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Abstract

This paper proposes an approach to constructing a 3-D
paper-made object from a crease pattern, a set of line seg-
ments (creases) on a sheet of paper which is usually produced
when a paper-made object such as origami is unfolded. First,
a coordinate transformation method from 2-D crease patterns
to 3-D space is proposed. Since faces (formed by the creases)
more than two are likely transformed onto the same plane
in 3-D space, it is necessary to dispose these faces consis-
tently. Therefore, second, a method for analyzing positional
relationships of the overlapping faces is proposed. Finally,
we show some examples of 3-D objects constructed by our
method. The proposed method is useful for packaging and
architectural modeling.

1 Introduction

Origami is a form of visual and sculptural representation
that is defined primarily by the folding of the medium (usu-
ally paper). Traditional origami models have been presented
by drill books, in which the folding processes consisting of
several simple folding operations (e.g. mountain-folding) are
intelligibly instructed step-by-step through a sequence of il-
lustrations. Miyazaki et al. [4] have developed a virtual inter-
active manipulation system for each simple folding operation.

However, recently, we find that there are a lot of realistic,
modern and complex origami models designed not by the tra-
ditional folding operations but by geometric origami design
methods [3]. There is no specific process to fold these mod-
els. The origami creators draw line segments (creases) onto
a sheet of paper to generate a crease pattern, the unfolded
state of an origami model. In other words, they design a new
model before they fold it. Designing such models consumes
much time and energy of the creators because they have to
imagine the completed model from a crease pattern without
actually folding it.

In this paper, we propose an approach that represents 3-
D models constructed from crease patterns to help origami
creators easily see designed models as occasion demands. We
notice the following three problems:

1. The crease patterns generated by geometric origami de-
sign methods do not include any information about fold-
ing process or folding operations.

2. The faces more than two formed by creases are likely
overlapped on the same plane in 3-D space.

3. Some crease patterns allow several ways of folding.

To deal with these problems, we first propose a coordinate
transformation method that is able to transform all faces in a
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2-D crease pattern into the faces in 3-D space simultaneously,
in section 3. Then, in section 4, we describe how to dispose
the faces overlapped on the same plane in 3-D space so that
the positional relations among them are consistent. Although
there may be multiple solutions for ways of folding, we are
trying to extract one of the feasible solutions.

As related work, Uchida et al. [6] have proposed an ap-
proach to deducing a folding process from a crease pattern
of origami models, but it is premised that the origami models
are designed by traditional folding operations. Eisenberg et
al. [2, 1] have discussed a folding net problem, for the pur-
pose of transforming 3-D virtual objects such as polyhedrons
into a paper representation of the model as a form of hard
copy from virtual environments, as the opposite of our ap-
proach. However, faces of the 3-D polygon models do not
overlap each other. So, the second problem described above
does not exist.

2 From Crease Patterns to 3-D Models

In order to construct 3-D virtual paper-made objects
from crease patterns, the rotational transformation based
on creases using the adjacent relationship among faces is
needed. We generate a graph of the crease pattern in which
nodes represent faces and edges represent creases is con-
stituted, which comes to obtain the positional relationships
among faces easily (Fig. 1). We call the graph crease pattern
graph (CP-graph for short).
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Figure 1. A crease pattern (left), and face-crease
graph (right).

2.1 Crease Pattern

The crease pattern is given and satisfies the following pre-
conditions;

e fold-able,
e has a set of faces divided by creases, and

e all the faces are polygons arranged on zy plane in the
right-handed coordinate system, and on the obverse side



(the direction of normal vector is the positive z direc-
tion).

The crease pattern C'P consists of vertices V, creases C'
and faces F'. A crease ¢; ; € C has information about its
coordinates and the angle 0; ; to be folded between two faces
fi» fj. If 0; ; = £ then the crease means valley/mountain
folding. Moreover, in Fig. 2, when one of the right-handed-
rotation vectors around the face f; is defined as cz_j> which
belongs to ¢; j, the unit vector of ¢; ; is defined as ¢;;, and the
vector from the origin to the starting point of ¢; ; is defined
as ti7 e

Figure 2. Vectors for a crease.

2.2 3-D Origami Model

Miyazaki et al. [4] have already proposed a data structure
for origami which is able to represent the overlapping faces
on the same plane. An example of this structure is shown
in Fig. 3. The structure groups the faces on the same plane
and hold the order of overlapping by a face list (in Fig. 3,
that is fo — f3). Because the orders of overlapping faces
are unknown when we try to transform a crease pattern into
a 3-D origami model, we propose a method for consistently
arranging the face lists from the given crease patterns.

Face list
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Figure 3. A structure for describing overlapping faces.

3 Coordinate Transformation

An arbitrarily face fp in a crease pattern is fixed on zy-
plane and 3-D transformations of other faces are performed
using the CP-graph. First, a path from fj to a face f, to be
transformed is searched. In order to decrease computational
cost, the path is the shortest path (regard the weight of an
edge as 1) is desired. When the obtained path is

fo—m o fa—= = fo

the order of edges along this path is specified as

€017 "7 Cg-1,q 7 Cqq+l 7 Cp—1p-

Next, the transformation matrices for each crease c,_1 4 are
calculated. The rotation matrix of an angle 6,_; 4 for the
crease vector ¢,_1 4 is defined as Ry, and the translation ma-
trix for the vector t,_; 4 is defined as Tj;,. Then, the total
transformation matrix X, for the crease c4_1 4 is

Xg=T,R,T, "

Consequently, the 3-D (affine) transformation matrix Z,, for
a face f, based on the path from the fixed face fj is

Zp(2,9,0,1) = X1..X¢.. Xp(2,9,0,1)" for (z,y) € fp.

By calculating this Z,, for all faces in the crease pattern, it
is possible to transform a crease pattern into a 3-D origami
model (also other paper-made objects).

4 Arrangement of Face Lists

Firstly, the faces in 3-D space produced by the transforma-
tion method described in the previous section are divided into
several face groups, each consists of the faces overlapping on
the same plane.

Each face group is able to be defined as a CP-sub-graph
and the sub-graph consists of the edges of only creases whose
angles 6 is +7, namely valley/mountain folding. Such a sub-
graph can be painted with two colors to represent the front
and the back of the paper, and two faces which have the same
crease have different colors.

Secondly, by using the 2-colored sub-graph, a face list is
consistently arranged so that the positional relationship be-
tween two faces in the list can be decided. The positional
relationship between two faces is defined as follows.

Difinition 1 When a face f; should situate before a face f;,
fi > fj-

Therefore, the face list is arranged so that all face pairs in the
list satisfy f; > f; for i < j, where the i-th face and the j-th
face in the list are f; and f;, respectively. A method for deci-
sion of the relationship between two faces in a crease pattern
is proposed in the following subsections. This method first
judges the relationships between two neighboring faces in a
crease pattern, and then, analyzes the relationships between
all faces by using the obtained adjacent relationship.

4.1 Positional Relationship between Neighboring
Faces

When there are two neighboring faces f;, f; have jointly a
crease ¢;,;, the condition for satisfying f; > f; is:

o the side of f; is the front and 0; ; is —, or
o the side of f; is the back and 0, ; is .

Figure 4 shows an example of two neighboring faces. The
side of the face f; is the front and the side of the face f5 is
the back. Moreover, the angle 0; ; of the crease between the
faces is —m, that is mountain-folding. Therefore, the posi-
tional relationship should be f; > fs.
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Figure 4. An example of determining positional rela-
tionship between neighboring faces.



4.2 Positional Relationship between Two Faces

By using the adjacent relationship, the positional relation-
ship between two faces that are separate in a crease pattern
is analyzed. We propose a method for analyzing the po-
sitional relationship based on cross sections of an origami
model. Figure 5 shows an example of the cross section which
is obtained by cutting an origami model. The obtained cross
section in the crease pattern consists of a set of segments.

Two faces f;, f; whose positional relationship should be
investigated are cut simultaneously and relationships between
the faces are analyzed using the obtained cross sections.
Moreover, the cross section between two faces needs to be
connected. We have already proposed a method for generat-
ing the cross section by drawing line segments in the crease
pattern [5]. This method generates the cross section using
symmetry of the obtained segments. The obtained cross sec-
tion S is defined as a set of line segments:

{So,...

where S may be a simple path or a cycle, in the latter case
S0 = Snp-

In order to analyze the positional relationships among seg-
ments of the obtained cross section, each segment is arranged
in 2-D plane as shown in Fig. 6. In this figure, there are
segments {s1, S2, S3, 84, S5}, the distance between terminal
nodes p;, p;+1 of the segments is represented as d;. First,
the segments are arranged parallel with y-axis in order at a
regular interval, and y-coordinates of the terminal nodes cor-
respond with the same nodes (Fig. 6(b)). Next, by using po-
sitional relationships between neighboring faces, the nodes
of line segments are linked by vectors r; if there are con-
nectivity relations between corresponding neighboring faces
(Fig. 6(c)). Moreover, if f; > f;y1, the direction of r; is
negative about x-axis. If f; < f;11, the direction of 7; is
positive.

The segments are rearranged about z-axis as shown in
Fig. 7 and all arrangements (permutations) of the segments
are analyzed. The segments should be arranged so that z-
coordinates of segment s; are larger than ones of s; if f; >
fj. The consistent permutation of the segments satisfies the
following conditions;

2 Siy s Sjsey Sn} €S

1. All r; are positive directions to the horizontal axis.
2. All r; do not cross any segments.

3. When two vectors r;, 7; are on the same straight line,
if there is a terminal node of r; between terminal nodes
of r;, there is also another node of r; between terminal
nodes of 7;.

Condition 1 means all the relationships between two neigh-
boring faces are f; > f; for i > j (4,7 are the values of
z-coordinates). Permutation of Fig. 7(a) is infeasible be-
cause only 79 is positive direction. Moreover, condition 2
means physical feasibility because it is impossible to fold the
faces when a face collides with another face. Permutation of
Fig. 7(b) is infeasible because r3 crosses s;. Furthermore,
condition 3 represents a particular case of condition 2.
Figure 7(c) shows permutations which satisfy these con-
ditions using the segments in Fig. 6. Only two permutations
are consistent. Therefore, the positional relationship between
two faces can be analyzed. For example, it is certain that
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fa > fo, because s4 is put more forward than s, on two
permutations. However, the relationship between s; and sy
is different at two permutations. This means that there may
be multiple solutions. Although the positional relationships
can not be solitarily determined in this case, only the feasible
solutions are extracted by this method.

Figure 5. An example of generating a cross section.
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Figure 6. Arrangement of a cross section onto 2-D
plane.

5 Experimental Results

We have implemented a prototype system based on the
proposed method. Figure 8 shows the user interface of the
system. A crease pattern given as input is represented on the
left of the interface. When a crease pattern is input to the sys-
tem, the system automatically constructs the 3-D paper-made
object on the right. The implementation is tested with some
fold-able crease patterns that are produced by hand and the
resulting objects are represented in 3D virtual space, which
is shown in Fig. 9. As a result, consistent paper-made objects
can be constructed from crease patterns.

6 Conclusion

This paper presented an approach to constructing 3-D
paper-made objects from crease patterns. The proposed co-
ordinate transformation makes it possible to represent paper-
made objects in 3-D virtual space. Furthermore, the proposed
analyzing method of the positional relationships among faces
arranges the faces overlapped on the same plane after the
transformation in a consistent order. The experimental re-
sults have demonstrated that in our approach it is possible to
construct consistent paper-made objects from crease patterns.
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(c) Feasible permutations.

Figure 7. Permutations of segments in Fig. 6.
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Figure 8. The user interface of the prototype system.

As our future work, it is necessary to deal with the problem
how to find the “optimal” solution if multiple interpretations
for one crease pattern exist. Moreover, in order to animate
origami in 3-D virtual space, it is necessary to extract folding
process or something close to it from given crease patterns.
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