
MVA2002 IAPR Workshop on Machine Vision Applications, Dec. 11- 13,2002, Nara- ken New Public Hall, Nara, Japan 

Auto-Surface Reconstruction With Alpha-Shape 
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Abstract 

In this paper, we present an algorithm for the recon- 

struction of piecewise linear surfaces from unorganized 
sample points with improved a-shape. Alpha-shapes is 
based on eficient, discrete mathematics which determine 

exact relationships between points, shapes, and spaces. It 

generates a family of shapes according to the selected a 
parameter. The method discussed in this paper might be 

applied for surface reconstruction, and the process is fully 
automatic. 
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2.1 Interval Calculation 
Given the point set as input, we fust construct the De- 

launay triangulation, called D. For each simplex Or E D  
there is a single interval such that Or belongs to the sur- 

face iff the a value is contained in this interval. Seeing Fig 
2-1 for example, if a€ [r , R 1, line MN will be kept on 
the surface as l-simplex, this range is the interval of the 

line MN. For points M and N, their interval is [0 , r 1. 
Out of the interval, the simplex will not keep itself on the 

surface and will change to lower or higher order simplex. 
The details about the interval see reference [I]. 

1 Introduction 

The process of converting a set of sample points in 3D 
space into a computer graphics model generally involves 
several steps: the reconstruction of an initial piece- 

wise-linear model, cleanup, simplification, and perhaps 
fitting with surface patches. In this paper, we put our em- 
phasis on the first step. The input of the process is a set of 

points in 3D space, without any additional structure or 
organization while the output is a polygonal mesh. Al- 

pha-shape[l] is a very powerful tool, as a varies, one can 
obtains different a-shapes from the point set itself to the 
convex hull. Notice that in general an a-shape is a 
non-connected, non-regular polytope, so it is not directly 
suitable for surface reconstruction. 

Two improved a-shape methods that have already been 
presented are "Alpha-solid"[2] and "Anisotropic den- 

sity-scaled a-shapeW[3]. Melkemi and Chen[4] also 
introduced the conception "A-shape" in 2D and 3D. By 
constructing another point set A and then A-shape, it can 

solve the nonuniform problem. 
Based on the Marek and Michael's work, we first find 

the triangle with minimum area and the a value that keeps 

it on the surface, then the a will be adjusted with the 
point's density. 

2 Improved a- shape Method 

Fig 2-1 Intervals' Calculation in 2D 

2.2 Initial Triangle 
Alpha shape consists of points, edges, triangles and tet- 

rahedron. Since we wish to obtain a surface, we only need 
to carefully select a subset of the triangles from the De- 
launay triangulation. The initial triangle is our "seed" with 

the property that satisfy minimum criterion. With this 
"seed", we can propagate to the whole surface. 

2.3 Density Determination 
How to calculate the point density in surface recon- 

struction is important in the method. In general, two rather 
intuitive formulations of adaptive or variable bandwidth 
estimators have been considered[5]. The fust varies the 
fixed bandwidth with the estimation point and is often 

referred to as a balloon estimator. Its form is given by 

In this section, we discuss scaling a locally as a factor ;L(x) = - ~ K ( - ) = - ~ K ~ ( ~ - ~ ~ )  1 " x - x  1 " 
of the sampling density of each triangle vertex. n/Z, ;=I Ax n ,=I 
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(2- 1) 
The balloon estimator was first introduced by Lofts- 

gaarden and Quesenbeny[9] in the particular form of the 
kth nearest neighbor estimator. Much have been investi- 

gated about the kth nearest neighbor estimator, and it 

seems clear that it is not an effective density estimator in 

the univariate case. However, Terrell and Scott[6] show 
that the kth nearest neighbor estimator improves as di- 
mensionality increases and will perform well in 
dimensions greater than 4. 

The second variable bandwidth procedure is referred to 
as the sample-point estimator, in which the bandwidth is 
varied with each data point and not with the estimation 

point. The hnction form of the sample-point estimator is 
given by 

(2-2) 
Different from the two methods mentioned above, we 

present yet another density determination method: its 
bandwidth varies with the estimation point, while the es- 
timator is constructed with k-points cluster method. In 

3-dimension, we use enclosing ball with the smallest ra- 
dius as the closeness measure, and select k=4. In this case, 

each point has a tetrahedral with the smallest enclosing 
ball. The radius is the point's density. 

Fig2-2 Point density in 2D(Lefl: K=3, Right: K=4) 

choose K=4(k=K-I) because small features reconstruction 

need small K values. So for each estimation point, we find 
the tetrahedron with the smallest circurnsphere by search- 
ing the neighbor cells of the Voronoi diagram. In the case 

K>4, we need to calculate the higher order Voronoi dia- 

gram, this will make our algorithm much more complex. 

2.4 Scaling Algorithm 
In sections 2.2 and 2.3, we have obtained the initial tri- 

angle and points' density. The a value that keeps the 
initial triangle on the surface is our initial a value and is 
called a,. This value will change according to the point 
density, we discuss it in 2-dimension. 

Fig 2-3 Scaling example(2D) 

For example in Fig2-3, according to our density calcu- 

lation, p~(the density of point A)=ps =PC, and pep,=p~.. 
We choose the BC as our "seed" line. For BC, we can get 
it average density by: 

Then, we get the a value corresponding to each line 
using the equation: 

where y is the penalty factor, it is decided by: 

Finding the k-point cluster with the smallest ball, its 2D 
condition see the "On enclosing k points by a circle" [7]. 

In that, the author presents randomized algorithms with 
O(nk) space and O(n log n + nk) expected running time, 
resp., O(n) space and O(n log n + nk log k) time. In 

higher dimension, it is more complex and time consum- 
ing[8]. Our work is a little different from it. For each point, 

we have to find its k neighbors with the smallest ball. The 
value of k is chosen by the analyst to specify the desired 
degree of smoothing of the data. Small k values result in a 
small bandwidth, producing a spiky map with little 

smoothing. Larger k values result in a larger bandwidth 
and smoother density map. In our implementation, we 

pi : local point density 

- 
/J : mean of local point density 

n : number ofpoints 



Fig 2-4 Scaling example(3D, K=5) 

In 3D case (see Fig 2-4), we have: 

a, =ao~(p, lpo)  (2-5) 

where: 

PA =(pr  +p.y +p1)I3 (2-6) 

pr , ps,  p, : local point density of three vertexes of 

the triangle. 
y : penalty factor, calculated by (24). 

a,, po : Initial triangle and the corresponding density. 

If p, = ps =PI ,  it means these three vertices belong 

to one cluster, and Y =1.0 according to (2-4). In Fig 

2-4, we can see that p, = p, < p, because r and s 

belong to one cluster and t belongs to another one. 

With the increases of variance of P, , p, and PI , the 

penalty factor Y also should increase because the 

variance between the clusters increases. In the fol- 
lowing example(see Fig 2-5), we set Y =1.0 as the 

constant factor. We can see that in each cluster the 
algorithm works well but between clusters it fails be- 

cause we ignore the variance of p, , p, and p, . 

Fig 2-5 Scaling example(3D) Y =1.0 

3 Implementation and Results 

Our algorithm consists of four steps: 

1) Construction of Delaunay triangulation. 

2) Computes the a-intervals for the 2-simplex(triangle) in 
the Delaunay triangulation. 
3) Finds the initial triangle and calculates the point's den- 

sity. 
4) Get the triangle set on the surface by comparing the 

a,, and the interval, then render the result. 

Starting from the dense region, our method can easily 
capture the small features and construct the shape auto- 

matically. The quality and the time of reconstruction rely 
heavily on the procedure of density estimation. There are 
still some problems that need further investigation, such as 

how to assess the quality of the estimate and extend to 
multivariate adaptive procedure. 

We also give the comparison of powercrust method, 
tightcocone and our algorithm in table 3-1. All computa- 
tions were carried out on PC, with AMD-K6 3D processor 

and 192M RAM. 

Table 3-1 

* For the three examples, we take different multiplier in the 

Powercrust option. 

Head: 10 

Bunny: 100000 

Knot: 100000 

Fig 3-1 Knot Points: 10000 Triangles: 20726) 



Fig 3-2 Head (Points: 12772 Triangles: 29537) Stati.stics, 32, 36 1-37 1, 1990. 

Fig 3-3 Bunny (Points: 35539 Triangles: 106069) 

Fig 3-4 Buddha(Points: 32328 Triangles: 74187) 
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