Two Easy Theories Whose Combination is Hard

V.R. Pratt
M.IT.

Sept. 1, 1977

Abstract

We restrict attention to the validity problem for unquantified dis-
junctions of literals (possibly negated atomic formulae) over the do-
main of integers, or what is just as good, the satisfiability problem for
unquantified conjunctions. When = is the only predicate symbol and
all function symbols are left uninterpreted, or when < is the only pred-
icate symbol (taking its standard interpretation on the integers) and
the only terms are variables and integers, then satisfiability is decid-
able in polynomial time. However when < and uninterpreted function
symbols are allowed to appear together, satisfiability becomes an NP-
complete problem. This combination of the two theories can arise
for example when reasoning about arrays (the uninterpreted function
symbols) and subscript manipulation (where < arises in considering
subscript bounds). These results are unaffected by the presence of
successor, which also arises commonly in reasoning about subscript
manipulation.

1 Introduction

Nelson and Oppen [NO77] have shown that conjunctions of equalities and
negated equalities between terms involving only uninterpreted function sym-
bols can be tested for satisfiability in time proportional to the square of the
length of the conjunction. For example, x =y A y=2z A f(x) =w A w #
f(z) is not satisfiable although it would be in the absence of any one of the
four literals making up the formula.

Another language whose satisfiability problem is about as easy to decide
is that of conjunctions of integer inequalities between variables or integers.
To decide satisfiability, construct a graph whose vertices correspond to the
variables of the formula, with an extra vertex corresponding to 0. Construct
edges, one per inequality, with edge (x,y) labelled i corresponding to an

inequality which in essence expresses + ¢ < y. For example, =(u < v)
would give rise to an edge (v, u) labelled 1, while v < 3 would generate an
edge (u,0) labelled —3. Then the conjunction is satisfiable if and only if the
graph contains a cycle of positive weight, i.e., one whose labels add up to a
positive integer. This can be decided, e.g., by forming the max/+ transitive
closure of the graph and searching for a self-edge with a positive label. This
procedure is evidently adaptable to the case when successor may be used.

2 Result

We now show that conjunctions of literals involving both < (with its stan-
dard interpretation on the integers) and uninterpreted function symbols have
an NP-complete satisfiability problem. To do this we give an easily com-
puted function H from “monotonic normal form” formulae of propositional
calculus (negations appear only on atomic formulae) to conjunctions of this
language such that P is satisfiable iff H(P) is. We write z < y < z for
TSy Ny=<z

The intuition behind the following definition is that P is to be translated
to a directed acyclic graph some of whose edges are fixed and some of whose
edges are under the control of assignments of truth values to the letters of P.
The graph will have an input and an output vertex. The objective is that
a path will exist from input to output just when the given assignment of
truth values to the letters of P falsifies P. Before explaining this further,

let us give the full definition of H.
H(P): h(P) A ~(in(P) <out(P)) A0 < (a,b,...letters of P)
To S1INOLZ2p <1 A ...

in(P): ¢g1(P)
WP (P)
out(P): gs(P)
gla): [fi(0),true, fi(zq)] (@ is any propositional letter)
g(ﬁa’): [fz(l) true, fz(xa)]
JP1Q) |

in(P),h(P) A out(P) < in(Q) A
h(@Q), out(Q)]
g(P A Q) [in(P),in(P) < in(Q) A h(P) A
B(Q) A out(P) < out(Q), out(Q)]
The intent of “f;” is that a different ¢ be chosen for each invocation of g,
i.e., for each occurrence of a propositional letter; thus H(P) will always have
exactly two occurrences of each f; appearing in it.
The function g(z) produces the triple [g1(x), g2(x), g3(x)] which for clar-
ity we have renamed [in(z), h(z),out(x)]. Although H produces a conjunc-

tion of inequalities, g is considered to produce the corresponding graph,
[input vertex, set of edges, output vertex]. Let us look at a particular ex-
ample to see what is happening. The formula consisting of just the propo-
sitional letter a is mapped by H to =(fo(0) < fo(za)) N0 < z, < 1.
Clearly the latter is satisfied by taking z, to be 1 and fy to be negation.
Looking at the role of g(a) in this, we see that g(a) built a graph with in-
put vertex fo(0), output vertex fo(z,), and no edges (true corresponds to
the empty conjunction). There is a path from input to output just when
a is false, in the sense that fy(0) < fo(z,) just when z, = 0. Now let
us consider the more complicated example a A —a, which is mapped to
7(0) < A1) A folwa) < fil@a) A ~(fo(0) < fi(za)) A0 < 2 < 1. To
see that this is unsatisfiable, first observe that only x, = 0 or z, = 1 could
satisfy it. In either case we may infer fy(0) < fi(z,), which contradicts
the explicitly given —(fo(0) < fi(z,)). Viewing g(a A —a) as a graph, if
we consider “in(P) < in(Q)” and “out(P) < out(Q)” to have the effect of
connecting respectively the inputs and outputs of the graphs of P and @
together (parallel connection), then all we have done is provide for the exis-
tence of a path no matter whether a is true or false, i.e., no matter whether
the circuit is “closed” via fp(0) < fo(zq) or fi(1) < fi(ze). In the case of
the disjunction P | @), parallel connection is replaced by series connection.
We hope that this informal discussion will make a more formal argument
unnecessary. The key observation in the formal argument is that P is false
for a given assignment of truth values to the propositional letters of P if
and only if H(P) is unsatisfiable when each x, is assigned 1 if propositional
letter a is assigned true and 0 otherwise.

3 Interpretation

The interest in this result lies not so much in the proof, which is routine, as
in its relevance to the mechanization of logics incorporating many theories.
This is the situation that obtains for example with systems for verifying
computer programs, which may need to deal with programs that operate
on a variety of distinct data types each having its own theory. It is natural
to ask, what does the complexity of the constituent theories tell us about
the complexity of their combination? This result shows that the overhead
associated with simply combining quantifier-free disjunctive theories may be
as great as the gap between P and NP.

We were led to the question answered above in the following way. In
the course of implementing a proof checker [LP77] for dynamic logic (a new

approach to program verification), we found that the quantifier-free disjunc-
tive theory of < and successor over the integers fulfilled all our arithmetic
needs for the kinds of programs we were encountering, which in view of the
existence of the polynomial decision procedure described above turned out
to be most convenient. When we attempted to incorporate “read-only” ar-
rays into the theory (essentially the theory of equality with uninterpreted
function symbols, but without array updating operations, which themselves
lead to NP-completeness [DS76]) we encountered the difficulty summarized
by the above result.

The interest in quantifier-free conjunctive theories stems from the ap-
proach to handling the combination of many theories in which the theorem
to be proved is first negated, converted to disjunctive normal form, Skolem-
ized, universal variables instantiated somehow when appropriate (e.g., by
the user), and tested for satisfiability disjunct by disjunct. Provided each
disjunct is easy to so test, the bulk of the running time can be accounted for
by the large number of disjuncts that may arise. While this in theory remains
an apparently insuperable obstacle, in practice one can make very effective
use of bit vector representations of disjuncts to make the generation of the
disjuncts relatively painless for quite substantial problems. This leaves the
cost of testing each of the disjuncts. This too can be made similarly painless
by keeping track of which literals of each disjunct were responsible for its
unsatisfiability. (It is not necessary to search for the smallest set of such
literals in each disjunct, the method is extremely effective even with to-
ken attention to finding a small subset.) Thus the first step in testing a
disjunct is to see whether it contains as a subset one of the unsatisfiable
sets already recorded, a process requiring just one bit vector operation per
recorded set. In practice we have found this technique to be of value, often
reducing running times from the order of minutes to fractions of a second.

Our experience with the number of sets of unsatisfiable literals that are
recorded, for the particular problems with which we have to deal, is that
the sets are in almost one-to-one correspondence with the “elementary” facts
apparently needed to prove the theorem in question. Thus even though the
propositional form of the theorem may have given rise to several thousand
disjuncts, only ten or twenty sets may be recorded, so that almost all of
the disjuncts can each be disposed of with just a small number of bit vector
operations (in our case involving a few dozen bits per vector). The effect is
to reduce the constant factor in front of the inevitable exponential to such
an extent that the “visibly useful” work of discovering and checking the
elementary facts supporting the theorem is comparable with the work done
manipulating the many disjuncts. Of course this approach is enormously

sensitive to problem size, putting a very sharp limit on the size of problem
treatable in this way. In applying this technique to proof checkers, as in our
case, this simply means that the user must structure his proof so that the
steps of the proof are not “unreasonably” large from the system’s point of
view.

In view of these remarks it should be clear how polynomial-time algo-
rithms for satisfiability of quantifier-free conjunctive theories are of consid-
erable value despite the NP-completeness of the unrestricted-format (but
still quantifier-free) formulae in which they arise. How were we [LP77] af-
fected by the NP-completeness of the combined theories described above?
Our approach has been to permit the user to claim that a proof step will
in fact hold for the rationals, for which domain the NP-completeness result
above is replaced by a polynomial-time algorithm. In fact our experience has
been that most arguments that arise in practice about the integers happen
to hold for the rationals. In this way, the user can hold complexity at bay
either by using small proof steps on those rare occasions when the complete
integer theory is needed, or by making more general claims that, despite
their greater generality, are easier to check. This illustrates the principle
that there are other ways of making a proof easier to follow than just taking
shorter steps.

References

[DS76] P.J. Downey and R. Sethi. Assignment commands and array struc-
tures. In 17th IEEE Symposium on Foundations of Computer Sci-
ence, pages H7—66, October 1976.

[LP77] S.D. Litvintchouk and V.R. Pratt. A proof checker for dynamic
logic. In &th International Joint Conference on A.l., pages 552—
558, August 1977.

[NO77] G. Nelson and D.C. Oppen. Fast decision algorithms based on union
and find. In 18th IEEE Symposium on Foundations of Computer
Science, October 1977.

