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Abstract

User verification systems that use a single biometric indicator often have to contend with noisy sensor data, re-

stricted degrees of freedom, non-universality of the biometric trait and unacceptable error rates. Attempting to improve

the performance of individual matchers in such situations may not prove to be effective because of these inherent

problems. Multibiometric systems seek to alleviate some of these drawbacks by providing multiple evidences of the

same identity. These systems help achieve an increase in performance that may not be possible using a single biometric

indicator. Further, multibiometric systems provide anti-spoofing measures by making it difficult for an intruder to

spoof multiple biometric traits simultaneously. However, an effective fusion scheme is necessary to combine the in-

formation presented by multiple domain experts. This paper addresses the problem of information fusion in biometric

verification systems by combining information at the matching score level. Experimental results on combining three

biometric modalities (face, fingerprint and hand geometry) are presented.
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1. Introduction

A wide variety of applications require reliable

verification schemes to confirm the identity of an

individual requesting their service. Examples of

such applications include secure access to build-

ings, computer systems, laptops, cellular phones
and ATMs. In the absence of robust verification

schemes, these systems are vulnerable to the wiles
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of an impostor. Credit card fraud for example,

costs the industry millions of dollars annually,

primarily due to the lack of effective customer

verification techniques (Wallich, 1999).

Traditionally, passwords (knowledge-based se-

curity) and ID cards (token-based security) have

been used to restrict access to applications. How-
ever, security can be easily breached in these ap-

plications when a password is divulged to an

unauthorized user or a badge is stolen by an im-

postor. The emergence of biometrics has addressed

the problems that plague traditional verification

methods. Biometrics refers to the automatic iden-

tification (or verification) of an individual (or a

claimed identity) by using certain physiological or
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behavioral traits associated with the person (Fig.

1). Biometric systems make use of fingerprints,

hand geometry, iris, retina, face, hand vein, facial

thermograms, signature or voiceprint to verify a

person�s identity (Jain et al., 1999a). They have an

edge over traditional security methods in that they
cannot be easily stolen or shared.

A simple biometric system has a sensor module,

a feature extraction module and a matching mod-

ule. The performance of a biometric system is

largely affected by the reliability of the sensor used

and the degrees of freedom offered by the features

extracted from the sensed signal. Further, if the

biometric trait being sensed or measured is noisy
(a fingerprint with a scar or a voice altered by a

cold, for example), the resultant matching score
Fig. 1. Examples of some of the biometric traits associated with

an individual: (a) fingerprint, (b) face, (c) hand geometry, (d)

signature, (e) iris and (f) voice.
computed by the matching module may not be

reliable. Simply put, the matching score generated

by a noisy input has a large variance. This problem

can be addressed by installing multiple sensors

that capture different biometric traits. Such sys-

tems, known as multimodal biometric systems

(Hong et al., 1999), are expected to be more reli-

able due to the presence of multiple pieces of evi-

dence. These systems are also able to meet the

stringent performance requirements imposed by

various applications (Hong and Jain, 1998). Mul-

timodal systems address the problem of non-uni-

versality: it is possible for a subset of users to not

possess a particular biometric. For example, the
feature extraction module of a fingerprint authen-

tication system may be unable to extract features

from fingerprints associated with specific individ-

uals, due to the poor quality of the ridges. In such

instances, it is useful to acquire multiple biometric

traits for verifying the identity. Multimodal sys-

tems also provide anti-spoofing measures by

making it difficult for an intruder to spoof multiple
biometric traits simultaneously. By asking the user

to present a random subset of biometric traits, the

system ensures that a �live� user is indeed present at
the point of acquisition. However, an integration

scheme is required to fuse the information pre-

sented by the individual modalities.

In this paper we deal with the problem of in-

formation fusion by first building a multimodal
biometric system and then devising various

schemes to integrate these modalities. The pro-

posed system uses the fingerprint, face, and hand

geometry features of an individual for verification

purposes.
2. A biometric system

A biometric-based authentication system oper-

ates in two modes:

(1) Enrollment mode: In the enrollment mode a

user�s biometric data is acquired using a bio-

metric reader and stored in a database. The

stored template is labeled with a user identity
(e.g., name, identification number, etc.) to faci-

litate authentication.
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(2) Authentication mode: In the authentication

mode, a user�s biometric data is once again ac-

quired and the system uses this to either iden-

tify who the user is, or verify the claimed

identity of the user. While identification in-
volves comparing the acquired biometric infor-

mation against templates corresponding to all

users in the database, verification involves com-

parison with only those templates correspond-

ing to the claimed identity. Thus, identification

and verification are two distinct problems hav-

ing their own inherent complexities.

A simple biometric system has four important

components:

(1) Sensor module which acquires the biometric

data of an individual. An example is a finger-

print sensor that captures fingerprint impres-

sions of a user.

(2) Feature extraction module in which the ac-
quired data is processed to extract feature

values. For example, the position and orienta-

tion of minutiae points in a fingerprint image

would be extracted in the feature extraction

module of a fingerprint system.

(3) Matching module in which the feature values

are compared against those in the template

by generating a matching score. For example,
in this module, the number of matching minu-

tiae points between the query and the template

will be computed and treated as a matching

score.

(4) Decision-making module in which the user�s
identity is established or a claimed identity is

either accepted or rejected based on the match-

ing score generated in the matching module.

The performance of a biometric system can be

measured by reporting its false accept rate (FAR)

and false reject rate (FRR) at various thresholds.

These two factors are brought together in a re-

ceiver operating characteristic (ROC) curve that

plots the FRR against the FAR at different

thresholds. (Alternately, the genuine accept rate,
which equals 1-FRR, may be plotted against the

FAR.) The FAR and FRR are computed by

generating all possible genuine and impostor
matching scores and then setting a threshold for

deciding whether to accept or reject a match. A

genuine matching score is obtained when two

feature vectors corresponding to the same indi-

vidual are compared, and an impostor matching

score is obtained when feature vectors from two
different individuals are compared.
3. Fusion in biometrics

The layout of a bimodal system is shown in Fig.

2. The purpose of this diagram is to illustrate the

various levels of fusion for combining two (or
more) biometric systems. The three possible levels

of fusion are: (a) fusion at the feature extraction

level, (b) fusion at the matching score level, (c)

fusion at the decision level.

(1) Fusion at the feature extraction level: The data

obtained from each sensor is used to compute

a feature vector. As the features extracted from
one biometric trait are independent of those

extracted from the other, it is reasonable to

concatenate the two vectors into a single new

vector. The new feature vector now has a higher

dimensionalityandrepresentsaperson�s identity
in a different (and hopefully more discriminat-

ing) hyperspace. Feature reduction techniques

may be employed to extract useful features
from the larger set of features.

(2) Fusion at the matching score level: Each sys-

tem provides a matching score indicating the

proximity of the feature vector with the tem-

plate vector. These scores can be combined

to assert the veracity of the claimed identity.

Techniques such as logistic regression may be

used to combine the scores reported by the
two sensors. These techniques attempt to min-

imize the FRR for a given FAR (Jain et al.,

1999b).

(3) Fusion at the decision level: Each sensor can

capture multiple biometric data and the result-

ing feature vectors individually classified into

the two classes––accept or reject. A majority

vote scheme, such as that employed in (Zuev
and Ivanon, 1996) can be used to make the

final decision.



Fig. 2. A bimodal biometric system showing the three levels of fusion (FU: fusion module, MM: matching module, DM: decision

module).
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Fusion in the context of biometrics can take the

following forms:

(1) Single biometric multiple representation.
(2) Single biometric multiple matchers.

(3) Multiple biometric fusion.

3.1. Single biometric multiple representation

This type of fusion involves using multiple

representations on a single biometric indicator.

Typically, each representation has its own classi-
fier. The similarity scores reported by these clas-

sifiers are then consolidated. Cappelli et al. (2000)

describe a fingerprint classification system 1 that
1 The system classifies a fingerprint into one of five classes––

Arch, Left loop, Right loop, Whorl and Tented arch. Thus it is

not a biometric system by itself, as it does not perform person

identification or verification.
combines a structural classifier with a KL trans-

form-based classifier by integrating the scores

generated by the two classifiers. This is done by

first mapping the scores (which are distance mea-
sures) into a common domain via a double sig-

moid function and then taking a weighted average

in the new domain. Jain et al. (1999c) also use

multiple classifiers for fingerprint indexing. Their

technique uses a K nearest neighbor classifier and a

set of 10 neural network classifiers to classify fin-

gerprints. General strategies for combining multi-

ple classifiers have been suggested in (Ho et al.,
1994). All the approaches presented there (the

highest rank method, the Borda count method and

logistic regression) attempt to reduce or rerank a

given set of classes. These techniques are thus

relevant to the identification problem in which a

large number of classes (identities) are present.

The fusion in this approach takes place at the

matching stage, after the classifiers report a simi-
larity score for each class. Prabhakar and Jain
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(2002) show that selecting classifiers based on

some ‘‘goodness’’ statistic may be necessary to

avoid performance degradation when using clas-

sifier combination techniques. It should also be

possible to combine (concatenate) the feature

vectors extracted by the individual classifiers.

3.2. Single biometric multiple matchers

It is also possible to incorporate multiple

matching strategies in the matching module of a

biometric system and combine the scores gener-

ated by these strategies. Jain et al. (1999b) use the

logistic function to map the matching scores
obtained from two different fingerprint matching

algorithms into a single score. The authors dem-

onstrate that such an integration strategy improves

the overall performance of a fingerprint verifica-

tion system.

This type of fusion also takes place at the

matching stage of a biometric system. Although

there are multiple matchers in this case, all
matchers operate on the same representation of

the biometric data.

3.3. Multiple biometric fusion

Multibiometric fusion refers to the fusion of

multiple biometric indicators. Such systems seek to

improve the speed and reliability (accuracy) of a
biometric system (Hong and Jain, 1998) by inte-

grating matching scores obtained from multiple

biometric sources. A variety of fusion schemes

have been described in the literature to combine

these various scores. These include majority vot-

ing, sum and product rules, k-NN classifiers,

SVMs, decision trees, Bayesian methods, etc. (see

for example Ben-Yacoub et al., 1999; Bigun et al.,
1997; Dieckmann et al., 1997; Jain et al., 1999d;

Kittler et al., 1998; Verlinde and Cholet, 1999).

An important aspect that has to be addressed in

fusion at the matching score level is the normal-

ization of the scores obtained from the different

domain experts (Brunelli and Falavigna, 1995).

Normalization typically involves mapping the

scores obtained from multiple domains into a
common domain before combining them. This

could be viewed as a two-step process in which the
distributions of scores for each domain is first

estimated using robust statistical techniques

(Hampel et al., 1986) and these distributions are

then scaled or translated into a common domain.

Besides the techniques described above, other

types of fusion are also possible in biometrics: (i) A
fingerprint biometric system may store multiple

templates of a user�s fingerprint (same finger) in its
database. When a fingerprint impression is pre-

sented to the system for verification, it is compared

against each of the templates, and the matching

score generated by these multiple matchings are

integrated. (ii) A system may store a single tem-

plate of a user�s finger, but acquire multiple im-
pressions of the finger during verification. (iii)

Another possibility would be to acquire and use

impressions of multiple fingers for every user.

These possibilities have been discussed in (Jain

et al., 1999e).
4. Experiments

A brief description of the three biometric indi-

cators used in our experiments is given below.

4.1. Face verification

Face verification involves extracting a feature

set from a two-dimensional image of the user�s face
and matching it with the template stored in the

database. The feature extraction process is often

preceded by a face detection process during which

the location and spatial extent of the face is de-

termined within the given image. This is a difficult

process given the high degree of variability asso-

ciated with human faces (color, texture, expression,

pose, etc.). The problem is further compounded by
the presence of complex backgrounds and variable

lighting conditions (Fig. 3). A variety of tech-

niques have been described in the literature to lo-

cate the spatial coordinates of a face within an

image (Burel and Carel, 1994; Rowley et al., 1998;

Yang and Huang, 1994). Once the boundary of the

face is established, we use the eigenface approach

to extract features from the face (Kirby and Siro-
vich, 1990; Turk and Pentland, 1991). In this ap-

proach a set of orthonormal vectors (or images)



Fig. 3. The problem of face detection is compounded by the

effects of complex lighting and cluttered background.
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that span a lower dimensional subspace is first
computed using the principal component analysis

(PCA) technique. The feature vector of a face

image is the projection of the (original face) image

on the (reduced) eigenspace. Matching involves

computing the Euclidean distance between the

eigenface coefficients of the template and the

detected face.

4.2. Fingerprint verification

A fingerprint refers to the flowing pattern of

ridges and furrows located on the tip of a finger.

Traditionally, these patterns have been extracted

by creating an inked impression of the fingertip on

paper. But the electronic era has ushered in a range

of compact sensors that provide digital images of
these patterns (Fig. 4). In real-time verification

systems, the images acquired by these sensors are
Fig. 4. A compact solid-state sensor and a sample fingerprint

acquired by the sensor. The sensor is about the size of a postage

stamp.
used by the feature extraction module to compute

the feature values. The feature values typically

correspond to the position and orientation of

certain critical points known as minutiae points

(ridge endings and ridge bifurcations) that are

present in every fingerprint (Fig. 5). The matching
process involves comparing the two-dimensional

minutiae patterns extracted from the user�s print
with those in the template. For this experiment,

the techniques described in (Jain et al., 1997) were

used in the feature extraction and matching stages

of the fingerprint verification system.
4.3. Hand geometry

Hand geometry, as the name suggests, refers to

the geometric structure of the hand. This structure

includes width of the fingers at various locations,

width of the palm, thickness of the palm, length of

the fingers, etc. Although these metrics do not vary

significantly across the population, they can never-

theless be used to verify the identity of an individual.
Hand geometry measurement is non-intrusive and

the verification involves a simple processing of the

resulting features. Fig. 6 shows the hand geometry

system that was used in our experiments. The

system computes 14 feature values comprising of

the lengths of the fingers, widths of the fingers and

widths of the palm at various locations (Jain et al.,

1999f).
Fig. 5. A fingerprint image with the core and four minutiae

points labeled.
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4.4. Combining the three modalities

The database for our experiments consisted of

matching scores obtained from three different

modalities––face, fingerprint and hand geometry.

However, data pertaining to all three modalities

were not available for a single set of users. The

mutual non-dependence of the biometric indica-
tors allows us to assign the biometric data of one

user to another.

The database itself was constructed as follows:

The fingerprint and face data were obtained from

user set I consisting of 50 users. Each user was

asked to provide five face images and five finger-

print impressions (of the same finger). This data

was used to generate 500 (50 · 10) genuine scores
and 12,250 (50 · 5 · 49––each feature set of a user

was compared against one feature set each of all

other users) impostor scores for each modality.

The hand geometry data was collected separately

from user set II also consisting of 50 users. 2 This

resulted in 500 genuine scores and 12,250 impostor

scores for this modality also. Each user in set I was

randomly paired with a user in set II. Thus cor-
responding genuine and impostor scores for all

three modalities were available for testing. All

scores were mapped to the range ½0; 100�. Since the
face and hand scores were not similarity scores
2 Some users from set I were present in set II.
(they were distance scores), they were converted to

similarity scores by simply subtracting them from

100. A similarity score x represents the proximity

of two feature sets as computed by a classifier. A

score vector represents the scores of multiple clas-

sifiers. Thus, the vector ðx1; x2; x3Þ is a score vector,
where x1, x2 and x3 correspond to the (similarity)

scores obtained from the classifiers corresponding

to the face, fingerprint and hand geometry sys-

tems, respectively.
False Accept Rate (%)

Fig. 8. ROC curves showing the performance of each of the

three individual modalities.
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The scatter plot of the genuine and impostor

scores is shown in Fig. 7. The plot indicates that

the two classes are reasonably separated in three-

dimensional space; therefore, a relatively simple

classifier should perform well on this dataset. The

ROC curves depicting the performance of the in-
dividual modalities are shown in Fig. 8.

4.4.1. Sum rule

The simplest form of combination would be to

take the weighted average of the scores from the

multiple modalities. This strategy was applied to

all possible combinations of the three modalities.

Equal weights were assigned to each modality as
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Fig. 9. ROC curves showing an improvement in performance when s

fingerprint scores and (b) combining face and hand geometry scores.
the bias of each classifier was not computed. Figs.

9 and 10 show the performance of the sum rule on

the three modalities.

4.4.2. Decision trees

A decision tree derives a sequence of if–then–

else rules using the training set in order to assign a

class label to the input data. It does this by finding

out an attribute (feature) that maximizes infor-

mation gain at a particular node. The C5.0 pro-

gram Quinlan (1992) was used to generate a tree

from the training set of genuine and impostor

score vectors. The training set consisted of 11,125

impostor score vectors and 250 genuine score
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cores are combined using the sum rule: (a) combining face and



Fig. 10. ROC curves showing an improvement in performance when scores are combined using the sum rule: (a) combining fingerprint

and hand geometry scores and (b) combining face, fingerprint and hand geometry scores.

A. Ross, A. Jain / Pattern Recognition Letters 24 (2003) 2115–2125 2123
vectors. The test set consisted of the same number

of impostor and genuine score vectors. Cross-vali-

dation was done by considering 10 such partitions

of the training and test sets. Fig. 11 shows the

construction and performance of the C5.0 decision

tree on one such training and test set.

4.4.3. Linear discriminant function

Linear discriminant analysis of the training set

helps in transforming the three-dimensional score

vectors into a new subspace that maximizes the

between-class separation. Fig. 12 shows the plot of

the score vectors using the first and the second

discriminant variables.

The test set vectors are classified by using the

minimum Mahalanobis distance rule (after first
calculating the centroids of the two classes in the

new feature space, and then measuring the
Mahalanobis distance). We assume that the two

classes have unequal covariance matrices. Table 1

shows the confusion matrices resulting from using

this rule on different partitioning of the data into

training and test sets.

4.4.4. Discussion

The experiments described above suggest that
the sum rule performs better than the decision tree

and linear discriminant classifiers. The FAR of the

tree classifier is 0.036% (±0.03%) and the FRR is

9.63% (±0.03%). The FAR of the linear discrimi-

nant classifier is 0.47% (±0.3%) and its FRR is

0.00%. The FRR value in this case is a conse-

quence of overfitting the genuine class as it has

fewer samples in both the test and training sets.
The sum rule that combines all three scores has a

corresponding FAR of 0.03% and a FRR of 1.78%



Fig. 11. Construction and performance of the C5.0 decision

tree on one specific partition of the training and test sets. The

performance is indicated by confusion matrices.

Fig. 12. Linear discriminant analysis of the score vectors. The

score vectors have been plotted in a two-dimensional space

representing the first and the second discriminant variables.

There are 250 genuine score vectors (+) and 11,125 impostor

score vectors (s).

Table 1

Performance of the linear discriminant classifier on three dif-

ferent trials as indicated by the confusion matrices

Genuine Impostor

Trial 1:

Genuine class 250 0

Impostor class 54 11,071

Trial 2:

Genuine class 250 0

Impostor class 50 11,075

Trial 3:

Genuine class 250 0

Impostor class 72 11,053

In each trial the training and test sets were partitioned differ-

ently.
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suggesting better performance than the other two
classifiers. It has to be noted that it is not possible

to fix the FRR (and then compute the FAR) in the

case of the decision tree and linear discriminant

classifiers.
5. Conclusion and future work

This paper provides initial results obtained on a

multimodal biometric system that uses face, finger-

print and hand geometry features for biometric

verification purposes. Our experiments indicate

that the sum rule performs better than the decision

tree and linear discriminant classifiers. The benefits

of multibiometrics may become even more evident
in the case of a larger database of users. We are,
therefore, in the process of collecting data corre-

sponding to four biometric indicators––finger-

print, face, voice and hand geometry––from a

larger user set (100).

Future experiments include developing user

specific weights for the individual modalities. Dif-

ferent users tend to adopt differently to individual

biometric indicators. For example, some users may
find it easier to interact with a fingerprint sensor

than with a hand image sensor. Consequently, their

chances of being rejected by a stand-alone hand

geometry biometric systemmay be high. Therefore,
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it would be appropriate to associate different

weights to the individual modalities based on the

user�s preference or the system�s performance for

that user. These weights can be learnt over time by

examining the stored template of the user, the

query set provided by the user, and the matching
scores for each of the individual modalities. By

doing so, each user is tightly coupled with that

subset of biometric traits that distinguishes her

very well from the rest of the users. User specific

weights also help address the problem of non-uni-

versality of biometric traits by giving less weightage

to those traits that are not easily extracted. We are

also working on designing techniques to automat-
ically update the biometric templates of a user.
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