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Abstract 

In this paper we tackle the problem of classifying ob- 
jects, which are not known to the system but similar to some 
of the objects contained in the training set. This type of 
classification is referred to as generic object modeling and 
recognition and is necessary for applications were it is im- 
possible to model all occurring objects. As no class for un- 
known objects exist, they are either rejected or assigned to 
the most similar class contained in the training set. Even in 
the case of soft assignments this can lead to wrong interpre- 
tation of the actual class membership. 

We present a new approach for generating appearance 
based hierarchical object models based on probabilistic 
PCA for generic object recognition. During the training 
step a hierarchical set of mixtures of probabilistic PCA 
models is generated. This represents a coarse-to-fine gra- 
dation with respect to the reconstruction ability of the train- 
ing views at each hierarchy level. So coarse parts of the 
training views are covered on higher levels whereas the 
lower levels cover more details of the encoded training 
views. The mixture components are calculated at each hi- 
erarchy in an unsupervised manner using the expectation- 
maximization algorithm. 

1 Introduction 

The main task of object recognition systems is the dis- 
tinct classification of objects into trained classes, taking 
into account varying illumination, different object poses 
and partial occlusion. Under these conditions the way of 
constructing the object models is crucial. Moreover many 
application domains exist where it is impossible to model all 
possibly occurring objects. This includes, e.g., autonomous 
service robot scenarios, in which it is not possible to present 
all objects within the operational area in the training step. 
The actual success of commands like "Bring me the cup 
of water!" does not depend on recognizing a distinct, pre- 
viously trained cup, but any cup is sufficient for a correct 
execution. 

Generic object models allow for classifying unknown 
objects into categories which describe subsets of the train- 
ing data with respect to common features. Organizing these 
categories in a hierarchical manner defines a coarse-to-fine 
model hierarchy where higher levels describe generic super 
classes and the lowest level distinct objects. 
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In order to achieve such an object recognition system, 
certain requirements have to be fulfilled. 

An object model type has to be defined which allows for 
hierarchic partitioning of the training set and, in addition to 
the quality criteria for class assignments, a criteria must be 
available to distinguish unknown from known objects. 

Former approaches [7,5] have used geometric primitives 
as features for building the models, confining themselves 
to handle only objects describable by a small set of geo- 
metric elements. Our approach combines the advantages 
of generic and appearance based object modeling together 
with a Bayesian classification due to the underlying proba- 
bilistic model. In this paper the work from [3] is extended 
with the focus on generic classification. 

2 Theory 

In contrast to former approaches based on geometric 
primitives as features for generating generic object models 
[7,5] we focus on a categorization scheme which is based 
on the appearance and not on the semantic of the objects 
using probabilistic PCA (PPCA) models [lo]. 

The PCA or Karhunen-LoCve-Transformation is the 
starting point for our considerations which is already widely 
used in the object and face recognition community [6, 2, 
111. The idea of using view based generic models using 
PCA features is based on the property of the PCA to define 
an order on the information content that each basis vector 
of the transformation carries. 

The disadvantages of the PCA are its global linearity as- 
sumption and a missing underlying statistical model that 
would allow for soft decisions about the membership of a 
certain object using probabilities. Using mixtures of PCA 
models would involve some kind of vector quantization in 
advance to get clusters for calculating local PCA features. 
As the clustering is done independently from the PCA, the 
resulting representation with respect to the reconstruction 
error is not optimal. With the application of mixtures of 
factor analyzers, a combined optimization of clusters and 
local PCA like dimensionality reduction is available [I]. 

In [4] it has been shown, how mixtures of factor an- 
alyzers (FA) can be calculated within an expectation- 
maximization framework and [lo] explains the relationship 
between standard PCA and FA. This information is used to 
build "mixtures of probabilistic PCA models" (MPPCA), 
which are derived from FA. 



2.1 Factor Analysis and PPCA Training Images + 
Factor analysis is based on a generative model, where an 

observation, e.g. an image vector, t i  E IRd is generated by 
a q-dimensional random vector xi, build from the so called 
factors, according to the mapping 

Here p is a constant displacement vector, E is a noise 
vector and W the so called factor loading matrix. The as- 
sumption is that xi - N(0, I , )  as well as E - N(0, *) 
are zero mean Gaussian distributed random vectors (with I ,  
being a q x q-dimensional identity matrix and !P a d x d- 
dimensional diagonal covariance matrix). Consequently the 
observation t i  is also Gaussian distributed. 

Given a set of n observations t i  the unknown parameters 
of the factor model W ,  p, and !P can be estimated using 
the EM algorithm. Details of the EM-computation can be 
found in [4]. 

The model from (1) can be easily extended to a mixture 
model of m Gaussian distributions. The observation vectors 
ti are now modeled by 

with xi - N(0 ,  I , )  and ~k - N(0,  !Pk) .  The quantity 
wk is the weight of the kth mixture component, !Pk again a 
diagonal covariance matrix of the observation noise. Again 
the reader is referred to [4] for a further discussion of how 
to extent the EM-algorithm for estimating the unknown pa- 
rameters wk, W k ,  pk.  and * k .  

For approximating the PCA the diagonal covariance ma- 
trix @ is restricted to have identical elements ( rE = a2 I d )  
[lo]. Moreover in the case of mixture analyzers all !Pk are 
restricted to have identical a's. This restriction is based on 
the interpretation of the elements of I k k  as the sensor noise 
model. In the case of images as observations the elements 
of !Pk represent the noise model of each individual CCD- 
sensor element. Allowing only one a ,  we assume the noise 
model of each sensor element to be the same and indepen- 
dent of the sensor reading value. 

2.2 Training and classification 

Figure 1 depicts the training algorithm. The hierarchical 
model generation takes three steps for each hierarchy level. 
At the beginning all input images of all objects are used to 
generate a low dimensional eigenspace [6] and the accord- 
ing eigenspace features for all input images. This is done 
to reduce the input dimension for the factor analysis to be 
numerically feasible, e.g. from 16384 for 128 x 128 pixel 
images to a maximum of 100 dimensions. Then the MP- 
PCA model is generated based on the eigenspace features 
of the training images. Therefore the log-likelihood of the 
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Figure 1 : Iterative model generation at the training step. 

As a third step the input images are assigned to one of the 
mixture components utilizing a Bayes classifier with the a 
posteriori probability 

and 

of the submodel k given the observation t i .  
All input images assigned to one mixture component 

serve as a new category for the next iteration where the al- 
gorithm is repeated with the images from each category. 

Classification is done similar to the training. At each hi- 
erarchy level, starting from the highest one, the test image is 
first projected into the eigenspace calculated from the train- 
ing images at this level. According to the ML assignment 
to one of the mixture components-the model for the next 
hierarchy level is selected. At the lowest level a nearest- 
neighbor classification is performed within the eigenspace. 

The log-likelihood of a test image vector 2 according to 
(3) at each hierarchy level serves as a quality criteria how 
well a test view is represented by the model. This is used to 
distinguish between views of objects contained in the train- 
ing set and views of objects which are not. The behavior 
of this quality measure for different known and unknown 
views is shown in Section 3. 

model 
3 Experiments 

L = x lnp( t i )  with 

with n observations and m Gaussian distributions, is 
maximized via the EM algorithm. 

All experiments for evaluating the approach were done 
using the COIL-20 and COIL-100 databases [9,8] in order 
to have a widely used basis for comparison. For demonstrat- 
ing our approach for generic object recognition we present 
results on standard, i.e. non-generic, and generic object 
recognition based on MPPCA models together with results 
from standard PCA, where appropriate, i.e. for the non- 
generic part. 



Table 1: Recognition rates for COIL-100 database with dis- 
junct 50% training and 50% test images with different input 
dimensions from PCA. 

3.1 MPPCA vs. standard PCA 

std. PCA 
feature space 
dimension 

In order to compare our model with standard eigenspace 
approaches we calculated recognition rates using graylevel 
images of size 128 x 128 pixels from the COIL-100 
database which consists of 72 views for each of the 100 ob- 
jects. The object model uses 3 hierarchy levels with 5 mix- 
ture components at each level. In order to perform the ac- 
tual classification at each hierarchy level the training views 
contained in a category are divided according to their class 
labels and for each set a standard eigenspace is calculated. 
Classification on one level is done by assigning the test view 
to one of the categories according to the Bayes scheme (c.f. 
(4)) and projecting the test view into each of the associ- 
ated eigenspaces. The class label is selected by a nearest- 
neighbor classifier. 

Table 1 summarizes the achieved recognition rates for 
the COIL-100 database. The database was divided into dis- 
junct sets of 50% training and 50% test images. For each hi- 
erarchy level the recognition rates for the test set of known 
objects is given. The last column gives the result on a stan- 
dard PCA nearest-neighbor classification for a PCA model 
at the given dimension. It can be seen that the MPPCA ap- 
proach is superior to the standard PCA approach at each 
input dimension, even on the coarsest level 0. 

Taking the very low dimension of the input features for 
the 3-D case into account, the recognition rate of 90.3% are 
a reasonable and promising result for larger databases. An 
increase of the featurespace dimension does not necessarily 
increase the recogntions rates at finer levels as not enough 
training images remain for proper eingenspace calculation. 

hierarchy 
level 0 level 1 level 2 

3.2 Generic Classification 

Achieving generic classification results is not as trivial 
as for the classification of trained objects. Precise numbers 
can not be presented as the categorization is done unsuper- 
vised, which does not necessarily lead to sensible results for 
a "human classifier". 

As Section 3.1 proved that the categorization and clas- 
sification scheme according to the a posteriori probabili- 
ties performs very well, this section focus on analyzing the 
properties of the log-likelihood (LL) criteria. 

For testing the generic recognition capabilities, two ob- 
jects of the COIL-20 and four of the COIL-100 training set 
have been completely removed, leaving only similar objects 
for model generation. The data of all other objects where 
divided into disjunct training and test set, both containing 
50% of the images for each object (c.f. Figure 2). 

The log-likelihood at each hierarchy level should give 
information on whether the test image is represented by the 
current MPPCA model or whether it is too different from 
the stored views to be represented by this model. 

For known objects the log-likelihood should stay the 
same through all hierarchy levels or even increase. This is 

Figure 3: Example of. object5 which are completely re- 
moved from the training set for generic object recognition. 
On the left side: examples of all objects of the COIL-20 
database with those excluded crossed. On right side: ex- 
amples of the objects of COIL-100 database excluded from 
the training. 
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Figure 3: PPCA Figure 4: NN 

Log-likelihood (Figure 3) and distance function plot within 
eigenspace (Figure 4) for the two cars (Cl,C2) and the pot 
(Pl) which are part of the training set as well as for the 
unknown car (UC) and the unknown pot (UP). 

due to the fact that the finer models are able to capture the 
actual appearance better than the coarser models. Unknown 
objects, in contrast, should be recognizable by a decrease of 
the log-likelihood at a hierarchy level where the model gets 
too specialized. 

Figure 3 shows the log-likelihood for the hierarchy level 
0 to 2 and for comparison Figure 4 does the same for the 
"distance in feature space" function used as quality crite- 
ria for a nearest-neighbor classification for standard PCA. 
Both diagrams show the averaged curves over all test im- 
ages for the two unknown objects "uncovered pot" and 
"car3" as well as for the three known objects "half covered 
pot" and "carll2". 

In this case, for 20 classes, the log-likelihood criteria 
performs very well for generic classification. The two un- 
known objects can be identified by decreasing LL. The LL 
for the unknown car remains stable until level 1 and de- 
creases at level 3, compared to the LL of the unknown pot, 
which decreases monotonically through all levels. This be- 
havior reflects the fact, that for the car, two very similar 
objects were part of the training set, whereas for the pot, 
only one object, which exhibits more differences to the un- 
known object as the known cars to the unknown, remains in 
the training set. 

Experiments with the COIL-100 database and the four 
excluded objects (Figure 2) show a similar behavior, but the 
results are not as clear as for the smaller data set. 

Figure 5 and 6 show the averaged log-likelihood over all 
views of the four unknown objects and a subset of the re- 
maining 96 known objects. The subset was chosen to con- 
tain objects which for humans visually similar to the un- 
known objects, e.g. eight cars, four cups, seven cans and 
one toy bear. 

The basic properties of the COIL-20 results can be veri- 
fied but for the unknown objects only the log-likelihood for 
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Figure 5: unknown objects Figure 6: known objects 

Averaged Log-likelihood of the four unknown objects (Fig- 
ure 5) and for a subset of the remaining 96 known objects 
(Figure 6) of the COIL- 100 database. 

Figure 7: Examples of training views contributing the mod- 
els at level 2 where most of the unknown cup views (left) 
and the unknown car views (right) were assgined to. 

"cup 4" shows a proper behavior. 
Due to the larger number of objects more hierarchy lev- 

els andlor mixture components at each level are required to 
achieve class specific information on the finest level. This 
leads to problems while calculating eigenspaces and MP- 
PCAs because of the lack of training data. For 20 objects 
we achieve good separation results on level 2 with a suf- 
ficient number of images for estimating the distributions. 
Having 100 objects leads to categories which consists of 
similar views of a larger number of object classes. The con- 
sequence is, that unknown objects at this level have high 
LL's and require further hierarchy levels to separate the ob- 
jects. Having approximately 50% of all images (=3600) as 
training data results in an average of 28 images per model at 
level 2 (3600 images divided by 5 x 5 x 5 = 125 models). 
Further splitting is therefore not always possible. 

Figure 3.2 and 3.2 show example views of object from 
two models at level 2 where most of the unknown cups and 
cars were assigned to. Whereas the model for the cup con- 
tains only two very similar classes the model for the car 
consists of 23 classes altogether (not all shown). 

ages of each car type would be necessary to generate more 
specialized models, further extending the hierarchy. 

A solution to this in the absence of a proper number of 
training images is to generate new views either by interpo- 
lating within the eigenspace, as used in [6] for building sub- 
space models, by small affine transformations of the origi- 
nal images and by adding additional noise. 

4 Conclusion 

To summarize the results, we have shown, that our pro- 
posed hierarchical object model based on mixtures of prob- 
abilistic PCA's suits the need for generic object recognition. 
It can be seen that for standard object recognition problems 
the new models give reasonable results and that addition- 
ally a quality criteria is defined which can be exploited for 
generic object recognition. 

Further work is done especially on evaluating the mod- 
els using other databases, i.e. analyzing the behavior of the 
log-likelihood for a larger number of object classes and im- 
proving the hierarchy level generation with respect to solv- 
ing the mentioned problems. 
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