, X i  = ~ r ? ,  where 3 = (z, y, 1) is 
the 2D homogeneous coordinates for the image point, 
r? = (X, Y, Z,1) is the 3D homogeneous coordinates for 
the object point and X is an arbitrary scale factor. P 
is the 3 x 4 projection matrix that can be decomposed 
as 

Here, p denotes the focal length, and $ the aspect 
ratio and the skew, respectively, and (uO, vo) the prin- 



cipal point. These are called the intrinsic parameters, 
and K is called the intrinsic camera matrix. 

In this section we will concentrate on describing the 
constraints appearing when calibrating a single camera 
from a planar object. The orientation and origin of 
the world coordinate system can be chosen so that the 
plane of the calibration object has Z = 0. We then get 

where r, is the i:th column of R. In this way the object 
point is related to  the corresponding image point by a 
homography H: 

The homography H can be estimated for each image, 
cf. [7] for details. Let hi be the i:th column in H .  We 
then have 

and 

Introduce w = K-*K-'. Since r l  and 1-2 are orthonor- 
ma1 the following constraints, involving hl ,  h2 and w, 
can be derived from (5) and (6). 

These equations could of course be simplified so that 
the unknown scale factor X is excluded: 

where d is the translation vector expressed in the coor- 
dinate system of the calibration object, i.e. in the world 
coordinate system. Note K and R are unchanged from 
before the translation. Let us have a look at the third 
columns in the matrices H and HI, denoted by h3 and 
hi ,  respectively. 

Let 
A' I kg = -h3 - h 3  . 
X (16) 

Then, using (4), 

1 - 1 i3 = -K( t l r l  + i2r2 + i3r3) = &hl  + i2h2 + -K&r3 
X X 

(17) 
and subsequently 

In search for new calibration constraints containing h3 
and i ,  scalar products including r3, r l  and 1-2 are writ- 
ten down. Taking the scalar product of the orthonor- 
ma1 vectors r l  and 7-3 and using (7) and (9) gives 

Similarly, the scalar product of r2 and r3 gives 

hlTwh2 = 0 It remains to  examine the scalar product of r3 with 
(lo) itself which should be equal to  /r31 = 1, 

hlTwhl = hZTwh2 (11) 
X2 

The matrix w describes the image of the absolute conic, r?r3 = - ( k r  - il h: - i2 h;)w (kg - il hl - i 2  h2) 

cf. 141, and we now have two linear constraints on 
g 

this symmetric matrix from each different image of the X2 g g = -(ATwk3- 7 - >)  = 1 . 
plane. By using three different views of the plane we g X X 
have enough constraints to  solve for w. The intrinsic 
camera matrix K can then be obtained by Cholesky This gives 

factorization and matrix inversion. g w i  - liI2 
3 - X 2  (21) 

3 New Constraints By letting ij = X2w, the complete set of constraints 
arising from two images of a plane when the camera 

In this paper we concentrate on the case where the looks like 

motion of the camera is pure translational between the hyGh2 = 0 
images obtained. Let H' be the estimated homogra- 

(22) 

phy from the object t o  the image after the translation. hTijhl = 1 (23) 
Then h:ijh2 = 1 (24) 



Since the first and the second columns, hl and hn, 
in the homography H are parallel to  the first and the 
second columns, h', and hh, in H' respectively and the 
scale factors A and A' are unknown individually, we 
get 11 known distinct elements from the two estimated 
homographies. There are 6 degrees of freedom for the 
pose of the camera in the first image. Therefore there 
are 11 - 6 = 5 degrees of freedom left for the intrinsic 
parameters and the translational motion. That is, if 
we want to  calculate all the 5 intrinsic parameters we 
need to now the translation i completely. If we e.g. set 
the skew s = 0, the camera can be calibrated when the 
length of the translation is unknown. If set s = 0 and 
the aspect ratio y = 1, we can calibrate the camera 
when the direction of the translation is unknown but 
the length is known. 

After solving the system (22)-(27) of equations in 
the unknowns of 3, &, & and Iil we perform a Cholesky 
factorization on ij. Inverting and scaling the resulting 
matrix gives us the intrinsic calibration matrix K. The 
scale factor A is easily found since K should have a 1 
in the bottom right position. 

4 Experiments 

Calibration has been performed on computer gener- 
ated data to get a measurement on how sensitive the 
calculations are to  errors and noise in the image data. 
Projections of a grid with 9 times 6 points was calcu- 
lated. The simulated camera was rotated 6" degrees 
around the x-axis, 30" degrees around the y-axis and 
-12" degrees around the z-axis in this order in rela- 
tion to the calibration grid. The distance between the 
grid point both horizontally and vertically was 5 length 
units (1.u.) which is to be compared initial position of 
the camera which was 100 1.u. from the plane in the z 
direction and 10 1.u. in the y direction. We looked at 
three different cases: 

Case 1 The length of the translation i is known, but 
the direction is unknown. The aspect ratio cr is 
set equal to  1 and the skew s is set to 0. 

Case 2 The length i is unknown but the direction of 
the translation is known. The skew s is set to 0. 

Case 3 Both the length and the direction of the trans- 
lation i is known. All intrinsic parameters are cal- 
culated. 

Noise with a standard deviation of 0.5 pixels was added 
to  the projected points. This is to  be compared two 
the artificial image size which was approximately 320 
times 240 pixels. The calibration was simulated 100 
times with and the mean and the standard deviation of 
the different parameters were calculated. Two camera 
positions were used with the length of the translation 
chosen as i = 15 and the direction parallel to the vector 
(5,3,10). The exact calibration matrix was 

The resulting mean and the standard deviations for 
simulations and calculations according to the three dif- 

ferent cases was 

The bias in the estimations seems almost negligible. 
The standard deviations are rather high but consider- 
ing that only two images were used for the calculations 
the results are pretty reasonable. The use of more im- 
ages could probably make the calculations more pre- 
cise. Of course the sensitivities in the calibration tech- 
nique varies a lot with the pose of the camera in relation 
to the image plane. As for general plane-based calibra- 
tion there exists critical configurations, as discussed 
in [6], also in this translation based calibration which 
makes the calculations impossible. We have, however, 
in the presented experiments tried to  simulate a setup 
which seems to be reasonable for a real case. 

5 Conclusions 

An extension of plane-based camera calibration to 
deal with image sequences were the orientation of 
the camera relative to  the calibration plane does not 
change, has been presented in this paper. The stan- 
dard constraints on the calibration parameters, ob- 
tained from the estimated homographies from the cal- 
ibration plane to the image plane, has been extended 
with constraints also containing parameters of the pure 
translational motion. These constraints form together 
a homogeneous collection of equations that can that 
can be used to  solve some interesting cases, e.g. the 
situation when the calibration object is placed on the 
floor and a robot translates the camera down towards 
the floor. 

Through experiments on computer generated data 
we have tried to analyze the sensitivities of the current 
technique. More experiments are definitely needed to  
evaluate the usefulness of the method. These exper- 
iments should include the usage of more images and 
extensive tests on real data. It should also be possi- 
ble to apply the calibration technique to a rigid stereo 
head, where the translational motion parameters then 
would be the same for both cameras in the head. 
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