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Abstract

Cellular Electron CryoTomography (CECT) is a 3D imaging technique that
captures information about the structure and spatial organization of macromolec-
ular complexes within single cells, in near-native state and at sub-molecular res-
olution. Although template matching is often used to locate macromolecules in a
CECT image, it is insufficient as it only measures the relative structural similar-
ity. Therefore, it is preferable to assess the statistical credibility of the decision
through hypothesis testing, requiring many templates derived from a diverse
population of macromolecular structures. Due to the very limited number of
known structures, we need a generative model to efficiently and reliably sample
pseudo-structures from the complex distribution of macromolecular structures.
To address this challenge, we propose a novel image-derived approach for per-
forming hypothesis testing for template matching by constructing generative
models using the generative adversarial network (GAN). We conducted hypoth-
esis testing experiments for template matching on both simulated and experi-
mental subtomograms, allowing us to conclude the identity of subtomograms
with high statistical credibility and significantly reducing false positives. Our
general approach can be extended to assess other template matching tasks, such
as face, iris, and fingerprint scans, where statistical tests are also very important.

c© 2018. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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1 Introduction
The cell is the basic structural and functional unit of all living organisms. Biochemical pro-
cesses of the living cell are often catalyzed by tiny cellular machines called macromolecular
complexes. To fully understand these cellular processes, it is extremely helpful to systemat-
ically extract the structure and spatial organization of macromolecular complexes in single
cells. Cellular Electron CryoTomography (CECT) [2] is a powerful 3D imaging tool that
enables the study of sub-cellular structures at near-native state and in sub-molecular resolu-
tion. However, the quality of the reconstructed CECT images (a.k.a. tomograms) suffer from
many current imaging limitations, such as low signal-to-noise ratio (SNR), missing wedge
and limited number of angular samples, to a point where interpretation by visual inspection
is impractical. As such, locating instances of macromolecular complexes inside tomograms
has remained an extremely challenging computer vision problem [4]. A popular method for
this task has been template matching, which we describe now.

Let Sknown denote the set of known macromolecular complexes, let P denote a cubic sub-
volume of a tomogram containing a single macromolecule (a.k.a. subtomogram), and let
T (C) denote the template derived from a macromolecule C. Given P and a known complex
KC ∈ Sknown, template matching is a method for deciding whether P contains an identical
macromolecule as KC by using the Pearson cross-correlation score c(P,T (KC)) [6]. To
calculate the score, T (KC) is first rigidly aligned against P using a fast alignment method[6,
21] and then the score is computed with missing wedge compensation [5].

In most cases, template matching makes the decision based on a single chosen threshold
for the correlation score or the complex most similar to P is declared a match by default
from having the highest score from a batch of known macromolecules. However, as cross-
correlation is only a relative measure of similarity, this approach is neither rigorous nor
statistically meaningful. Instead, hypothesis testing is preferred for quantitatively assessing
the statistical credibility of the decision. Performing an accurate hypothesis test is extremely
challenging since the number of macromolecules with known structures is very limited. In
addition, the structural distribution of macromolecules is highly complex. Across space
and time, macromolecules typically adopt different conformations as part of their function
and dynamically interact with other macromolecules [22]. Across different species and cell
types, the majority of macromolecules are still unknown [9].

In this paper, we propose a statistically rigorous treatment of template matching using
a novel, image-derived, Monte Carlo approach for performing hypothesis testing and calcu-
lating empirical p-values[10]. The Monte Carlo samples are pseudo-macromolecular com-
plexes (denoted henceforth as C0) sampled from the structure distribution fstructure of macro-
molecules. We used a 3D-WGAN to learn fstructure from a collection of known complexes
(see Section 2.1). Our procedure is as follows:

(Step 1) Train a 3D-WGAN to learn the structural distribution fstructure.

(Step 2) Determine the macromolecule of interest CInterest := argmaxKC∈Sknown c(P,T (KC))
to be the known macromolecule with the highest alignment score.

(Step 3) Using pseudo-complexes C0 ∼ fstructure generated by the 3D-WGAN and sampled
away from CInterest (see Section 2.2), perform a hypothesis test for whether P con-
tains a macromolecule identical to CInterest and calculate the empirical p-value un-
der the null hypothesis H0 (see Section 2.3).
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To formally establish the hypothesis testing procedure, we specify the null hypothesis H0
and the alternative hypothesis HA as the following:

H0 : P does not contain a macromolecule identical to CInterest (1)
HA : P contains a macromolecule identical to CInterest (2)

The statistical credibility is assessed by the p-value, which is the probability of obtaining
c(P,T (C0)) at least as extreme as c(P,T (CInterest)), given that H0 is true. The lower the p-
value, the stronger the evidence against H0, giving more statistical credibility that HA is true.
To calculate an empirical p-value, we randomly sample pseudo-macromolecular complexes
C0 ∼ fstructure to derive a Monte Carlo empirical distribution of the test statistics c(P,T (C0))
under the null.

Throughout this paper, let Spseudo denote the set of pseudo-complexes (i.e. macro-
molecules generated from the 3D-WGAN). We emphasize that Spseudo and Sknown have im-
portant differences:

• The identity of KC ∈ Sknown is known and T (KC) is used to identify the macro-
molecule in a subtomogram through the method of template matching.

• The identity of C0 ∈ Spseudo is unknown and T (C0) is only used for hypothesis testing.

As a recent advancement in unsupervised deep learning, the generative adversarial net-
work (GAN) learns the distribution of training images on the image manifold and generates
highly realistic images [7]. The training process of the GAN is akin to a minimax game
between two neural network adversaries, the generator and the discriminator. The generator
seeks to improve its output images by minimizing the discriminator’s classification accuracy
while the discriminator seeks to maximize its accuracy. After training, the generator can
produce diverse and realistic images from the distribution of the original training images.
To our knowledge, no method exists for constructing such generative models for template
search for CECT data.
Our contributions are summarized as follows:

(i) A novel, Monte Carlo approach for statistical assessing template matching through
hypothesis testing to calculate empirical p-values.

(ii) An approach for generating the density maps of pseudo-macromolecular complexes,
using the 3D Deep Convolutional Wasserstein GAN (3D-WGAN). We showed that our
model is able to capture the shape manifold of macromolecules, and sample realistic
and diverse pseudo-complexes from the structural distribution of macromolecules.

2 Methods

2.1 Learning fstructure with a 3D-WGAN
As Step 1 of our procedure, we construct a generative model G : R100→Spseudo to learn the
structural distribution of macromolecules fstructure. Our generative model combines the 3D-
GAN [20] with the Improved Wasserstein GAN [8]. In our paper, we refer to our model as
3D Deep Convolutional Wasserstein GAN (3D-WGAN)1. The network architecture of our

1Background details about GAN, as well as specifics on the convolutional layer, batch normalization layer,
activation layers and the minibatch discrimination layer can be found in Supplementary Section 1.4
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Figure 1: The network architecture for both the generator and discriminator of the 3D-
WGAN. Each convolution layer is labeled in the format N−K×K×K− S, signifying N
filters with kernel size K3 and stride S.

3D-WGAN is presented in Figure 1. Inspired by [20], our network generator and the dis-
criminator are implemented each with four convolution layers of stride 2 and kernel size 43,
which we chose to be a factor of 64 to reduce the checkerboard artifact [16]. We found that
using half as many filters as[20] was sufficient for the GAN to stabilize at producing good
results. In the hidden layers, we used the LeakyReLU activation with α = 0.2. Following
[1, 8], we only used Batch Normalization [11] in the generator.

A common problem for GANs with especially limited data is mode collapse, which
occurs when the generator only produces structures with very low diversity. We adopted
the minibatch discrimination layer in the discriminator (see [18]) to reduce the collapse of
the generator by penalizing low-entropy generators. This layer allows the discriminator to
observe many samples at once, so that it can also take entropy of a batch of samples into
account when deciding between real and pseudo images.

In our experiments, each macromolecular complex was represented as a 3D gray-scale
image (a.k.a. density map) with 643 voxels and 0.6nm pixel size. We constructed our dataset
with 15 experimental macromolecular complexes that are diverse in shape and size (see third
row of Figure 3). To prevent overfitting to a specific orientation or structure, we performed
data augmentation and rotated each structure 600 times for a total of 9000 training structures.
As the 3D convolution operation is not rotation invariant, this data augmentation improves
the training of the 3D-WGAN. We trained the 3D-WGAN using a batch size of 64 and the
Adam optimizer with β1 = 0.5, β2 = 0.99, and the learning rate as 0.0001, shown to be
successful in previous works [17, 20]. Following [8], we trained the discriminator ten times
as often as the generator, and we used a gradient penalty of 10.
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2.2 Sampling pseudo-complexes far away from CInterest

Under the null, the instance of CInterest should be not be covered by the distribution of pseudo-
complexes. This procedure also reduces the chance of sampling pseudo-complexes so similar
to CInterest that they could be viewed as copies of CInterest in the hypothesis test. With the
following three-step procedure, we could sample pseudo-complexes from fstructure to be “far
away” from CInterest in the latent representation of fstructure:

1. Regressor (a.k.a. Inverse Generator): We trained a regressor for the inverse map of the
generator, using a 3D extension of the AutoEncoder GAN model (see [14]). Instead of
using cross-entropy loss, we used the sum squared error of the reconstructed images
since our images were not normalized to (0,1) by a sigmoid. The network architecture
of the regressor is an exact mirror image of the 3D-WGAN generator.

2. Kernel Density Estimator (KDE): We trained a KDE to learn a distribution E of the
latent representation of CInterest , given by regressor’s output for 300 random rotations
of CInterest . The KDE’s bandwidth was determined using 3-fold cross validation.

3. Bayes Classifier: Let π (π � 1) be the prior probability of pseudo-complexes, which
can be estimated from the data. Denote N as the standard 100-dimensional multi-
variate Gaussian. The decision boundary to distinguish the distribution of pseudo-
complexes and CInterest is where the probability of a complex being a pseudo-complex
is the same as the probability of a complex being the known complex CInterest .

According to Bayes rule, the rejection region can be written as:

R= {G(v) : v ∈ R100 such that N (v)< π · E(v)}

. When we sample v from N , we reject the members ofR.

2.3 Monte Carlo approach for evaluating the statistical credibility of
template matching

After determining the complex of interest CInterest in Step 2, we perform a statistical assess-
ment of template matching for Step 3 by calculating an empirical p-value using pseudo-
macromolecular complexes. The true p-value p is the probability of obtaining results at least
as extreme as the observed c(P,T (CInterest)) given the null hypothesis H0 is true. Since the
distribution of C0 under fstructure is unknown, we use a Monte Carlo simulation to obtain an
unbiased empirical p-value p̂ by ranking the observed test statistic c(P,T (CInterest)) amongst
the alignment scores of complexes sampled from the learned distribution of the 3D-WGAN.
By the strong law of large numbers, our empirical p-value converges almost surely to the
true p-value as the number of Monte Carlo samples B→ ∞.

p = EH0;C0∼ fstructure [I{c(P,T (CInterest))≤ c(P,T (C0))}|C0 6∈R] (3)

= Pr(c(P,T (CInterest))≤ c(P,T (C0))|C0 6∈R) (4)

p̂ = B−1
B

∑
b=1

I[c(P,T (CInterest))≤ c(P,T (C(b)
0 ))]

a.s.−→
B→∞

p (5)

where {C(b)
0 }1≤b≤B are Monte Carlo samples from fstructure and out of the rejection region

R, specified in Section 2.2.
The statistical credibility of the decision is measured by the p-value: the smaller the p-

value, the more statistical credibility we have to reject the null and to support the alternative.
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Therefore, when c(P,T (CInterest)) is ranked in the highest 1% of the templates used for tem-
plate matching (i.e. p̂≤ 0.01), we could conclude that P contains a macromolecule identical
to CInterest with high confidence. We note here that in CECT template matching tasks, there is
usually a large number of hypothesis tests for different subtomograms matching, which will
consequently generate a large number of p-values. Multiple comparison is also suggested to
be adjusted to control false discovery rate [3] to provide a stringent statistical criteria.

3 Results

3.1 Examples of pseudo-macromolecular complexes

Figure 2: Random pseudo-macromolecular complexes generated with the 3D-WGAN.

Randomly selected pseudo-complexes from the 3D-WGAN are shown in Figure 2. Figure
3A shows the nearest neighbors of pseudo-complexes from Sknown. Most pseudo-complexes
exhibit similar structure as their nearest neighbor in Sknown and resemble the same macro-
molecular complex. Figure 3B shows the nearest neighbors of known complexes (labeled
by their Protein Data Bank (PDB) ID2) from a set of 10,000 generated pseudo-complexes.
We defined the metric between complexes as the L2 norm on the fully-connected layer of
the discriminator, which is a high-level feature representation of each complex [20]. Even
as nearest neighbors of known complexes, the pseudo-complexes in Figure 3 are visually
not identical to the known complexes. Non-rigid differences between the pseudo-complexes
and the known complexes make these pseudo-complexes good candidates for hypothesis
testing. This shows that our model can produce meaningful pseudo-complexes that have
recognizable structural similarities to the training structures. A practical advantage to using
the 3D-WGAN is that the generation of pseudo-complexes can be significantly sped up with
a GPU. For example, our GTX 1080 Ti GPU could generate 10,000 structures in about 20s
(0.002s/image).

(A)

(B)
1A1S 1LB3 1VRG 1W6T 2GLS 3DY41KYI 2BYU 4V7R1BXR 1EQR 2H12 2IDB1YG61VPX

Figure 3: Let Ci j denote the structure in the ith row and the jth column. (A) Each (red)
C1 j ∈ Spseudo, and (blue) C2 j ∈ Sknown is the most similar structure to C1 j in Sknown. (B)
Similarly, Each (red) C3 j ∈ Sknown and is listed according to its PDB ID. Each C4 j ∈ Spseudo
is the most similar structure to C3 j in Spseudo.

2A table that associates PDB IDs to macromolecular complexes can be found in Supplementary Section 1.3
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3.2 Statistical assessment of template matching on simulated
subtomograms

Template matching is applied to real data to decide whether an unidentified subtomogram
contains a macromolecule of identical structure to some known macromolecule. For every
KC∈Sknown, we simulated3 a subtomogram PKC containing KC. The hypothesis test consists
of 985 randomly generated pseudo-templates T (C0) ∈ Spseudo and 15 templates of known
structure T (KC)∈ Sknown. We performed template matching on PKC following the three-step
process described in Section 1. A simulated test was declared successful if both conditions
are satisfied:

(Cond. 1) Highest correlation: KC is chosen to be CInterest . In other words, KC satisfies
c(PKC,T (KC))≥ c(PKC,T (C′)),∀C′ ∈ Sknown.

(Cond. 2) Low p-value: The hypothesis test has empirical p-value p̂≤ 0.01.

As we perform a test for each KC ∈ Sknown, we performed a total of 15 tests and achieved
an average success rate of 12/15 = 80%, indicating high power of our hypothesis testing
procedure. Two successful cases are shown in Figure 4. Others are shown in Supplementary
Sections 1.5 (two unsuccessful cases) and 1.6 (rest of results).

Figure 4: Results from successful hypothesis tests on simulated subtomograms containing
1LB3 and 4V7R. The blue histograms model the distribution of c(PKC,T (C0)),C0 ∈ Spseudo.
The vertical dashed lines denote c(PKC,T (C′)),C′ ∈ Sknown, with the ten highest labeled
with the PDB ID of C′ and a rank out of the 1000 (i.e. the empirical p-value). CInterest is
highlighted with the red color. The green line marks the p-value threshold of 0.01.

From the smooth distribution of histograms in Figure 4, we can deduce that our genera-
tive model samples diverse and realistic pseudo-complexes from fstructure, instead of repro-
ducing the known complexes, which would result in the histograms clustering only around
the vertical lines.

3.3 Statistical assessment of template matching on experimental
subtomograms of ribosomes

With the same hypothesis testing procedure, we performed template matching on experi-
mental subtomograms of Yeast 80S ribosome (PDB ID: 4V7R) from the EMPIAR-10045
database [12]. We used the 07 tomogram, which contains 376 subtomograms in total. The

3Details on simulation and template construction are described in Supplementary Section 1.2
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experimental subtomograms were originally 2003 voxels with 0.217nm pixel size. For our
experiments, they were preprocessed with a 2.17nm Gaussian blur and resized to 643 voxels
with 0.6nm pixel size, the same dimension and pixel size as the density maps of the training
structures and the simulated subtomograms. As shown in Figure 5A, these subtomograms
are visually much noisier than the simulated ones, which illustrates the fact that CECT tem-
plate matching is extremely challenging. Without preprocessing, it is extremely difficult to
even visually detect the macromolecular structure contained within the subtomograms.

Figure 5: (A) Slices of raw subtomograms containing ribosome; (B) Results from hypothesis
tests on experimental subtomograms of ribosome. 0000001 is successful and 000130 is
unsuccessful.

With a p-value cutoff at 0.01, there were 264 (70.21%) successful tests, where Cond.
1 and Cond. 2 were satisfied for a known ribosome complex of interest. 45 subtomograms
(11.97%) resulted in Cond. 1 failure. 67 subtomograms (17.82%) resulted in Cond. 2 failure.
Figure 5B shows one successful and a case of Cond. 2 failure from our experiments.

We note that due to our rescaling procedure, some subtomograms may be missing part of
their ribosome structure, which may cause template matching to fail. Therefore, we further
selected a subset of 100 subtomograms with the highest ribosome alignment score, cor-
responding to high confidence in containing the whole ribosome structure. 92 tests were
successful, 1 resulted in Cond. 1 failure, and 7 resulted in Cond. 2 failure.

3.4 Detecting false positives from template matching
When the subtomogram does not contain a macromolecule or when the macromolecule in the
subtomogram does not match with any of the known templates, it is desirable for template
matching to conclude that no template matches with the given subtomogram. This is not
possible if the template with the highest alignment scores is always concluded to be a match.
Even when thresholding, it is difficult to choose a single cutoff that works in all possible
cases and requires hyperparameter tuning. Using 20 experimental subtomograms that do not
contain any macromolecules, we performed template matching along with our hypothesis
testing procedure and we were able to prevent 8 (40%) of the false positives that would have
occurred if we simply chose the highest alignment score as a match. Our statistical testing
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method makes more reliable claims on the results of template matching and can significantly
reduce the number of false positives.

3.5 Learning the shape manifold of macromolecules
Similar to previous works [17, 20] with GANs, we found that our model was able to capture
the shape manifold of macromolecular complexes. We show this by interpolating between
the latent vectors of S and D, resulting in a smooth transition from a proteasome (PDB ID:
3DY4) to a ribosome (PDB ID: 4V7R) as shown in Figure 6. Our starting point S was the
latent vector of the nearest pseudo-complex for the proteasome, and our ending point D was
the latent vector of the nearest pseudo-complex for the ribosome. We generated the pseudo-
complex at the ith step with the input vector S + (D− S) · i. This smooth “deformation”
from one structure to another illustrates the shape manifold of macromolecules and results
in an effect similar to deformable image registration. Since deformable image registration
can be quite computationally expensive (i.e. Large Deformation Diffeomorphic Metric Map-
ping [15]), with a well-trained model, our 3D-WGAN model could potentially be used as a
computationally efficient heuristic for deformable registration of 3D shapes.

Figure 6: Intermediate shapes generated by interpolating between the latent representation of
proteasome (PDB ID: 3DY4) and ribosome (PDB ID: 4V7R). This shows that our generative
model can learn the shape manifold of macromolecular structures.

4 Conclusion
Without hypothesis testing, existing template matching approaches are not rigorous and are
not statistically credible enough. Physical limitations to CECT remain a major difficulty that
can bias the cross-correlation score and may even cause template matching to fail. To reli-
ably conclude the identity of a subtomogram and to reduce false positive rates, we propose
an image-derived approach for performing hypothesis testing for template matching by con-
structing a generative model for macromolecular complexes. We used the 3D-WGAN since
it could efficiently produce a diverse population of novel pseudo-macromolecular complexes
that are not simply rigid rotations of the original training structures. By sampling from the
learned distribution of macromolecules fstructure, we could successfully conclude, with both
simulated and experimental subtomograms, with high statistical credibility that the given
subtomogram contains a macromolecule identical to the complex of interest. In addition, the
3D-WGAN generative model has potentially other applications in CECT. We have shown
that the 3D-WGAN can learn the shape manifold of macromolecules [20]. By interpolat-
ing between latent representations, a 3D-WGAN can be used to visualize smooth transitions
between structures. This ability for smooth deformations can be potentially extended to a
heuristic for deformable image registration.

In addition, our approach is not limited to the 3D-WGAN and works with any reasonable
generative model. A future work would include experimenting other generative approaches
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(e.g. VAE, shape-space modeling [15]) with the hypothesis testing procedure. The current
GAN approach may also be improved with larger training sets or more complex architecture
(e.g. [13]). Finally, our procedure of using generative modeling, particularly the GAN, for
hypothesis testing can be generalized to be applicable in many other template matching tasks
with 2D or 3D images. Some prominent examples include object detection and fingerprint
scans, where statistical tests are very important to ensure the quality of the result and to avoid
false positives [19].
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