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Abstract

The high volume and quality of apparent diffusion coefficient (ADC) data containing
clinically significant (CS) prostate cancer (PCa) are critical for automated PCa detection
with a high accuracy. However, ADC data of CS PCa is scarce and costly to obtain in
practice. This paper proposes a novel Generative Adversarial Network (GAN), named
StitchAD-GAN, for synthesizing high-quality ADC images of CS PCa. Our StitchAD-
GAN employs a StitchLayer in the generator to address the difficult-to-optimize problem
in most GANs. Instead of directly optimizing a complex generation from a low dimen-
sional noise to an ADC image, we optimize n easier generations of sub-images, which
are then aggregated into a full size image in the StitchLayer. Our discriminative module
approximates two distances: 1) the Wasserstein distance (W-distance) between the syn-
thetic and real ADC data of CS PCa, and 2) an auxiliary distance (AD) Jensen-Shannon
divergence (JSD) between the synthetic CS PCa and real nonCS PCa data. By mini-
mizing the W-distance and maximizing the JSD simultaneously, our StitchAD-GAN can
capture CS PCa features in addition to predominant prostate gland information, and in
turn synthesize more clinically meaningful ADC data of CS PCa. Visual and quantita-
tive results demonstrate greater quality of our synthetic CS PCa data than those of the
state-of-the-art methods’ and even real data.

1 Introduction
Prostate cancer (PCa) is the most commonly diagnosed cancer other than skin cancer, and
also one of the leading causes of cancer death among men [20]. Men with clinically sig-
nificant (CS) PCa whose Gleason Score (GS) is equal to or greater than 7 could experience
high fatality rates [21]. Fortunately, it has been demonstrated recently that the ADC values
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derived from diffusion-weighted magnetic resonance images (DWI-MRI) are useful non-
invasive biomarkers for accurate detection of CS PCa [15]. A timely diagnosis of PCa via
ADC data followed by a proper treatment can greatly decrease the mortality. However, ADC
data of CS PCa is often scarce, limiting the usage of powerful yet data-hungry advances in
deep learning, e.g. convolutional neural network (CNN), for PCa detection based on ADC
images.

Several efforts [5, 12, 17, 18, 25, 26] have been made to address this problem. A common
approach is data augmentation by applying rigid and/or non-rigid image transformations to
the original data to increase the data volume [12, 25, 26]. However, neither rigid nor non-
rigid transformations can address the problem of lack of data variety. Another category of
approaches is to synthesize medical data to increase the data variety via creating ’unseen’
data [5, 17, 18, 22]. Among these approaches, GAN based image synthesis has achieved the
greatest success in multiple medical image analysis applications, e.g. retinal image synthe-
sis [18] and cross-domain medical data transformation [17]. A typical GAN [8] consists of
two modules: 1) a generative module to generate fake data based on given random noises,
and 2) a discriminative module to approximate the distance between the distributions of fake
and real data. Existing GAN-based methods differ from each other in the design of these
two modules. Osokin et al. [18] proposed a dual path generative module, each path of which
generates an individual channel of two-channel cell images. The discriminative module es-
timates the W-distance between the fake and real data, which is then minimized for training
the dual-path generative module. Nie et al. [17] reconstructed CT images from MR images
by utilizing a fully convolutional network (FCN) as a generative module to convert an MR
image to CT. Their generative module was trained by minimizing both CT reconstruction
error and the JSD between the reconstructed and real CT. Despite the successes, these GAN
based methods directly mapped a noise vector with a very low dimension (e.g., 128-d) to a
medical image with a higher dimension (e.g., 64×64, 128×128), yielding an unstable and
fragile optimization process. Additionally, little effort has been made to address the problem
of clinically significant medical data synthesis, for example ADC image of CS PCa in our
case. Directly applying existing methods could hardly capture clinically meaningful infor-
mation of CS PCa. As a result, generative modules of existing methods mostly rely on the
predominant prostate gland information to synthesize ADC data while largely ignoring CS
PCa-relevant visual patterns.

This paper presents a GAN-based method, named StitchAD-GAN, for synthesizing ADC
data of CS PCa with an original size of 64×64. The quality of synthetic data by the GANs,
e.g. DCGAN [19] and InfoGAN [3], usually degrades dramatically as the image size in-
creases, implying that generation of low dimensional images is much easier than that of
higher dimensions. Motivated by this, we divide a target image space into subspaces, each
of which has a lower dimension, to reduce the complexity for modeling the manifold of data.
Instead of directly generating the image in the target space, we first synthesize sub-images in
divided subspaces, and then ’stitch’ them into the full size target image by a non-parametric
StitchLayer in interlaced manner as shown in Fig. 1. To capture more clinically meaning-
ful CS PCa information, our discriminative module approximates two distances: 1) the W-
distance to the real CS PCa data, and 2) the auxiliary distance (AD) of JSD to the real nonCS
PCa data. Minimizing the W-distance enables visually realistic ADC image synthesis, and
maximizing the JSD enforces synthesis of ADC data with clinically meaningful CS PCa
features.

The proposed method is evaluated in terms of both visual quality and the applicability to
CS vs. nonCS PCa classification. Experimental results demonstrate that the synthetic ADC
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Figure 1: The framework of our proposed StitchAD-GAN for CS ADC data synthesis.

data by our method is of high quality and could significantly improve the CS vs. nonCS
classification accuracy comparing with those synthesized by the state-of-the-art methods [9,
19] and real data.

2 Method
A typical matrix size of abdominal MRI scan is around 180× 144, in which the prostate
gland and its neighboring tissues roughly locate at the center of an ADC image and cover
around 1/9 area of the entire image. The goal of this work is to synthesize ADC images
of prostate regions with the original resolution (i.e. 64× 64). Fig. 1 shows the framework
of the proposed StitchAD-GAN. Detailed network architecture is shown in the supplemen-
tary material. The generative module consists of a batch of upsampling layers to synthesize
four 32× 32 intermediate sub-images given a random 128-d noise, followed by a Stitch-
Layer to interlace them into a 64× 64 target image. The discriminative module consists of
two critic networks: one approximates the W-distance between the synthetic data and the
real ADC data of CS PCa, and the other approximates the JSD from the real nonCS PCa
data as an auxiliary distance (AD). In each training round, we first train the discriminative
module several times for a better approximation of the two distances. Then the generative
module is trained to simultaneously minimize the W-distance and maximize the JSD with
the parameters of discriminative module fixed. In the following, we detail each module.

2.1 The Generative Module with a StitchLayer
This work aims to synthesize ADC image of CS PCa with an original size of 64×64. Most
GANs are limited to synthesize very small images such as images from the CIFAR-10 [11]
and MNIST [13] datasets whose image sizes are 32× 32 and 28× 28 respectively. Before
introducing our solution, we first visually compare the performance of the widely-used DC-
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Figure 2: Exemplar outputs synthesized by three different DCGAN models.

GAN for synthesizing CS ADC data of two different sizes, i.e. 32× 32 and 64× 64 in
Fig. 2. The 32×32 images for training the DCGAN are obtained by down-scaling the orig-
inal 64× 64 ADC images of CS PCa. We manually optimize the configurations of the two
DCGANs (i.e. DCGAN 32X32 and DCGAN 64X64) for generating visually reasonable re-
sults. As can be seen in Fig. 2, the DCGAN 32X32 is able to synthesize somewhat acceptable
ADC images where prostate glands have a visible nut-like shape, while the performance of
DCGAN 64X64, whose the image dimension is increased by four times compared to DCGAN
32X32, is poor with an ambiguous shape for the prostate gland.

A potential solution to synthesize higher dimensional images is coarse-to-fine learning
adopted in recent studies [6, 10, 23]. In these studies, customized generative networks and/or
sophisticated training strategies were developed to synthesize data from low to high resolu-
tions gradually. However, these enabling techniques are usually hard and time-consuming
to tune in their training phase, and overqualified for synthesis of 64× 64 images given that
synthesis of 32×32 is within the power of most plain GANs.

Inspired by the similar idea of coarse-to-fine learning, we propose a StitchLayer, which
is simple yet effective, and can be embedded in any generative networks to boost existing
GANs to synthesize images with greater size. Specifically, given a noise vector z, instead
of modeling a direct generation G(z)→ X , where X represents the 64×64 real ADC image
and G is a generative network, our generative module produces four generations {Gn(z)→
xn,n = 1,2,3,4} of 32× 32 sub-images. As shown in Fig. 1, x1, x2, x3, and x4 are denoted
by the red, green, blue and black squared feature maps respectively. To ’stitch’ these 4 sub-
images {xn} into the full size ADC image X by the StitchLayer, we adopt a similar idea
described in [16] called shift-and-stitch, which aims to obtain dense prediction from coarse
outputs. We consider that X with image size of 64×64 consists of 32×32 non-overlapped
2× 2 blocks, each of which is assembled by pixels from the same location in the four sub-
images, which is formulated as:[

X2i−1,2 j−1 X2i−1,2 j
X2i,2 j−1 X2i,2 j

]
= Bi, j =

[
x1

i, j x2
i, j

x3
i, j x4

i, j

]
, i, j = 1,2, . . . ,32 (1)

where Bi, j indicates a 2×2 block at the i-th row and j-th column.
Rearranging pixels from {xn} according to Eq. (1), we can interlace the four sub-images

into a 64× 64 target ADC image. We design our generative networks {Gn,n = 1,2,3,4}
for producing the four sub-images as follows. The four networks share common features
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in the up-sampling layers, and in the last fully-convolutional layer four convolutional ker-
nels are applied to produce four feature maps {xn,n = 1,2,3,4} which are considered as the
four sub-images. Sharing common features in the up-sampling layers among {Gn} ensures
the globally spatial consistency among the four sub-images and reduces many unnecessary
computational costs. Meanwhile, by utilizing four different convolutional kernels in the last
layer, each sub-image captures some unique and detailed information of the full size image
and such information in each sub-image is complementary with each other. Accordingly,
by ’stitching’ the four sub-images together we can obtain a full size image with both global
structure and detailed local information. The generative networks {Gn} are trained concur-
rently by minimizing the distance between a synthesized full size image and real 64× 64
ADC data, which is approximated by the following discriminative module. Minimizing such
distance enforces our generative networks to not only output sub-images that are globally-
consistent with the true full size image but also to encode complementary local information
in each sub-image.

Comparing to directly synthesizing the full size image using a single generative network,
the StitchLayer allows us to focus on the divided image subspaces with size of 32× 32, in
which each one of {Gn} is capable of correctly mimicking the data distribution. In turn,
we can obtain robust synthesis of higher dimensional ADC images via learning the corre-
lations among sub-images (i.e. the complementary local information of sub-images). We
demonstrate its impact by embedding a StitchLayer into a DCGAN (denoted by StitchDC-
GAN 64X64). Exemplar outputs in the 3rd column of Fig. 2 show that with a StitchLayer,
the DCGAN is able to synthesize reasonable 64× 64 ADC images of CS PCa with visible
nut-shape prostate glands.

The main difference between the shift-and-stitch and our proposed StitchLayer is that the
shift-and-stitch obtains sub-images using the same network from the multiple shifted ver-
sions of input image while the StitchLayer enables learning of multiple generative networks
{Gn} to get sub-images, which could guarantee learnable and reasonable complementary
local information of sub-images, yielding more robust full size target images with higher
dimension.

2.2 The Discriminative Module with Auxiliary Distance
The discriminative module which approximates the distance between the synthetic and real
data is indispensable for the optimization of a generative module in which the approximated
distance is minimized.

In this work, we utilized the W-distance between synthetic and real data, which is ap-
proximated by the discriminative module as follows:

W (θG) = max
θD
{Ex∼PCS [D(x;θD))]−Ez∼Pz [D(G(z;θG);θD)]−λR(θD)} (2)

where D is a critic network with tunable parameters θD, G is the generative module with
tunable parameters θG, PCS and Pz are distributions of real CS ADC data and noise, R(θD)
is for enforcing the 1-Lipschitz constraint of D [9].

W-distance has been recognized as an optimal distance for training a generative module
since it always guarantees meaningful gradients w.r.t θG regardless of how far away between
real and synthetic data [2]. However, minimizing only the W-distance in a generative mod-
ule achieves visually realistic images of a prostate gland with little CS PCa patterns. The
problems are twofold: 1) normal prostate gland tissues typically take predominant regions in
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a prostate ADC image comparing with a CS lesion, yielding great difficulties for the gener-
ative module to capture sufficient CS PCa-relevant information, and 2) real CS PCa data for
training is quite scarce, leading to over-fitting with a high probability and in turn worsen the
former problem. To address the two problems, we introduce another critic network to learn
CS PCa features from a prostate gland by distinguishing between synthetic CS PCa data and
real nonCS PCa data. In this critic network, an auxiliary distance JSD between synthetic CS
PCa and real nonCS PCa data is approximated by by the discriminative module as follows:

L(θG) = max
θD
{Ex∼PnonCS [log(D(x;θD))]+Ez∼Pz [1− log(D(G(z;θG);θD))]} (3)

Accordingly, after approximation of the two distances, the overall objective of our gener-
ative module is to concurrently minimize the W-distance and maximize the JSD as expressed
in Eq. (4):

θG = argmin
θG
{αW (θG)}+ argmax

θG
{βL(θG)} (4)

where α and β are weights tuning the contributions of the two distances, which are set to 1
and 0.1 respectively in our experiments.

We choose JSD as an auxiliary distance (AD) rather than W-distance is because JSD
could better guide the generative module to increase the distance between CS and nonCS
PCa data only if the synthetic data lacks CS PCa information since JSD derives no gradient
unless the manifolds of synthetic CS and real nonCS PCa data align each other [1].

The over-fitting problem of the generator can be greatly alleviated, as there is far more
nonCS data available than CS PCa data for training. The task of simultaneously minimizing
the W-distance and maximizing the JSD forces the generator to capture CS PCa patterns
besides the prostate gland.

3 Experiment Results

3.1 Dataset

The study was approved by our local institutional review board. The ADC images used in the
study are collected from two datasets: 1) a locally collected dataset including 156 patients’
data pathologically validated by a 12-core systematic TRUS-guided plus targeted prostate
biopsy. Dataset details are listed in [24, 25], 2) a public dataset PROSTATEx (training) [4,
7, 14], including data of 204 MRI-targeted biopsy-proven patients. Among 360 patients’
data, 226 patients are normal, with benign prostatic hyperplasia (BPH) or indolent lesions,
which are collectively referred to as nonCS PCa, and 134 patients are with CS PCa. From
the two datasets, a radiologist manually select 533 original ADC images containing CS PCa
and 1992 ADC images containing nonCS PCa. The selection criterion was that both CS PCa
lesions and prostate glands were clearly visible. We applied a prostate detector [25] to obtain
prostate ADC images. The entire dataset was randomly divided into the training set (483 CS
and 1942 nonCS) and the test set (50 CS and 50 nonCS).
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Figure 3: (a) synthetic images of our method and their (b) closest real images.

Figure 4: Curves of CS vs. nonCS PCa classification accuracy for the test set with respect
to the optimization iterations. Data Augmentation indicates using a combination of the real
and conventionally augmented data for training

3.2 Subjective Visual Quality Evaluation
We first qualitatively evaluate the performance of our StitchAD-GAN. To demonstrate that
the StitchAD-GAN does not simply memorize the training data, for each synthetic image
Gi we identified its most similar image Ri which has the maximal Mutual Information
MI(Gi,Ri). Fig. 3 shows that both nut-shape prostate gland and CS PCa lesions are clearly
visible in our synthetic data with correct spatial relationships. In addition, the synthetic im-
ages differ from their closest real images in terms of gland shape, lesion distribution and
surrounding tissues. These results well demonstrates the good generalization ability of our
model.

3.3 CS vs. nonCS PCa Classification Using Synthetic Training Data
We quantitatively examine the quality of the synthetic data via a slice-level CS vs. nonCS
PCa classification using the classification accuracy as the metric. First, we evaluate the ac-
curacy improvement achieved by the proposed generative module with a StitchLayer and
the discriminative module with an auxiliary distance respectively. For this evaluation, we
implemented two state-of-the-art GANs, i.e., DCGAN [19] and WGAN-GP [9]. Fig. 4 sum-
marizes the results. The prefix ’Stitch’ and ’AD’ before the model name respectively indicate
embedding a StitchLayer and an auxiliary distance in the two methods. We trained all GANs
for generating the 64× 64 ADC data of CS PCa using the training set without any data
augmentation. For each GAN, we combine the 1942 synthesized ADC images of CS PCa
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and 1942 real ADC images of nonCS PCa from the training set to train an Artificial Neural
Network (ANN), which consists of two fully connected layers, as the classifier. As the DC-
GAN and ADDCGAN failed to synthesize 64× 64 data, we simply up-scaled the 32× 32
synthetic images to 64×64 via bilinear interpolation. The results in Fig. 4(a) and (b) show
that the proposed StitchLayer and auxiliary distance provide obvious improvements for both
DCGAN and WGAN-GP. Even though WGAN-GP is already able to synthesize 64× 64
images, StitchWGAN-GP still outperforms WGAN-GP, indicating that the StitchLayer is
not limited to enabling higher dimensional image generation, but also can make the data be
easier analyzed by GANs.

We further compare the real data with the synthetic data of our method (i.e. applying
both StitchLayer and AD to WGAN-GP, denoted as StitchAD-GAN). For a fair comparison,
we augmented real CS PCa data to 1942 as [25]. Fig. 4(c) shows that our method outper-
forms the real data with data augmentation, validating that the proposed method could be a
better alternative for addressing the insufficiency of medical data need for data-hungry deep
learning models.

4 Conclusion

This paper presents the StitchAD-GAN for synthesis of realistic and clinically meaningful
ADC images of CS PCa. Two main contributions of our StitchAD-GAN are: 1) a Stitch-
Layer to effectively address the difficult-to-optimize problem for high-dimensional image
synthesis, and 2) an auxiliary distance based on JSD between the synthetic CS PCa data
and real nonCS PCa data to ensure clinically meaningful CS PCa features to be presented in
synthetic images. Extensive experimental results demonstrate the superiority of our method
to the state-of-the-art methods [9, 19] and real data with conventional data augmentation.
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