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Abstract

Autonomous exploration and search have important applica-
tions in robotics. One interesting application is cooperative
control of mobile robotic/sensor networks to achieve uniform
coverage of a domain. Ergodic coverage is one solution for
this problem in which control laws for the agents are derived
so that the agents uniformly cover a target area while main-
taining coordination with each other. Prior approaches have
assumed the target regions contain no obstacles. In this work,
we tackle the problem of static and dynamic obstacle avoid-
ance while maintaining an ergodic coverage goal. We pursue
a vector-field-based obstacle avoidance approach and define
control laws for idealized kinematic and dynamic systems
that avoid static and dynamic obstacles while maintaining er-
godicity. We demonstrate this obstacle avoidance method-
ology via numerical simulation and show how ergodicity is
maintained.

Keywords— Multi-agent planning, centralized robot con-
trol, ergodic theory, uniform coverage, obstacle avoidance.

1 INTRODUCTION

Ergodic theory is the statistical study of time-averaged be-
havior of dynamical systems (Petersen 1989). An agent ex-
hibits ergodic dynamics if it uniformly explores all of its
possible states over time. This useful notion has been pre-
viously used to distribute multiple-agents in an exploration
domain such that agents’ trajectories uniformly cover the do-
main!. Formally, ergodicity is measured with respect to a
given target probability distribution. For example, to visit
all the possible states in the exploration domain, one needs
to specify the target probability distribution as a uniform dis-
tribution.

What makes ergodic coverage interesting is that it over-
comes the drawbacks of alternative uniform coverage algo-
rithms, such as the lawnmower algorithm in which agents
scan an area by going back and forth in parallel lines
(Hubenko et al. 2011); ergodic coverage can be easily imple-
mented for irregular domains and non-uniform target prob-
ability distributions. Also, it assumes perfect communica-
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I'The notion of ‘uniform coverage’ implies that points on the
agent trajectories must be as uniformly distributed or evenly spaced
throughout the domain (Mathew and Mezi¢ 2011).
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tion between agents. Agents’ motions are planned sequen-
tially by taking into account the motion of every other agent.
Therefore, it is flexible to agent failure and to adding new
agents. Furthermore, ergodic coverage is naturally multi-
scale i.e., covers large scale regions followed by smaller re-
gions (Mathew and Mezi¢ 2011).

Methods that use ergodicity to drive multi-agents do not
consider obstacles (Mathew and Mezic 2009; Miller and
Murphey 2013a; 2013b). To exclude the coverage of partic-
ular regions, Mathew and Mezi¢ (2011) set the target prob-
ability distribution to zero in those regions. Although this
method often steers the agents away from the regions they
should exclude, it does not guarantee that agents fully avoid
them. Therefore, such an approach cannot be used for ob-
stacle avoidance.

Our goal in this paper is to design control laws for multi-
ple agents such that they achieve uniform ergodic coverage
of a domain occluded with obstacles. To the best of our
knowledge, no one has tackled the problem of uniform er-
godic coverage of a domain while avoiding obstacles.

This paper is organized as follows. In Section 2, we give
background on ergodic coverage and vector-field-based ob-
stacle avoidance frameworks (Panagou 2014). In Section 3,
we tackle the above problem by redefining the optimal feed-
back law derived by Mathew and Mezi¢ (2011) for first or-
der and second order dynamical systems such that static and
dynamic obstacles are avoided. We show that the ergodic
metric is driven to zero, hence, ergodicity is maintained. In
Section 4, we validate our algorithms via simulation with
tuned parameters. Finally, Section 5 concludes by stating
the importance of the presented method and paves the way
for related future work.

2 Background
A. Ergodic Coverage

In a multi-agent system with N agents, the spatial time aver-
age statistics of an agent’s trajectory ¥; : [0,7] — X, quanti-
fies the fraction of the time spent at a position x € X, where
X C R" is an n-dimensional coverage domain defined by
[0,L1] X ... x [0,Ly], and j € {1,2,..N} is the index of an
agent. The time-averaged statistics of the agents’ trajecto-



ries is defined as
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where § is the Dirac delta function.

Ergodicity is measured by comparing the spectral decom-
positions of the spatial distribution of agents’ trajectories
and a given probability distribution (x) defined over the
coverage domain. The metric of ergodicity, ¢(¢), quantifies
the difference between the time-average statistics of a tra-
jectory and the probability distribution g (x), and is defined

as m
o)=Y Alse(t)?,
K=0

where m is the number of Fourier basis functions (we use
m = 50) and
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where ¢ (f) and p are the Fourier coefficients of the distri-
butions C’(x) and p1(x) respectively, i.e.,
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with f; = éni‘;l cos(kli—?xi) being the Fourier basis func-
tions that satisfy Neumann boundary conditions on the do-
main X, k € Z" is the wave-number vector, and (,-) is the
inner product with respect to the Lebesgue measure. The
term Ay is a normalizing factor. The metric of ergodicity
¢(1), defined in (2), quantifies the deviation of the time av-
erages of the Fourier basis functions from their spatial aver-
ages, and gives more weight to large-scale (low frequency)
modes than small-scale (high frequency) modes because of
the term A;.

The goal of ergodic coverage is to generate optimal con-
trols u®”(¢) for an agent, whose dynamics are described by
a function g: O x U — TQ, such that

se(t) = cx(t) — i,

a(t) =(C', fi) = “

&)

u’? () = argmin ¢ (1),

subject to x = g(x(1),u(t)), (6)

[u@)ll> < tmax

where x € Q is the state of the agent and u € U denotes the
set of controls. Equation (6) can be solved using sequential
quadratic programming (Nocedal and Wright 2006) or tra-
jectory optimization (Miller and Murphey 2013b) for sys-
tems with nonlinear dynamics, and can be solved for sys-
tems with simple first-order or second-order dynamics us-
ing greedy optimization methods (Mathew and Mezi¢ 2011).
Similar to Mathew and Mezi¢ (2011), we minimize the met-
ric of ergodicity at the end of a short time horizon. We use
this approach because of the algorithm’s online nature, ease
of implementation, and good empirical performance.
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First Order Dynamics We first consider an agent j with
first order dynamics of the form,

x; () = u;(7). 7

The objective is to design feedback laws u;(r) = F;(x;)
so that the agents have ergodic dynamics, i.e., the metric of
ergodicity ¢(¢) is driven to zero. We adopt the notations
used in Mathew and Mezi¢ (2011) and define the following
auxiliary variables, which are used in the derivation of the
optimal feedback law,

Si(t) := Nts(t) 3
ZAlek N2r2¢( 1) ©)
N
Wi(r) :==Sk(t) = Y fily(t)) — N (10)
j=1
N
=Y VA) u) (1)
j=1

where Vf is the gradient vector field of the Fourier basis
functions f;.

The problem of choosing u;(z) at time #, such that it
minimizes ¢(r+ dt) for small dt, is the same as that of
minimizing ®(¢ + dr) by referring to (9). Using Taylor
series expansion of ®(¢) around 7, we get

D(t+dt) =~ (1) + d(t,dt).

b(r)dr + %C’I'D(t)alt2 = (12)

The first time-derivative of ®(¢) is given by

=Y AcSKE)Wi (1) (13)
K
Note that since the cost function ®(¢) involves time-integrals
of function of the agents’ positions, the current values of
the controls u;(r) do not directly affect the current value of
the first derivative ®(¢) . This can be seen by referring to
equations (8), (10), and (13) 2.
The second time-derivative of ®(¢) is given by

ZAk Wi (t +ZAkSk WWi(r) (14)
Substituting equation (11) in equation (14), we get
ZAk Wi(t +Zl\k5k Z V1i(r(1)) - u(t)
N
=Y AcWi(1)* + ) Bj(r) (1) (15)
K j=1
where
(16)

=Y AeSK(t)V fi(y;(t) € R?
K

2The controls at the current time affect the values of the first
time-derivative @(z) at a later time (since they affect positions of
the agents).
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Figure 1: Two examples of a repulsive vector field (blue vec-
tors) around the obstacles (red circles). This vector field is
oriented depending on a vector p;, which is different in each
of these examples. The shape of the vector field is constant
in this paper, and its orientation depends solely on p;.

Since the first term in (15) is a quadratic term that is always
greater than or equal to 0, the choice of u(z) that minimizes

®(1,dt) subject to the constraint |[u;()||2 < sy is,
B;(1)

U (1) = — gy T (17)
! "B (1)]12
where i, 1s the maximum speed of the agents.
We define Bi(1)
i(7
VP () = — = (18)
/ [1B;(2)ll2

to be the direction of velocity vector of agent j at time ¢
(we will use this term later in Section 3). This is the di-
rection of steepest descent that minimizes ®(¢) at each time
step. Thus, the optimal feedback law given by (17) drives
the agent at each time step along this steepest descent direc-
tion.

Second Order Dynamics Now we consider an agent j
with second order dynamics of the form,

ij(l‘):llj(l‘). (19)

This can be written in state space as,
Xf (t) =V; (t) 20
{v,(r):uj(r) ' 20)

In a derivation similar to that obtained for first order dy-
namics, the optimal feedback law that ensures ergodic dy-
namics for this second order system is given by (Mathew
and Mezi¢ 2011) as,

cvj(1) +B,(t)
levj(#) +B,(2)]2
where B(r) is defined in (16), c is a parameter representing

how much damping the agent has, and F,4, is the maximum
acceleration of the agent.

B. Vector Field Based Obstacle Avoidance

In the presence of obstacles, repulsive vector fields (Panagou
2014) are one solution to avoid obstacles by creating an ar-
tificial vector field in the vicinity of an obstacle to drive the
robot around the obstacle and prevent it from collision.

u?” (t) = —Fnax 1)
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Panagou (2014) defines the following family of vector
fields,

F(r)=2(p"r)r—p(r'r) (22)
where A € R is a parameter that specifies the “shape” of
the vector field, p € R? specifies the “overall orientation” of
the vector field, and r = r; —r,, where r; = (x;,y;) is the
position of the agent, and r, = (x,,Y,) is the position of the
obstacle with respect to an inertial reference frame.

3 Ergodic Coverage with Obstacles

In this section, we present our derivation of feedback laws
for first order and second order dynamical systems of the
form given in (7) and (19) respectively, that avoid obstacles
while maintaining ergodicity. In this paper, we assume that
the obstacles are all circular in shape. Without loss of gen-
erality, we assume there is only one obstacle in the domain
of coverage.

The repulsive vector field that we use around an obstacle
is picked from the family of vector fields (22) as follows,

F|, (rj—r,) ifpl(rj—r,)>0
ij(rj):{ |12t (1 —15) (rj—r,)

F|,_o(rj—1,) ifp](rj—r,) <0
An example of this vector field is shown in Fig. 1 for two
different choices of p j3, which shows the effect of the latter
on the orientation of the vector field.

(23)

A. First Order Systems

For first order systems of the form given in equation (7), we
define the feedback law that drives an agent j, while avoid-
ing collisions and maintaining ergodicity, to be,

ui(t) =u L(l) (24)
TR IV
where V’(t) € R? is defined as,
Vit) == aV (1) + (1 — o) F5(r;) (25)

where V7 (1) and F9(r;) are defined in (18) and (23) re-
spectively. Furthermore, & € [0,1] is a bump function; it
takes the value of 1 far from the obstacle and decreases
as the agent approaches the obstacle till it reaches O at the
boundary of the obstacle (or at a safety offset from the
boundary of the obstacle). The parameter o can be defined
in various ways (linear, quadratic, cubic, (Panagou 2014),
or exponentially-decaying (Lindemann and LaValle 2007)
bump functions). In our implementation, we use a linear
bump function.

Claim 1 When an agent is near an obstacle, w(t), given by
equation (25), minimizes ®(t), given by equation (9), along
a descent direction at each time step. Far from obstacles,

u’(t) is equivalent to the original feedback law (17), so de-

scent direction is steepest.

3Usually, this vector is along the line that connects the center of
the obstacle to the target point that the robot is supposed to reach,
and thus is usually constant (in the case of static obstacles). This is
not true in our case; p; changes at each time step as will be shown
later.



B; (1)
( 2"
at each time step, thus the vector field Fj(r i), around the
obstacle o, changes at each time step. This choice of p; pre-
vents the agent from colliding with the obstacle, and at the
same time is primary in the proof of Claim 1 that ergodicity
is maintained as will be shown later.

As shown in Fig. 2, V?Pt (t) and F4(r;) form an acute an-
gle wherever the robot is in the vicinity of the obstacle. This
fact is true by the construction of the repulsive vector field
and by our choice of p;. Thus, V(1) F9(r;) > 0. Equiva-

lently, p7 F9(r) <0 since p; = — V7 (¢). Therefore,

We set p; = 00 Notice that the value of p; changes

B;(1)"F4(r;) <O0. (26)

Moreover, far from the obstacle, & = 1, then (24) simpli-
fies to

. B
")

which is nothing except the optimal feedback given by equa-
tion (17).

Now that we have defined the feedback law (24) that
guarantees that the robot avoids obstacles, we have to
prove Claim 1. In order to do this, we plug (24) in (15),
also we replace V" " by its expression given by (18), and we
get,

u; ()= “maxvopt (t) =

: @7)

N
&) = ;Ak(Wk(t))z + Zl B;(t) . uj()
=
= L A(We(0)
K
N aVP (1) + (1 - a)F9(r))

FLB - e g

N
_ 2 Umax Im.
= SO0 + [ ) B0l

N
—a) Y Bj(t) . F(r
j=1

(28)

Notice that the first term in equation (28) is always posi-
tive and does not depend on u;(¢). Besides, we have shown
in (26) that B j(t)TF?(r ) < 0, then the term in brackets is
always negative. Therefore, our choice of input decreases
the second time-derivative of ®(¢) subject to the constraint
lw(#)]]2 < umax at each time step, thus driving ®(t) to zero,
and equivalently guaranteeing that agents will have ergodic
dynamics. g

By looking at the term of equation (28) in the brackets,
we see that it represents a descent direction which is not the
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Figure 2: The robot (green dot) is driven near an obstacle
(Red circle) via a repulsive vector field (blue vectors). This

vector field is oriented depending on a vector p; = —V?” ! (t).

The robot is driven along a “blended vector” that is the com-

bination of F¢(r;), and the vector VOI7 (1) = Hlf' j((ft))Hz .
J

steepest. The steepest descent direction is for @ = 1, i.e.,
when the agent is far from the obstacle. This takes us back
to the case of no obstacles described in equations (15) and
(17).

In the case of M distinct obstacles, a trivial extension of
the vector Vj- (t), defined in (25), is as follows,

M
= ([levo 0 -

where F?i(r ;) is the repulsive vector field (23) around an
obstacle 0,7 € {1,2,..,M}, and o is a linear bump function
around o;. Notice that whenever agent j is close to an ob-
stacle, o; becomes zero for some i € {1,2,..,M}, thus, the
first term in (29) vanishes and cancels the effect of V7" "(1).
Also, whenever agent j is far from all the obstacles, a, be-
comes 1 for all i € {1,2,..,M}, thus, the second term in
(29) vanishes, and (29) simplifies back to (18).

(r; ] 29)

B. Second Order Systems

For second order systems of the form given in equation (19),
we define the feedback law uj. to be the same as the origi-
nal optimal feedback law given by equation (21) when the
agent is far from the obstacle. In the vicinity of an obstacle,
u;; should allow the agent to track the repulsive vector field
defined in equation (23) and shown in Fig. 1. Thus, we need
a control policy that allows an agent with second order dy-
namics to track a vector field. Following Rizzi (1998), we
define a velocity reference control policy of the form,

uj = K(F}(x;) —%;) + Fj(x)) (30)
where K > 0 is velocity regulation gain that serves in de-
creasing the error (F}(x;) —%;), and Fj(x;) is a feed-

forward term that ensures that the system tracks the refer-
ence velocity vector field F§(x;). Here, F(x;) is as defined



(b) Time r = 2.
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Figure 3: Snapshots at three different time instants of the
trajectories of four agents uniformly covering a unit square.
The agents are modeled as idealized first order dynamical
systems. The red disks are obstacles.

in (23). We noticed that by fixing the value of p; around
an obstacle, we avoid abrupt changes of the reference vec-
tor field F‘J’(x j), hence, the agents have better tracking for

F? (x j). Thus, we define p; = HB]?(%’ where ¢, is the time
instant at which the agent enters into the vicinity of an obsta-
cle. The value of p; never changes as long as the agent is in
the vicinity of the obstacle. It only changes when the agent

exits and then enters again into the vicinity of an obstacle.
The feedback law in (30) may violate the constraint of the
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Figure 4: Snapshots at three different time instants of the
trajectories of four agents uniformly covering a unit square
using the algorithm implemented by Mathew and Mezi¢
(2011). The agents are modeled as idealized first order dy-
namical systems.

bounded acceleration F,,, of the agents. For example, in
regions where the vector field is changing, tracking the vec-
tor field with x; = Fj(x;) requires [ju;(7)[l> = ||F7(xj)||2
(Conner, Choset, and Rizzi 2009). Thus, the control law
(30) does not guarantee that the acceleration constraint
lwj()|l2 = [|X;(t)]|2 < Fnax is respected.

Therefore, we modify (30) so that the bounded acceler-
ation constraint |[u;()||2 < Fyax is not violated. Conner,
Choset, and Rizzi (2009) proved that by scaling down the
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Figure 5: The decay of the metric of coverage ¢ (¢) with time
for first order dynamics using our algorithm.
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Figure 6: The decay of the metric of coverage ¢ () with time
for first order dynamics using the algorithm implemented by
Mathew and Mezi¢ (2011).

velocity reference vector field, the agents are able to track a
reference vector field without violating the bounded accel-
eration constraint. This encodes the idea of “slowing down
when turning”. We adopt this idea and scale down our vec-
tor field F9(x;) by a factor s(x;) defined in (Conner, Choset,
and Rizzi 2009) as follows,

s*

SIX; zmin —_—
2 (D () ellyp ’"“")

where € > 0 is an arbitrary constant, Dy is the Jacobian op-
erator with respect to X, || - || is the spectral norm?®, V4. is
the maximum speed of the agent in the domain, and s* is a
constant that is chosen offline such that it satisfies,

\ maX(”D Fo”Sp + )“)

\/||D F;—

4 Simulation Results
A. Static Obstacles

As a demonstration of our algorithm, we perform numerical
simulations. Our goal in these simulations is to uniformly

(€29}

(32)

FS Dy||DxFS|lsp

o7 lsp

“The spectral norm of a matrix M, denoted ||M||p, is defined
as ||M||sp = max ) — [|[Mx]2
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(a) Timet =0

(c) Time t = 30

Figure 7: Snapshots at three different time instants of the
trajectories of four agents uniformly covering a unit square.
The agents are modeled as idealized second order dynamical
systems. The red disks are obstacles.

cover a unit square having multiple stationary circular ob-
stacles using four agents. For the two scenarios that we sim-
ulate, the agents either have first order dynamics (equation
(7)) with a maximum velocity u,,,y, or second order dynam-
ics (equation (19)) with a maximum acceleration of Fj,,y.
For both scenarios, the target probability distribution p(x)
is defined as,

1, if x is outside an obstacle

if x is inside an obstacle (33)
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Figure 8: The decay of the metric of coverage ¢ (¢) with time
for second order dynamics.

where x € [0,1] x [0, 1] is a point in the unit square.

First Order Dynamics We ran a simulation of four agents
having first order dynamics with u,,,, = 5.0 and a total sim-
ulation time 7' = 5.0. The initial positions of the agents are
randomly selected. Fig. 3 shows snapshots of the trajec-
tories of the agents at three different time instants. Notice
how the agents were able to uniformly cover the free space
of the unit square while avoiding four randomly positioned
obstacles. Fig. 5 shows a plot of the decay of the metric of
uniform coverage ¢ () as a function of time, which supports
our claim that ergodic coverage is maintained. Results can
be found in the supplementary video’.

Comparing our results shown in Fig. 3 with the results
of the algorithm implemented by Mathew and Mezi¢ (2011)
shown in Fig. 4, we can see that although both methods
minimize ergodicity as shown in Fig. 5 and Fig. 6, our
method avoids collision with any obstacle, whereas Mathew
and Mezi¢’s (2011) algorithm steers trajectories away from
the obstacles, but does not guarantee obstacle avoidance.

Second Order Dynamics We ran a simulation of four
agents having second order dynamics with F,,,, = 100.0,
¢ = 2.5, avelocity regulation gain K = 30.0, and a total sim-
ulation time 7" = 30.0. The initial positions of the agents are
randomly selected. Fig. 7 shows snapshots of the trajecto-
ries of the agents at three different time instants. Notice how
the agents again were able to uniformly cover the free space
of the unit square while avoiding four randomly positioned
obstacles. Fig. 8 shows a plot of the decay of the metric of
uniform coverage ¢ (¢) as a function of time, which supports
our claim that ergodic coverage is maintained. Results can
be found in the supplementary video’.

C. Nonuniform Coverage

We also test our method on a nonuniform target distribution
U(x). The results are shown in Fig. 9. In this simulation,
four agents, having first order dynamics with u,,, = 5.0 and
a total simulation time 7 = 5.0, are supposed to cover the
unit square shown in Fig. 9-a. The red disks are obsta-
cles. The gray box is a region with low probability p(x)

>Video at https:/youtu.be/fcLhOGUJbtI
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(¢) Timet =5

Figure 9: Snapshots at three different time instants of the
trajectories of four agents uniformly covering a nonuniform
distribution on a unit square. The agents are modeled as
idealized first order dynamical systems. The red disks are
obstacles, and the gray box is a region with low probability
U (x) over which agents can pass.

over which the agents can pass, but should not spent much
time. You can think of this problem as a surveillance prob-
lem. The gray region can be thought of areas where no sen-
sor measurements can be taken due to foliage. Thus, agents
must spend less time in such regions. The initial positions of
the agents are randomly selected. Fig. 9 shows snapshots of
the trajectories of the agents at three different time instants.
Fig. 10 shows a plot of the decay of the metric of uniform
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Figure 10: The decay of the metric of coverage ¢(¢) with
time for the nonuniform coverage distribution scenario.

coverage ¢ (¢) as a function of time. Results can be found in
the supplementary video®.

C. Dynamic Obstacles

For dynamic obstacles, our formulation still applies. We
demonstrate our method on dynamic obstacles in a simula-
tion of four agents having first order dynamics and covering
a unit square containing three obstacles that are moving in
a random manner. We use u;,,, = 5.0 and a total simulation
time 7 = 5.0. The results are shown in the supplementary
video’.

5 Conclusion and Future Work

In this paper, a methodology that enables multi-agent sys-
tems to uniformly cover a domain while avoiding static and
dynamic obstacles is introduced. We use an ergodic metric
to ensure uniform coverage of the domain, and we lever-
age tools from vector-field-based obstacle avoidance com-
munity. This enables us to define feedback control laws that
drive the agents in the coverage domain safely without col-
liding with any obstacle, and at the same time ensures the
agents uniformly cover the free space of the domain. Our
methodology is demonstrated via simulation of first order
and second order dynamical multi-agent systems.

Future work will focus on extending this approach to ob-
stacles with arbitrary shapes, and evaluating it via physical
experiments on quadrotors.
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