3
2
&

Boost.MPI

Douglas Gregor

Matthias Troyer
Copyright © 2005-2007 Douglas Gregor, Matthias Troyer, Trustees of Indiana University

Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at ht-
tp://www.boost.org/LICENSE_1 0.txt)

Table of Contents

[oo [0 Tod 1] o PRSPPI 2
e (oI g T PP TP PPPPTPRTPPPTN 2
MPT IMPIEMENTATION ... ettt ettt e et e ettt e et e e et b e e et e e e eat s 2
CoNFIGUIE AN BUIIA ...ttt ettt ettt et et 3
Installing and USING BOOSEIMPL i ettt et ettt e e eeaaens 4
TESEING BOOSLIMPI ...t ettt et ettt ettt e e et e ettt et e e e e ae s 4
IV (o] 4 T | PP 5
POINt-t0-POINt COMMUINICALIONttt et e et e e e e et e e e e et et e e et e e et e e e bt e eeneeeens 5
COIECLIVE OPEIALIONS ...ttt ettt ettt et et e e e e et e e et b e e et b e e et na e 9
MaNagiNg COMMUINICAIONS ceeett ettt ettt ettt ettt et ettt e ettt ettt e ettt e e et e e e e e bt e et e b e e e eeees 12
Separating StrUCTUFE TrOM CONTENT ittt e e et e et e et e et e et e e et e e ean s 13
Performance OPtIMIZATIONS ittt e et et e et e 15
Mapping from C MPI 10 BOOSEIMPI ...ttt et 15
R C T =10 Tol TP 27
[Lo 1o (=T o To L0 1) 7] o111 o] o B PSPPSR 27
Header <boost/MpPi/alloCator PP ... o e 27
Header <boost/MPi/COIIECTIVES. PP ...t e e e e e e e 34
Header <boost/mpi/ColleCtiVES TWO.NPP>oiiii e 44
Header <boost/Mpi/COMMUNICAION PP ...\ttt e e e e e e et e e e e et e e e ettt e e e aabaaeans 44
Header <boost/mMpPi/CON ig.NPP> ..o e 59
Header <boost/Mpi/datatyPe.NPP> ... i e e e a1 63
Header <boost/mpi/datatype fWO.NPP> ..oooiii e 72
Header <boost/MpPi/enVirOnmMENT. PP ... e 73
Header <Do0StMPI/EXCEPION. NP> .ottt e e e 76
Header <boost/mpi/graph_communiCator.ipP> . ..ooouii i e 79
Header <DO0St/ MPI/gGrOUR. PP ... et 85
Header <boost/mpi/intercomMmUNICAtON PP ...u.iiiiii e e e e e e e e e e e e e e e aaae 93
Header <boost/mpi/nonbloCKINg. PP ... e 95
Header <boost/MpPi/operationS. PP i 102
Header <boost/mpi/packed_1arChiVe.nPP> ..o e 110
Header <boost/mpi/packed _0arChiVE. PPoiuui e 112
Header <booSt/MPI/PYtNON. DD L.t 114
Header <D00St/ MPI/TEOUEST. PP ... i e e e e e e e e et e e e et e e e e e e e aaa 116
Header <boost/mpi/skeleton_and_ CONtENt. PRu. i e 117
Header <boost/mpi/skeleton_and_content fwd.NPP>ooiiiiiii 125
Header <DO0St/MPI/STAtUS. NP> ..oiiti it e e e e e e e e 125
Header <Bo0St /M PI/IMEI NPD> . ot e e e e e e 127
PYENON BINGINGS ..ot e e et ettt ettt 129
(O 11T 1] - o S TR 129
TranSMItting USEr-DEfiNEd DALAuuiiiiiiiieiii et ettt ettt ettt ettt et e e eaans 130
(O] 1 1T €1 PP 130
SKeleton/Content IMECRANISIM et et e et et e et e et e et e e et e e e an e e e et e e eneaeans 130
1

httpo://www.renderx.com/

http://www.boost.org/LICENSE_1_0.txt
http://www.boost.org/LICENSE_1_0.txt
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Boost.MPI

CH+/Python MPI ComPatibDilityoiiiii e e e e e e e e e e e e et e e e e e eeeas 131

2 (=] £ oL PPN 131
1=y o a1 (o T-To] o] 2 PP 131
PerformanCe EVAIUALIONcoouiiiiiiii e e e e e e e e et e e e e e e e e e e e e et e e e e e e 132
YT [I 1)] Y/ PP 133
Aot 41011 =T o o 01T) £ PP 133
Introduction

Boost.MPl is a library for message passing in high-performance parallel applications. A Boost.MPI program is one or more processes
that can communicate either via sending and receiving individual messages (point-to-point communication) or by coordinating as a
group (collective communication). Unlike communication in threaded environments or using a shared-memory library, Boost. MPI
processes can be spread across many different machines, possibly with different operating systems and underlying architectures.

Boost.MP1 is not a completely new parallel programming library. Rather, it is a C++-friendly interface to the standard Message
Passing Interface (MPI), the most popular library interface for high-performance, distributed computing. MPI defines a library interface,
available from C, Fortran, and C++, for which there are many MPI implementations. Although there exist C++ bindings for MPI,
they offer little functionality over the C bindings. The Boost.MPI library provides an alternative C++ interface to MPI that better
supports modern C++ development styles, including complete support for user-defined data types and C++ Standard Library types,
arbitrary function objects for collective algorithms, and the use of modern C++ library techniques to maintain maximal efficiency.

At present, Boost.MPI supports the majority of functionality in MPI 1.1. The thin abstractions in Boost.MPI allow one to easily
combine it with calls to the underlying C MPI library. Boost.MPI currently supports:

« Communicators: Boost.MPI supports the creation, destruction, cloning, and splitting of MPI communicators, along with manipu-
lation of process groups.

* Point-to-point communication: Boost.MPI supports point-to-point communication of primitive and user-defined data types with
send and receive operations, with blocking and non-blocking interfaces.

* Collective communication: Boost.MPI supports collective operations such as reduce and gather with both built-in and user-
defined data types and function objects.

e MPI Datatypes: Boost.MPI can build MPI data types for user-defined types using the Boost.Serialization library.

 Separating structure from content: Boost.MPI can transfer the shape (or "skeleton") of complexc data structures (lists, maps, etc.)
and then separately transfer their content. This facility optimizes for cases where the data within a large, static data structure needs

to be transmitted many times.

Boost.MPI can be accessed either through its native C++ bindings, or through its alternative, Python interface.

Getting started

Getting started with Boost.MPI requires a working MPI implementation, a recent version of Boost, and some configuration inform-
ation.

MPI Implementation

To get started with Boost.MP1, you will first need a working MPI implementation. There are many conforming MPI implementations
available. Boost.MPI should work with any of the implementations, although it has only been tested extensively with:

e Open MPI 1.0.x
* LAM/MPI 7.x

* MPICH 1.2.x

httpo://www.renderx.com/

http://www-unix.mcs.anl.gov/mpi/
http://www-unix.mcs.anl.gov/mpi/implementations.html
http://www.boost.org/libs/serialization/doc
http://www-unix.mcs.anl.gov/mpi/implementations.html
http://www.open-mpi.org
http://www.lam-mpi.org
http://www-unix.mcs.anl.gov/mpi/mpich/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

You can test your implementation using the following simple program, which passes a message from one processor to another. Each

processor prints a message to standard output.

#include <mpi.h>
#include <iostream>
int main(int argc, char* argv[])

{
int rank;
0 {

if (rank ==
int value = 17;
std::cout << "Rank 0 OK!" << std::endl;

MP1_Comm_rank(MP1_COMM_WORLD, &rank);
if (result == MPI_SUCCESS)
D {
int result = MPI_Recv(&value, 1, MPI_INT, O, O, MPI_COMM_WORLD,

MPI_Init(&argc, &argv);
int result = MPI_Send(&value, 1, MPI_INT, 1, O, MPI_COMM_WORLD):;

MPI_SUCCESS && value == 17)

int value;
MPI1_STATUS_ IGNORE);
std::cout << "Rank 1 OK!" << std::endl;

if (result
With LAM/MPI, for instance, you compile with the mpiCC or mpic++ compiler, boot the LAM/MPI daemon, and run your program
via mpirun. For instance, if your program is called mpi-test. cpp, use the following commands:

}

MP1_Finalize();
return 0O;

else if (rank
¥
You should compile and run this program on two processors. To do this, consult the documentation for your MPI implementation.

lamboot

mpirun -np 2 ./mpi-test
lamhalt
When you run this program, you will see both Rank 0 OK! and Rank 1 OK! printed to the screen. However, they may be printed

mpiCC -0 mpi-test mpi-test.cpp
in any order and may even overlap each other. The following output is perfectly legitimate for this MPI program:

Rank Rank 1 OK!

0 OK!
If your output looks something like the above, your MPI implementation appears to be working with a C++ compiler and we're ready
of Boost.Jam (3.1.12 or later). If you already have Boost.Jam, run bjam -v to determine what version you are using.

to move on.
Configure and Build
Boost.MPI uses version 2 of the Boost.Build system for configuring and building the library binary. You will need a very new version
Information about building Boost.Jam is available here. However, most users need only run bui Id.sh in the tools/build/jam_src
subdirectory of Boost. Then, copy the resulting bjam executable some place convenient.
For many users using LAM/MPI, MPICH, or OpenMPI, configuration is almost automatic. If you don't already have a file user-
config-jam in your home directory, copy tools/bui ld/v2/user-config- jamthere. For many users, MPI support can be enabled

simply by adding the following line to your user-config.jam file, which is used to configure Boost.Build version 2.

render

httpo://www.renderx.com/

http://www.lam-mpi.org/
http://www.boost.org/doc/html/bbv2.html
http://www.boost.org/tools/build/jam_src/index.html
http://www.boost.org/tools/build/jam_src/index.html#building_bjam
http://www.lam-mpi.org/
http://www-unix.mcs.anl.gov/mpi/mpich/
http://www.open-mpi.org
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

using mpi

This should auto-detect MPI settings based on the MPI wrapper compiler in your path, e.g., mpic++. If the wrapper compiler is not
in your path, see below.

To actually build the MPI library, go into the top-level Boost directory and execute the command:

bjam --with-mpi

If your MPI wrapper compiler has a different name from the default, you can pass the name of the wrapper compiler as the first ar-
/opt/mpich2-1.0.4/bin/mpiCC
wrapper compiler, you can pass MPI-related options explicitly via the second parameter to the mpi module:

gument to the mpi module:

using mpi
If your MPI implementation does not have a wrapper compiler, or the MPI auto-detection code does not work with your MPI's

<find-shared-library>lammpio <find-shared-library>lammpi++
<find-shared-library>mpi <find-shared-library>lam

using mpi
To see the results of MPI auto-detection, pass --debug-configuration on the bjam command line.

<find-shared-library>dl
The (optional) fourth argument configures Boost.MPI for running regression tests. These parameters specify the executable used to
launch jobs (default: "mpirun™) followed by any necessary arguments to this to run tests and tell the program to expect the number

of processors to follow (default: "-np™). With the default parameters, for instance, the test harness will execute, e.g.,

mpirun -np 4 all_gather_test

Installing and Using Boost.MPI

install

This command will install libraries into a default system location. To change the path where libraries will be installed, add the option
To build applications based on Boost.MPI, compile and link them as you normally would for MPI programs, but remember to link

Installation of Boost.MPI can be performed in the build step by specifying instal 1 on the command line and (optionally) providing
an installation location, e.g.,

bjam --with-mpi
against the boost_mpi and boost_serialization libraries, e.g.,
If you plan to use the Python bindings for Boost.MPI in conjunction with the C++ Boost.MPI, you will also need to link against the
boost_mpi_python library, e.g., by adding -1boost_mpi_python-gcc-mt-1_35 to your link command. This step will only be

--prefix=PATH
-Iboost_mpi-gcc-mt-1_35 -lboost_serialization-gcc-d-1_35.a

mpic++ -1/path/to/boost/mpi my_application.cpp -Llibdir \
necessary if you intend to register C++ types or use the skeleton/content mechanism from within Python.
httpo://www.renderx.com/

Testing Boost.MPI

If you would like to verify that Boost.MPI is working properly with your compiler, platform, and MPI implementation, a self-contained
test suite is available. To use this test suite, you will need to first configure Boost.Build for your MPI environment and then run
bjamin Libs/mpi/test (possibly with some extra options). For LAM/MPI, you will need to run Iamboot before running bjam.

render

http://www.lam-mpi.org/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

For MPICH, you may need to create a machine file and pass ~-sMPIRUN_FLAGS="-machinefile <filename>" to Boost.Jam;

see the section on configuration for more information. If testing succeeds, bjam will exit without errors.

Tutorial
Communication with MPI always occurs over a communicator, which can be created be simply default-constructing an object of
type mpi : :communicator. This communicator can then be queried to determine how many processes are running (the "size" of

A Boost.MPI program consists of many cooperating processes (possibly running on different computers) that communicate among
the communicator) and to give a unique number to each process, from zero to the size of the communicator (i.e., the "rank" of the

themselves by passing messages. Boost.MPI is a library (as is the lower-level MPI), not a language, so the first step in a Boost.MPI

is to create an mpi : -environment object that initializes the MPI environment and enables communication among the processes.
The mpi : zenvironment object is initialized with the program arguments (which it may modify) in your main program. The creation

of this object initializes MPI, and its destruction will finalize MPI. In the vast majority of Boost.MPI programs, an instance of

mpi : -environment will be declared in main at the very beginning of the program.

<< world.size()

of

process):
#include <boost/mpi/communicator.hpp>

#include <boost/mpi/environment.hpp>
#include <iostream>
namespace mpi = boost::mpi;

int main(int argc, char* argv[])

{

mpi::environment env(argc, argv);

mpi : :communicator world;
std::cout << "I am process " << world.rank() <<

"M << std::endl;
If you run this program with 7 processes, for instance, you will receive output such as:

<<

return 0O;

3
of

am process
am process of
am of
am of 7.
am -
am -
am
the text could come out completely garbled, because one process can start writing 'l am a process" before another process has finished

of

NN NN NN N

process
process
process

process of
As a message passing library, MPI's primary purpose is to routine messages from one process to another, i.e., point-to-point. MPI
contains routines that can send messages, receive messages, and query whether messages are available. Each message has a source

of

WhANOPFL OO

process

Of course, the processes can execute in a different order each time, so the ranks might not be strictly increasing. More interestingly,

writing "of 7.".

Point-to-Point communication
process, a target process, a tag, and a payload containing arbitrary data. The source and target processes are the ranks of the sender
and receiver of the message, respectively. Tags are integers that allow the receiver to distinguish between different messages coming
httpo://www.renderx.com/

from the same sender.
The following program uses two MPI processes to write "Hello, world!" to the screen (hello_world.cpp):

render

http://www-unix.mcs.anl.gov/mpi/mpich/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Boost.MPI

#include <boost/mpi .hpp>

#include <iostream>

#include <boost/serialization/string.hpp>
namespace mpi = boost::mpi;

int main(int argc, char* argv[])

{
mpi::environment env(argc, argv);
mpi : :communicator world;

if (world.rank() == 0) {
world.send(1, 0, std::string("'Hello™));
std: :string msg;
world.recv(l, 1, msg);
std::cout << msg << "I" << std::endl;
1 else {
std: :string msg;
world.recv(0, 0, msg);
std: :cout << msg << "
std: :cout.flush();
world.send(0, 1, std::string("world™));
}

return 0O;

}

The first processor (rank 0) passes the message "Hello" to the second processor (rank 1) using tag 0. The second processor prints
the string it receives, along with a comma, then passes the message "world" back to processor 0 with a different tag. The first processor
then writes this message with the "1" and exits. All sends are accomplished with the communicator : :send method and all receives
use a corresponding communicator: :recv call.

Non-blocking communication

The default MPI communication operations--send and recv--may have to wait until the entire transmission is completed before
they can return. Sometimes this blocking behavior has a negative impact on performance, because the sender could be performing
useful computation while it is waiting for the transmission to occur. More important, however, are the cases where several commu-
nication operations must occur simultaneously, e.g., a process will both send and receive at the same time.

Let's revisit our "Hello, world!" program from the previous section. The core of this program transmits two messages:

if (world.rank() == 0) {
world.send(1, 0, std::string("'Hello™));
std: :string msg;
world._recv(l, 1, msg);
std::cout << msg << "I" << std::endl;
1 else {
std: :string msg;
world.recv(0, 0, msg);
std::cout << msg << '
std: :cout.flush();
world.send(0, 1, std::string("'world™));
}

The first process passes a message to the second process, then prepares to receive a message. The second process does the send and
receive in the opposite order. However, this sequence of events is just that--a sequence--meaning that there is essentially no paral-
lelism. We can use non-blocking communication to ensure that the two messages are transmitted simultaneously
(hello_world_nonblocking.cpp):

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Boost.MPI

#include <boost/mpi .hpp>

#include <iostream>

#include <boost/serialization/string.hpp>
namespace mpi = boost::mpi;

int main(int argc, char* argv[])

{
mpi::environment env(argc, argv);
mpi : :communicator world;

if (world.rank() == 0) {
mpi::request reqs[2];

std: :string msg, out_msg = "Hello";
reqs[0] = world.isend(1, O, out_msg);
reqs[1] = world.irecv(l, 1, msqg);
mpi::wait_all(regs, reqs + 2);

std::cout << msg << "I" << std::endl;
1 else {
mpi::request reqs[2];

std: :string msg, out_msg = "world";
reqs[0] = world.isend(0, 1, out_msg);
reqs[1] = world.irecv(0, 0, msg);
mpi::wait_all(regs, reqs + 2);
std::cout << msg << ", '';

}

return O;

}

We have replaced calls to the communicator: :send and communicator : : recv members with similar calls to their non-blocking
counterparts, communicator: : isend and communicator: - irecv. The prefix i indicates that the operations return immediately
with a mpi : - request object, which allows one to query the status of a communication request (see the test method) or wait until
it has completed (see the wait method). Multiple requests can be completed at the same time with the wait_al I operation.

If you run this program multiple times, you may see some strange results: namely, some runs will produce:

Hello, world!

while others will produce:

world!
Hello,

or even some garbled version of the letters in "Hello" and "world". This indicates that there is some parallelism in the program, because
after both messages are (simultaneously) transmitted, both processes will concurrent execute their print statements. For both perform-
ance and correctness, non-blocking communication operations are critical to many parallel applications using MPI.

User-defined data types

The inclusion of boost/serialization/string.hpp in the previous examples is very important: it makes values of type
std: :string serializable, so that they can be be transmitted using Boost.MPI. In general, built-in C++ types (ints, floats,
characters, etc.) can be transmitted over MPI directly, while user-defined and library-defined types will need to first be serialized
(packed) into a format that is amenable to transmission. Boost.MPI relies on the Boost.Serialization library to serialize and deserialize
data types.

For types defined by the standard library (such as std::string or std::vector) and some types in Boost (such as
boost: :variant), the Boost.Serialization library already contains all of the required serialization code. In these cases, you need
only include the appropriate header from the boost/serialization directory.

httpo://www.renderx.com/

http://www.boost.org/libs/serialization/doc
http://www.boost.org/libs/serialization/doc
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

For types that do not already have a serialization header, you will first need to implement serialization code before the types can be

transmitted using Boost.MPI. Consider a simple class gps_position that contains members degrees, minutes, and seconds.
This class is made serializable by making it a friend of boost: :serialization: :access and introducing the templated seri-

alize() function, as follows:

class gps_position
friend class boost: :serialization:: access;

{
private:

template<class Archive>
void serialize(Archive & ar, const unsigned int version)

{
ar & degrees;
ar & minutes;
ar & seconds;

}
int degrees;
int minutes;
int m, float s)

public:

float seconds;
degrees(d), minutes(m), seconds(s)
{3
}:
Complete information about making types serializable is beyond the scope of this tutorial. For more information, please see the
Boost.Serialization library tutorial from which the above example was extracted. One important side benefit of making types serial-

mpl::true_ { }:

gps_positionO){}:
gps_position(int d,
izable for Boost.MPI is that they become serializable for any other usage, such as storing the objects to disk to manipulated them in
users should specialize the type trait is_mpi_datatype, €.9.:

XML.
Some serializable types, like gps_position above, have a fixed amount of data stored at fixed field positions. When this is the

case, Boost.MPI can optimize their serialization and transmission to avoid extraneous copy operations. To enable this optimization,

namespace boost { namespace mpi {
template <>
struct is_mpi_datatype<gps_position>

3
For non-template types we have defined a macro to simplify declaring a type as an MPI datatype

BOOST_IS_MPI1_DATATYPE(gps_position)
For composite traits, the specialization of is_mpi_datatype may depend on is_mpi_datatype itself. For instance, a
boost: :array object is fixed only when the type of the parameter it stores is fixed:

namespace boost { namespace mpi {
template <typename T, std::size_t N>
struct is_mpi_datatype<array<T, N> >
public is_mpi_datatype<T> { };

httpo://www.renderx.com/

P}
The redundant copy elimination optimization can only be applied when the shape of the data type is completely fixed. Variable-

length types (e.g., strings, linked lists) and types that store pointers cannot use the optimiation, but Boost.MPI will be unable to detect

this error at compile time. Attempting to perform this optimization when it is not correct will likely result in segmentation faults and

other strange program behavior.

render

http://www.boost.org/libs/serialization/doc
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

effort; library-defined types require the inclusion of a serialization header; and user-defined types will require the addition of serial-
compute the sum of the values on all processors"

Boost.MPI can transmit any user-defined data type from one process to another. Built-in types can be transmitted without any extra

ization code. Fixed data types can be optimized for transmission using the is_mpi_datatype type trait.
Point-to-point operations are the core message passing primitives in Boost.MPI. However, many message-passing applications also

require higher-level communication algorithms that combine or summarize the data stored on many different processes. These al-

Collective operations

gorithms support many common tasks such as ""broadcast this value to all processes
The broadcast algorithm is by far the simplest collective operation. It broadcasts a value from a single process to all other processes
within a communicator. For instance, the following program broadcasts "“Hello, World!" from process 0 to every other process.

or "find the global minimum."

Broadcast

(hello_world_broadcast.cpp)

#include <boost/mpi . hpp>
#include <iostream>
#include <boost/serialization/string.hpp>
boost: :mpi ;

<< value

int main(int argc, char* argv[])
says

namespace mpi
c-environment env(argc, argv);

:zcommunicator world;
0 {

{
mpi
mpi
std: :string value;
if (world.rank() ==
value = "Hello, World!";
}
broadcast(world, value, 0);
std: :cout << "Process #" << world.rank() <<
<< std::endl;
return O;
}
Running this program with seven processes will produce a result such as:
Process #0 says Hello, World!
Process #2 says Hello, World!
Process #1 says Hello, World!
Process #4 says Hello, World!
Process #3 says Hello, World!
Process #5 says Hello, World!
Process #6 says Hello, World!
Gather
The gather collective gathers the values produced by every process in a communicator into a vector of values on the "root" process

(specified by an argument to gather). The /i/th element in the vector will correspond to the value gathered fro mthe /i/th process.
For instance, in the following program each process computes its own random number. All of these random numbers are gathered

at process 0 (the "root" in this case), which prints out the values that correspond to each processor. (random_gather.cpp)

9
httpo://www.renderx.com/

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Boost.MPI

#include <boost/mpi .hpp>
#include <iostream>
#include <cstdlib>
namespace mpi = boost::mpi;

int main(int argc, char* argv[])

{
mpi::environment env(argc, argv);
mpi : :communicator world;

std: :srand(time(0) + world.rank());
int my_number = std::rand();
if (world.rank() == 0) {
std: :vector<int> all_numbers;
gather(world, my_number, all_numbers, 0);
for (int proc = 0; proc < world.size(); ++proc)
std::cout << "Process #'" << proc << " thought of "
<< all_numbers|[proc] << std::endl;
1 else {
gather(world, my_number, 0);
}

return 0O;

}

Executing this program with seven processes will result in output such as the following. Although the random values will change
from one run to the next, the order of the processes in the output will remain the same because only process 0 writes to std: : cout.

Process #0 thought of 332199874
Process #1 thought of 20145617

Process #2 thought of 1862420122
Process #3 thought of 480422940
Process #4 thought of 1253380219
Process #5 thought of 949458815
Process #6 thought of 650073868

The gather operation collects values from every process into a vector at one process. If instead the values from every process need
to be collected into identical vectors on every process, use the al 1_gather algorithm, which is semantically equivalent to calling
gather followed by a broadcast of the resulting vector.

Reduce

The reduce collective summarizes the values from each process into a single value at the user-specified "root" process. The Boost.MPI
reduce operation is similar in spirit to the STL accumulate operation, because it takes a sequence of values (one per process) and
combines them via a function object. For instance, we can randomly generate values in each process and the compute the minimum
value over all processes via a call to reduce (random_min.cpp)::

10

httpo://www.renderx.com/

http://www.sgi.com/tech/stl/accumulate.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Boost.MPI

#include <boost/mpi .hpp>
#include <iostream>
#include <cstdlib>
namespace mpi = boost::mpi;

int main(int argc, char* argv[])

{
mpi::environment env(argc, argv);
mpi : :communicator world;
std: :srand(time(0) + world.rank());
int my_number = std::rand();
if (world.rank() == 0) {
int minimum;
reduce(world, my_number, minimum, mpi::minimum<int>(), 0);
std::cout << "The minimum value is " << minimum << std::endl;
1 else {
reduce(worlld, my_number, mpi::minimum<int>(), 0);
}
return O;
}

The use of mpi : -minimum<int> indicates that the minimum value should be computed. mpi - :minimum<int> is a binary function
object that compares its two parameters via < and returns the smaller value. Any associative binary function or function object will
work. For instance, to concatenate strings with reduce one could use the function object std::plus<std::string>
(string_cat.cpp):

#include <boost/mpi .hpp>

#include <iostream>

#include <string>

#include <boost/serialization/string.hpp>
namespace mpi = boost::mpi;

int main(int argc, char* argv[])

{
mpi::environment env(argc, argv);
mpi : :communicator world;
std: :string names[10] = { "zero ', "one ", "two ", "three ",
“four ", "Five ", "six ', ''seven ",
"eight ', "nine " };
std::string result;
reduce(world,
world.rank() < 10? names|[world.rank()]
: std::string(“many '),
result, std::plus<std::string>(), 0);
if (world.rank() == 0)
std::cout << "The result iIs " << result << std::endl;
return O;
}

In this example, we compute a string for each process and then perform a reduction that concatenates all of the strings together into
one, long string. Executing this program with seven processors yields the following output:

11

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

The result is zero one two three four five six
Any kind of binary function objects can be used with reduce. For instance, and there are many such function objects in the C++
standard <functional> header and the Boost. MPI header <boost/mpi/operations.hpp>. Or, you can create your own function
object. Function objects used with reduce must be associative, i.e. f(x, F(y, z)) must be equivalent to F(F(x, y), 2z).If
they are also commutative (i..e, f(x, y) == F(y, X)), Boost. MPI can use a more efficient implementation of reduce. To state
that a function object is commutative, you will need to specialize the class is_commutative. For instance, we could modify the

previous example by telling Boost.MPI that string concatenation is commutative:

template<>
mpl::true_ { }:

namespace boost { namespace mpi {
struct is_commutative<std::plus<std::string>, std::string>
} ¥ // end namespace boost::mpi

By adding this code prior to main(), Boost.MPI will assume that string concatenation is commutative and employ a different parallel
algorithm for the reduce operation. Using this algorithm, the program outputs the following when run with seven processes:

The result is zero one four five six two three
Note how the numbers in the resulting string are in a different order: this is a direct result of Boost.MPI reordering operations. The
result in this case differed from the non-commutative result because string concatenation is not commutative: £(*'x™, "y') is not
the same as F('y"", "'x'), because argument order matters. For truly commutative operations (e.g., integer addition), the more ef-
ficient commutative algorithm will produce the same result as the non-commutative algorithm. Boost.MPI also performs direct
mappings from function objects in <functional> to MPI1_Op values predefined by MPI (e.g., MP1_SUM, MP1_MAX); if you have

your own function objects that can take advantage of this mapping, see the class template is_mpi_op.
Like gather, reduce has an "all" variant called al 1_reduce that performs the reduction operation and broadcasts the result to all
processes. This variant is useful, for instance, in establishing global minimum or maximum values.

Managing communicators
Communication with Boost.MPI always occurs over a communicator. A communicator contains a set of processes that can send
messages among themselves and perform collective operations. There can be many communicators within a single program, each
of which contains its own isolated communication space that acts independently of the other communicators.
When the MPI environment is initialized, only the "world" communicator (called MP1_COMM_WORLD in the MPI C and Fortran
bindings) is available. The "world" communicator, accessed by default-constructing a mpi - - communicator object, contains all of
the MPI processes present when the program begins execution. Other communicators can then be constructed by duplicating or

building subsets of the "world" communicator. For instance, in the following program we split the processes into two groups: one
for processes generating data and the other for processes that will collect the data. (generate_collect.cpp)

httpo://www.renderx.com/

12

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

#include <boost/mpi .hpp>
#include <iostream>
#include <cstdlib>
#include <boost/serialization/vector.hpp>
namespace mpi = boost::mpi;
enum message_tags {msg_data_packet, msg_broadcast_data, msg_finished}
void generate_data(mpi::communicator local, mpi::communicator world);
void collect_data(mpi::communicator local, mpi::communicator world);
1 1);

int main(int argc, char* argv[])
{

mpi::environment env(argc, argv);
mpi : :communicator world;

is_generator = world.rank() < 2 * world.size() 7/ 3;

mpi::communicator local = world.split(is_generator? 0O

if (is_generator) generate_data(local, world);

bool

return 0O;

}
When communicators are split in this way, their processes retain membership in both the original communicator (which is not altered

else collect_data(local, world);
by the split) and the new communicator. However, the ranks of the processes may be different from one communicator to the next,
because the rank values within a communicator are always contiguous values starting at zero. In the example above, the first two
thirds of the processes become "generators"” and the remaining processes become "collectors". The ranks of the "collectors" in the

manage multiple communicators:
world._probe();
msg_data_packet) {

wor Id communicator will be 2/3 world.size() and greater, whereas the ranks of the same collector processes in the local
communicator will start at zero. The following excerpt from collect_data() (in generate_collect.cpp) illustrates how to
mpi: :status msg
if (msg.-tag() ==
// Receive the packet of data
std: :vector<int> data;
world.recv(msg.source(), msg-tag(), data);
= 1; dest < local.size(); ++dest)
local _.send(dest, msg_broadcast_data, msg.source()):;
The code in this except is executed by the "master” collector, e.g., the node with rank 2/3 world.size() in the world communic-

// Tell each of the collectors that we"ll be broadcasting some data
for (int dest
// Broadcast the actual data.

For more control in the creation of communicators for subgroups of processes, the Boost.MPI group provides facilities to compute

broadcast(local, data, 0);
broadcasts the message to each of the collectors via the local communicator.

}
ator and rank 0 in the Tocal (collector) communicator. It receives a message from a generator via the wor 1d communicator, then

is_mpi_datatype. However, variable-length data types such as strings and lists cannot be MPI data types.
httpo://www.renderx.com/

13

the union (), intersection (&), and difference (-) of two groups, generate arbitrary subgroups, etc.
Separating structure from content

When communicating data types over MPI that are not fundamental to MPI (such as strings, lists, and user-defined data types),
Boost.MPI must first serialize these data types into a buffer and then communicate them; the receiver then copies the results into a
buffer before deserializing into an object on the other end. For some data types, this overhead can be eliminated by using

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Boost.MPI

Boost.MPI supports a second technique for improving performance by separating the structure of these variable-length data structures
from the content stored in the data structures. This feature is only beneficial when the shape of the data structure remains the same
but the content of the data structure will need to be communicated several times. For instance, in a finite element analysis the structure
of the mesh may be fixed at the beginning of computation but the various variables on the cells of the mesh (temperature, stress,
etc.) will be communicated many times within the iterative analysis process. In this case, Boost.MPI allows one to first send the
"skeleton" of the mesh once, then transmit the "content” multiple times. Since the content need not contain any information about
the structure of the data type, it can be transmitted without creating separate communication buffers.

To illustrate the use of skeletons and content, we will take a somewhat more limited example wherein a master process generates
random number sequences into a list and transmits them to several slave processes. The length of the list will be fixed at program
startup, so the content of the list (i.e., the current sequence of numbers) can be transmitted efficiently. The complete example is
available in example/random_content.cpp. We being with the master process (rank 0), which builds a list, communicates its
structure via a ske leton, then repeatedly generates random number sequences to be broadcast to the slave processes via content:

// Generate the list and broadcast its structure
std::list<int> I(list_len);
broadcast(world, mpi::skeleton(l), 0);

// Generate content several times and broadcast out that content
mpi::content ¢ = mpi::get _content(l);
for (int i = 0; i < iterations; ++i) {

// Generate new random values

std: :generate(l .begin(), l.end(), &random);

// Broadcast the new content of I
broadcast(world, c, 0);

}

// Notify the slaves that we"re done by sending all zeroes
std::Fill(I.begin(), I.end(), 0);
broadcast(world, c, 0);

The slave processes have a very similar structure to the master. They receive (via the broadcast() call) the skeleton of the data
structure, then use it to build their own lists of integers. In each iteration, they receive via another broadcast() the new content
in the data structure and compute some property of the data:

// Receive the content and build up our own list
std::list<int> |I;
broadcast(world, mpi::skeleton(l), 0);

mpi::content ¢ = mpi::get_content(l);
int i = 0;
do {

broadcast(world, c, 0);

if (std::find_if
(.begin(), l.end(),
std: :bindlst(std: :not_equal_to<int>(), 0)) == l.end())
break;

// Compute some property of the data.

++1 ;
} while (true);

The skeletons and content of any Serializable data type can be transmitted either via the send and recv members of the communic-
ator class (for point-to-point communicators) or broadcast via the broadcast() collective. When separating a data structure into
a skeleton and content, be careful not to modify the data structure (either on the sender side or the receiver side) without transmitting
the skeleton again. Boost.MPI can not detect these accidental modifications to the data structure, which will likely result in incorrect
data being transmitted or unstable programs.

14

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Performance optimizations

mpl::true_ { }:

Serialization optimizations

To obtain optimal performance for small fixed-length data types not containing any pointers it is very important to mark them using
the type traits of Boost.MPI and Boost.Serialization.

It was alredy discussed that fixed length types containing no pointers can be using as is_mpi_datatype, e.g.:

namespace boost { namespace mpi {
template <>
struct is_mpi_datatype<gps_position>

BOOST_IS_MPI1_DATATYPE(gps_position)
In addition it can give a substantial performance gain to turn off tracking and versioning for these types, if no pointers to these types

3
or the equivalent macro
are used, by using the traits classes or helper macros of Boost.Serialization:

BOOST_CLASS_TRACKING(gps_position,track_never)

Homogeneous machines
More optimizations are possible on homogeneous machines, by avoiding MPI_Pack/MP1_Unpack calls but using direct bitwise

BOOST_CLASS_IMPLEMENTATION(gps_position,object_serializable)
copy. This feature can be enabled by defining the macro BOOST_MPI_HOMOGENEOUS when building Boost.MPI and when

building the application.
In addition all classes need to be marked both as is_mpi_datatype and as is_bitwise_serializable, by using the helper macro of

Boost.Serialization:

BOOST_IS_BITWISE_SERIALIZABLE(gps_position)
Usually it is safe to serialize a class for which is_mpi_datatype is true by using binary copy of the bits. The exception are classes for

which some members should be skipped for serialization.
Mapping from C MPI to Boost.MPI

This section provides tables that map from the functions and constants of the standard C MPI to their Boost.MPI equivalents. It will

be most useful for users that are already familiar with the C or Fortran interfaces to MPI, or for porting existing parallel programs

to Boost.MPI.

15
httpo://www.renderx.com/

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Boost.MPI

Table 1. Point-to-point communication

C Function/Constant
MPI_ANY_SOURCE
MP1_ANY_TAG
MPI_Bsend
MPI_Bsend_init
MP1_Buffer_attach
MPI1_Buffer_detach
MP1_Cancel

MP1_Get_count

Boost.MPI Equivalent
any_source
any_tag

unsupported
unsupported
unsupported
unsupported
request::cancel

status: :count

MPI_lbsend unsupported
MPI_Iprobe communicator: :iprobe
MPI_lrsend unsupported

MP1_Isend communicator: :isend
MPI_lssend unsupported
MPI_lrecv communicator::irecv
MPI1_Probe communicator: :probe
MP1_PROC_NULL unsupported

MPI_Recv communicator: :recv
MPI_Recv_init unsupported
MPI_Request free unsupported

MPI_Rsend unsupported
MPI_Rsend_init unsupported

MPI1_Send communicator: :send
MP1_Sendrecv unsupported
MPI_Sendrecv_replace unsupported
MPI_Send_init unsupported

MPI_Ssend unsupported
MPI_Ssend_init unsupported

16

httpo://www.renderx.com/

http://www.mpi-forum.org/docs/mpi-11-html/node40.html#Node40
http://www.mpi-forum.org/docs/mpi-11-html/node51.html#Node51
http://www.mpi-forum.org/docs/mpi-11-html/node42.html#Node42
http://www.mpi-forum.org/docs/mpi-11-html/node42.html#Node42
http://www.mpi-forum.org/docs/mpi-11-html/node50.html#Node50
http://www.mpi-forum.org/docs/mpi-11-html/node35.html#Node35
http://www.mpi-forum.org/docs/mpi-11-html/node46.html#Node46
http://www.mpi-forum.org/docs/mpi-11-html/node50.html#Node50
http://www.mpi-forum.org/docs/mpi-11-html/node46.html#Node46
http://www.mpi-forum.org/docs/mpi-11-html/node46.html#Node46
http://www.mpi-forum.org/docs/mpi-11-html/node46.html#Node46
http://www.mpi-forum.org/docs/mpi-11-html/node46.html#Node46
http://www.mpi-forum.org/docs/mpi-11-html/node50.html#Node50
http://www.mpi-forum.org/docs/mpi-11-html/node53.html#Node53
http://www.mpi-forum.org/docs/mpi-11-html/node34.html#Node34
http://www.mpi-forum.org/docs/mpi-11-html/node51.html#Node51
http://www.mpi-forum.org/docs/mpi-11-html/node47.html#Node47
http://www.mpi-forum.org/docs/mpi-11-html/node40.html#Node40
http://www.mpi-forum.org/docs/mpi-11-html/node51.html#Node51
http://www.mpi-forum.org/docs/mpi-11-html/node31.html#Node31
http://www.mpi-forum.org/docs/mpi-11-html/node52.html#Node52
http://www.mpi-forum.org/docs/mpi-11-html/node52.html#Node52
http://www.mpi-forum.org/docs/mpi-11-html/node51.html#Node51
http://www.mpi-forum.org/docs/mpi-11-html/node40.html#Node40
http://www.mpi-forum.org/docs/mpi-11-html/node51.html#Node51
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Boost.MPI

C Function/Constant
MP1_Start
MP1_Startall
MP1_Test
MPI_Testall
MP1_Testany
MP1_Testsome
MPI_Test_cancelled
MPI_Wait
MP1_Waitall
MPI_Waitany

MPI_Waitsome

Boost.MPI Equivalent
unsupported
unsupported
request: :test
test_all

test_any
test_some

status: :cancelled
request: :wait
wait_all

wait_any

wait_some

Boost.MP1 automatically maps C and C++ data types to their MP1 equivalents. The following table illustrates the mappings between
C++ types and MPI datatype constants.

17

httpo://www.renderx.com/

http://www.mpi-forum.org/docs/mpi-11-html/node51.html#Node51
http://www.mpi-forum.org/docs/mpi-11-html/node51.html#Node51
http://www.mpi-forum.org/docs/mpi-11-html/node47.html#Node47
http://www.mpi-forum.org/docs/mpi-11-html/node47.html#Node47
http://www.mpi-forum.org/docs/mpi-11-html/node47.html#Node47
http://www.mpi-forum.org/docs/mpi-11-html/node47.html#Node47
http://www.mpi-forum.org/docs/mpi-11-html/node50.html#Node50
http://www.mpi-forum.org/docs/mpi-11-html/node47.html#Node47
http://www.mpi-forum.org/docs/mpi-11-html/node47.html#Node47
http://www.mpi-forum.org/docs/mpi-11-html/node47.html#Node47
http://www.mpi-forum.org/docs/mpi-11-html/node47.html#Node47
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI
Boost.MPI Equivalent

signed char
signed short int

Table 2. Datatypes
C Constant
MPI_CHAR
MP1_SHORT
MPI_INT signed int
MPI1_LONG signed long int
MP1_UNSIGNED_CHAR unsigned char
unsigned short int
unsigned int
unsigned long int
float
double

MP1_UNSIGNED_SHORT
long double

MPI_UNSIGNED_INT
unused
used internally for serialized data types

MP1_UNSIGNED_LONG
long long int, if supported by compiler
unsigned long long int, if supported by compiler
int>

MPI_FLOAT
int>

MP1_DOUBLE

MPI1_LONG_DOUBLE
std: :pair<float,

pair<double,
int>

MPI_BYTE
std::
pair<long,
int>

MP1_PACKED

MP1_LONG_LONG_INT

MPI_UNSIGNED LONG_LONG_INT
int>

std::
pair<int,
int>

std::
std: :pair<short,
std: :pair<long double,

MPI_FLOAT INT
MP1_DOUBLE_INT
Boost.MPI does not provide direct wrappers to the MPI derived datatypes functionality. Instead, Boost.MPI relies on the

MP1_LONG_INT

MP1_SHORT _INT

MP1_LONG_DOUBLE_INT
Boost.MPI may not actually use the C MPI function listed when building datatypes of a certain form. Since the actual datatypes built

Boost.Serialization library to construct MPI datatypes for user-defined classe. The section on user-defined data types describes this
by Boost.MPI are typically hidden from the user, many of these operations are called internally by Boost.MPI.

httpo://www.renderx.com/

18

MPI_2INT
mechanism, which is used for types that marked as "MPI datatypes" using is_mpi_datatype.
The derived datatypes table that follows describes which C++ types correspond to the functionality of the C MPI's datatype constructor.

render

http://www.boost.org/libs/serialization/doc
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Table 3. Derived datatypes

C Function/Constant
MPI1_Address
MPI_Type_commit
MPI1_Type_contiguous
MPI_Type_extent
MPI_Type_free

MPI_Type_hindexed

Boost.MPI Equivalent

used automatically in Boost.MPI
used automatically in Boost.MPI
arrays

used automatically in Boost.MPI
used automatically in Boost.MPI

any type used as a subobject

MPI1_Type_hvector unused

MPI_Type_indexed any type used as a subobject
MPI_Type_Ib unsupported

MPI_Type_size used automatically in Boost.MPI
MPI_Type_struct user-defined classes and structs
MPI_Type_ub unsupported
MPI_Type_vector used automatically in Boost.MPI

MPI's packing facilities store values into a contiguous buffer, which can later be transmitted via MPI and unpacked into separate
values via MPI's unpacking facilities. As with datatypes, Boost.MPI provides an abstract interface to MPI's packing and unpacking
facilities. In particular, the two archive classes packed_oarchive and packed_iarchive can be used to pack or unpack a con-
tiguous buffer using MPI's facilities.

Table 4. Packing and unpacking

C Function Boost.M Pl Equivalent
MPI_Pack packed_oarchive
MPI_Pack_size used internally by Boost.MPI
MPI1_Unpack packed_iarchive

Boost.MPI supports a one-to-one mapping for most of the MPI collectives. For each collective provided by Boost.MPI, the underlying
C MPI collective will be invoked when it is possible (and efficient) to do so.

19

render

httpo://www.renderx.com/

http://www.mpi-forum.org/docs/mpi-11-html/node56.html#Node56
http://www.mpi-forum.org/docs/mpi-11-html/node58.html#Node58
http://www.mpi-forum.org/docs/mpi-11-html/node55.html#Node55
http://www.mpi-forum.org/docs/mpi-11-html/node56.html#Node56
http://www.mpi-forum.org/docs/mpi-11-html/node58.html#Node58
http://www.mpi-forum.org/docs/mpi-11-html/node55.html#Node55
http://www.mpi-forum.org/docs/mpi-11-html/node55.html#Node55
http://www.mpi-forum.org/docs/mpi-11-html/node55.html#Node55
http://www.mpi-forum.org/docs/mpi-11-html/node57.html#Node57
http://www.mpi-forum.org/docs/mpi-11-html/node56.html#Node56
http://www.mpi-forum.org/docs/mpi-11-html/node55.html#Node55
http://www.mpi-forum.org/docs/mpi-11-html/node57.html#Node57
http://www.mpi-forum.org/docs/mpi-11-html/node55.html#Node55
http://www.mpi-forum.org/docs/mpi-11-html/node62.html#Node62
http://www.mpi-forum.org/docs/mpi-11-html/node62.html#Node62
http://www.mpi-forum.org/docs/mpi-11-html/node62.html#Node62
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Boost.MPI

Table 5. Collectives

C Function
MPI1_Allgather
MPI_Allgatherv
MPI_Allreduce
MPI_Alltoall
MP1_Alltoallv
MPI_Barrier
MP1_Bcast
MPI1_Gather
MP1_Gatherv
MPI_Reduce
MPI1_Reduce_scatter
MPI_Scan
MP1_Scatter

MPI1_Scatterv

Boost.MPI Equivalent
all_gather

most uses supported by al 1_gather
all_reduce

all_to_all

most uses supported by all_to_al
communicator: :barrier
broadcast

gather

most uses supported by gather
reduce

unsupported

scan

scatter

most uses supported by scatter

Boost.MPI uses function objects to specify how reductions should occur in its equivalents to MP1_Al Ireduce, MPI_Reduce, and
MPI_Scan. The following table illustrates how predefined and user-defined reduction operations can be mapped between the C MPI

and Boost.MPI.

20

httpo://www.renderx.com/

http://www.mpi-forum.org/docs/mpi-11-html/node73.html#Node73
http://www.mpi-forum.org/docs/mpi-11-html/node73.html#Node73
http://www.mpi-forum.org/docs/mpi-11-html/node82.html#Node82
http://www.mpi-forum.org/docs/mpi-11-html/node75.html#Node75
http://www.mpi-forum.org/docs/mpi-11-html/node75.html#Node75
http://www.mpi-forum.org/docs/mpi-11-html/node66.html#Node66
http://www.mpi-forum.org/docs/mpi-11-html/node67.html#Node67
http://www.mpi-forum.org/docs/mpi-11-html/node69.html#Node69
http://www.mpi-forum.org/docs/mpi-11-html/node69.html#Node69
http://www.mpi-forum.org/docs/mpi-11-html/node77.html#Node77
http://www.mpi-forum.org/docs/mpi-11-html/node83.html#Node83
http://www.mpi-forum.org/docs/mpi-11-html/node84.html#Node84
http://www.mpi-forum.org/docs/mpi-11-html/node71.html#Node71
http://www.mpi-forum.org/docs/mpi-11-html/node71.html#Node71
http://www.mpi-forum.org/docs/mpi-11-html/node78.html#Node78
http://www.mpi-forum.org/docs/mpi-11-html/node80.html#Node80
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI
Boost.MPI Equivalent

bitwise_and
bitwise or

bitwise_xor

Table 6. Reduction operations
C Constant

MP1_BAND
MP1_BOR
MP1_BXOR
MP1_LAND
MPI_LOR

MP1_LXOR

MP1_MAX
MP1_MAXLOC

MP1_MIN
MP1_MINLOC

MPI_Op_free

MP1_PROD

MP1_Op_create

MP1_SUM

std::logical_and

std::logical_or

logical_xor

maximum
unsupported
minimum
unsupported
used internally by Boost.MPI

used internally by Boost.MPI
std: :multiplies

std::plus

Boost.MPI Equivalent
a default-constructed communicator

MPI defines several special communicators, including MP1_COMM_WORLD (including all processes that the local process can commu-
a communicator that contains only the current process

nicate with), MPI_COMM_SELF (including only the local process), and MPI_COMM_EMPTY (including no processes). These special
a communicator that evaluates false

communicators are all instances of the communi cator class in Boost.MPI.

Table 7. Predefined communicator s

C Constant
MP1_COMM_WORLD

MP1_COMM_SELF
Boost.MPI supports groups of processes through its group class.

MP1_COMM_EMPTY

21
httpo://www.renderx.com/

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Boost.MPI

Table 8. Group operations and constants

C Function/Constant
MP1_GROUP_EMPTY
MPI_Group_size
MPI1_Group_rank

MPI_Group_translate_ranks

MP1_Group_compare
MP1_IDENT
MP1_SIMILAR
MP1_UNEQUAL
MP1_Comm_group
MPI_Group_union
MPI1_Group_intersection
MPI_Group_difference
MPI1_Group_incl
MPI1_Group_excl
MP1_Group_range_incl
MPI1_Group_range_excl

MPI_Group_free

Boost.MPI Equivalent

a default-constructed group

group::size

memberref boost::mpi::group::rank group: : rank

memberref

boost::mpi::group::translate_ranks

group: :translate_ranks

operators ==and !=
operators == and 1=
operators == and 1=
operators == and 1=
communicator: -group
operator | for groups
operator & for groups
operator - for groups
group: :include
group: :exclude
unsupported

unsupported

used automatically in Boost.MPI

Boost.MPI provides manipulation of communicators through the communi cator class.

22

httpo://www.renderx.com/

http://www.mpi-forum.org/docs/mpi-11-html/node97.html#Node97
http://www.mpi-forum.org/docs/mpi-11-html/node97.html#Node97
http://www.mpi-forum.org/docs/mpi-11-html/node97.html#Node97
http://www.mpi-forum.org/docs/mpi-11-html/node97.html#Node97
http://www.mpi-forum.org/docs/mpi-11-html/node98.html#Node98
http://www.mpi-forum.org/docs/mpi-11-html/node98.html#Node98
http://www.mpi-forum.org/docs/mpi-11-html/node98.html#Node98
http://www.mpi-forum.org/docs/mpi-11-html/node98.html#Node98
http://www.mpi-forum.org/docs/mpi-11-html/node98.html#Node98
http://www.mpi-forum.org/docs/mpi-11-html/node98.html#Node98
http://www.mpi-forum.org/docs/mpi-11-html/node98.html#Node98
http://www.mpi-forum.org/docs/mpi-11-html/node98.html#Node98
http://www.mpi-forum.org/docs/mpi-11-html/node99.html#Node99
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Table 9. Communicator operations

C Function Boost.MPI Equivalent

MPI_Comm_size communicator::size

MP1_Comm_rank communicator: :rank

MPI1_Comm_compare operators == and 1=

MPI_Comm_dup communicator class constructor using comm_duplicate
MP1_Comm_create communicator constructor

MPI_Comm_split communicator::split

MPI_Comm_Tfree used automatically in Boost.MPI

Boost.MPI currently provides support for inter-communicators via the intercommunicator class.

Table 10. Inter-communicator operations

C Function Boost.MPI Equivalent
MPI_Comm_test_inter use communicator::as_intercommunicator
MP1_Comm_remote_size boost: :mpi::intercommunicator: :remote_size inter-

communicator: :remote_size

MPI1_Comm_remote_group intercommunicator: :remote_group
MPI_Intercomm_create intercommunicator constructor
MP1_Intercomm_merge intercommunicator: :merge

Boost.MPI currently provides no support for attribute caching.

23

httpo://www.renderx.com/

http://www.mpi-forum.org/docs/mpi-11-html/node101.html#Node101
http://www.mpi-forum.org/docs/mpi-11-html/node101.html#Node101
http://www.mpi-forum.org/docs/mpi-11-html/node101.html#Node101
http://www.mpi-forum.org/docs/mpi-11-html/node102.html#Node102
http://www.mpi-forum.org/docs/mpi-11-html/node102.html#Node102
http://www.mpi-forum.org/docs/mpi-11-html/node102.html#Node102
http://www.mpi-forum.org/docs/mpi-11-html/node103.html#Node103
http://www.mpi-forum.org/docs/mpi-11-html/node112.html#Node112
http://www.mpi-forum.org/docs/mpi-11-html/node112.html#Node112
http://www.mpi-forum.org/docs/mpi-11-html/node112.html#Node112
http://www.mpi-forum.org/docs/mpi-11-html/node113.html#Node113
http://www.mpi-forum.org/docs/mpi-11-html/node113.html#Node113
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Table 11. Attributes and caching

C Function/Constant Boost.MPI Equivalent
MPI_NULL_COPY_FN unsupported
MPI_NULL_DELETE_FN unsupported
MP1_KEYVAL_INVALID unsupported
MPI_Keyval create unsupported
MPI_Copy_function unsupported
MPI_Delete_function unsupported
MPI_Keyval_free unsupported
MPI_Attr_put unsupported
MPI_Attr_get unsupported
MPI_Attr_delete unsupported

Boost.MP1 will provide complete support for creating communicators with different topologies and later querying those topologies.
Support for graph topologies is provided via an interface to the Boost Graph Library (BGL), where a communicator can be created
which matches the structure of any BGL graph, and the graph topology of a communicator can be viewed as a BGL graph for use
in existing, generic graph algorithms.

24

render

httpo://www.renderx.com/

http://www.mpi-forum.org/docs/mpi-11-html/node119.html#Node119
http://www.mpi-forum.org/docs/mpi-11-html/node119.html#Node119
http://www.mpi-forum.org/docs/mpi-11-html/node119.html#Node119
http://www.mpi-forum.org/docs/mpi-11-html/node119.html#Node119
http://www.mpi-forum.org/docs/mpi-11-html/node119.html#Node119
http://www.mpi-forum.org/docs/mpi-11-html/node119.html#Node119
http://www.mpi-forum.org/docs/mpi-11-html/node119.html#Node119
http://www.boost.org/libs/graph/doc/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Table 12. Process topologies

C Function/Constant
MP1_GRAPH

MPI_CART

MPI_Cart_create
MPI_Dims_create
MPI_Graph_create

MP1_Topo_test

MPI_Graphdims_get
MPI1_Graph_get
MPI_Cartdim_get
MP1_Cart_get
MPI_Cart_rank
MP1_Cart_coords
MPI1_Graph_neighbors_count
MPI1_Graph_neighbors
MPI_Cart_shift
MP1_Cart _sub
MP1_Cart_map

MPI1_Graph_map

Boost.MPI Equivalent
unnecessary; use communicator: :has_graph_topology

unnecessary; use communicator: :has_cartesian_topo-
logy

unsupported
unsupported
communicator: :with_graph_topology

communicator: :has_graph_topology, communicat-
or::has_cartesian_topology

num_vertices, num_edges
vertices, edges
unsupported

unsupported

unsupported

unsupported

out_degree

out_edges, adjacent_vertices
unsupported

unsupported

unsupported

unsupported

Boost.MPI supports environmental inquires through the envi ronment class.

Table 13. Environmental inquiries

C Function/Constant
MPI_TAG_UB
MP1_HOST

MP1_10

MP1_Get_processor_name

Boost.MPI Equivalent

unnecessary; use environment: :max_tag
unnecessary; use environment: :host_rank
unnecessary; use environment: :io_rank

environment: :processor_name

Boost.MPI translates MPI errors into exceptions, reported via the exception class.

25

render

httpo://www.renderx.com/

http://www.mpi-forum.org/docs/mpi-11-html/node133.html#Node133
http://www.mpi-forum.org/docs/mpi-11-html/node134.html#Node134
http://www.mpi-forum.org/docs/mpi-11-html/node135.html#Node135
http://www.mpi-forum.org/docs/mpi-11-html/node136.html#Node136
http://www.mpi-forum.org/docs/mpi-11-html/node136.html#Node136
http://www.mpi-forum.org/docs/mpi-11-html/node136.html#Node136
http://www.mpi-forum.org/docs/mpi-11-html/node136.html#Node136
http://www.mpi-forum.org/docs/mpi-11-html/node136.html#Node136
http://www.mpi-forum.org/docs/mpi-11-html/node136.html#Node136
http://www.mpi-forum.org/docs/mpi-11-html/node136.html#Node136
http://www.mpi-forum.org/docs/mpi-11-html/node136.html#Node136
http://www.mpi-forum.org/docs/mpi-11-html/node136.html#Node136
http://www.mpi-forum.org/docs/mpi-11-html/node137.html#Node137
http://www.mpi-forum.org/docs/mpi-11-html/node138.html#Node138
http://www.mpi-forum.org/docs/mpi-11-html/node139.html#Node139
http://www.mpi-forum.org/docs/mpi-11-html/node139.html#Node139
http://www.mpi-forum.org/docs/mpi-11-html/node143.html#Node147
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Table 14. Error handling

C Function/Constant Boost.MPI Equivalent

MPI1_ERRORS_ARE_FATAL unused; errors are translated into Boost.MPI exceptions
MP1_ERRORS_RETURN unused; errors are translated into Boost.MPI exceptions
MPI_errhandler_create unused; errors are translated into Boost.MPI exceptions
MPI_errhandler_set unused; errors are translated into Boost.MPI exceptions
MPI_errhandler_get unused; errors are translated into Boost.MPI exceptions
MPI_errhandler_free unused; errors are translated into Boost.MPI exceptions
MPI_Error_string used internally by Boost.MPI

MPI_Error_class exception::error_class

The MPI timing facilities are exposed via the Boost.MPI timer class, which provides an interface compatible with the Boost Timer
library.

Table 15. Timing facilities

C Function/Constant Boost.MPI Equivalent
MP1_WTIME_IS GLOBAL unnecessary; use timer::time_is_global
MPI_Wtime use timer: :elapsed to determine the time elapsed from some

specific starting point

MPI_Wtick timer::elapsed_min

MPI startup and shutdown are managed by the construction and descruction of the Boost.MPI envi ronment class.

Table 16. Startup/shutdown facilities

C Function Boost.MPI Equivalent
MPI_Init environment constructor
MPI_Finalize environment destructor
MPI_Initialized environment::initialized
MPI1_Abort environment: :abort

Boost.MP1 does not provide any support for the profiling facilities in MPI 1.1.

26

render

httpo://www.renderx.com/

http://www.mpi-forum.org/docs/mpi-11-html/node148.html#Node148
http://www.mpi-forum.org/docs/mpi-11-html/node148.html#Node148
http://www.mpi-forum.org/docs/mpi-11-html/node148.html#Node148
http://www.mpi-forum.org/docs/mpi-11-html/node148.html#Node148
http://www.mpi-forum.org/docs/mpi-11-html/node148.html#Node148
http://www.mpi-forum.org/docs/mpi-11-html/node149.html#Node149
http://www.boost.org/libs/timer/index.html
http://www.boost.org/libs/timer/index.html
http://www.mpi-forum.org/docs/mpi-11-html/node150.html#Node150
http://www.mpi-forum.org/docs/mpi-11-html/node150.html#Node150
http://www.mpi-forum.org/docs/mpi-11-html/node151.html#Node151
http://www.mpi-forum.org/docs/mpi-11-html/node151.html#Node151
http://www.mpi-forum.org/docs/mpi-11-html/node151.html#Node151
http://www.mpi-forum.org/docs/mpi-11-html/node151.html#Node151
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Table 17. Profiling interface

C Function Boost.MPI Equivalent

PMP1_* routines unsupported

MP1_Pcontrol unsupported
Reference

Header <boost/mpi.hpp>

This file is a top-level convenience header that includes all of the Boost.MPI library headers. Users concerned about compile time
may wish to include only specific headers from the Boost.MPI library.

Header <boost/mpi/allocator.hpp>

This header provides an STL-compliant allocator that uses the MP1-2 memory allocation facilities.

nanmespace boost {
nanmespace mpi {
t enpl at e<> cl ass allocator<voi d>;

t enpl at e<t ypenanme T> cl ass allocator;

t enpl at e<typenane T1 , typenane T2 >
bool operator==(const allocator< T1 > &,
const allocator< T2 > &);

t enpl at e<typenane T1 , typenane T2 >
bool operator !=(const allocator< T1 > &,
const allocator< T2 > &);

27

render

httpo://www.renderx.com/

http://www.mpi-forum.org/docs/mpi-11-html/node153.html#Node153
http://www.mpi-forum.org/docs/mpi-11-html/node156.html#Node156
http://www.boost.org/doc/libs/release/doc/html/../../boost/mpi.hpp
http://www.boost.org/doc/libs/release/doc/html/../../boost/mpi/allocator.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Boost.MPI

Class allocator<void>

boost::mpi::allocator<void> — Allocator specialization for void value types.

Synopsis
// In header: <boost/mpi/allocator.hpp>

cl ass allocator<voi d> {

public:
// types
typedef void * pointer;
t ypedef const void * const_pointer;
t ypedef void value_type;

tenpl ate<class U >

struct rebind {

// types

t ypedef allocator< U > other;
};

};

Description

The void specialization of al locator is useful only for rebinding to another, different value type.

28

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Boost.MPI

Struct template rebind

boost::mpi::allocator<void>::rebind
Synopsis
// In header: <boost/mpi/allocator.hpp>

tenpl ate<class U >

struct rebind {

// types

typedef allocator< U > other;

};

29

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Class template allocator
Holds the size of objects.

boost::mpi::allocator — Standard Library-compliant allocator for the MPI-2 memory allocation routines.
A pointer to an object of type T.
A pointer to a constant object of type T.

Holds the number of elements between two pointers.
1

size_type;
difference_type; //
//
//
//

Synopsis

A reference to an object of type T.
A reference to a constant object of type T.
The type of memory allocated by this allocator.

// In header: <boost/mpi/allocator.hpp>
//
to this allocator but for a different value type.

pointer;
const_pointer;
//
//

t enpl at e<t ypenane T>
reference;
const_reference;

cl ass allocator {
public:

// types
typedef std::size_ t
typedef std::ptrdiff_t
t ypedef

t ypedef
T &
const T &
value_type;
// Retrieve the type of an allocator similar

T *
const T *

t ypedef
t ypedef
typedef T
tenpl at e<typenane U >
struct rebind {
// types
t ypedef allocator< U > other;
};
// construct/copy/destruct
allocator(Q);
allocator(const allocator &);
tenpl at e<typenane U > allocator(const allocator< U > &);
~allocator();
// public member functions
pointer address(reference) const ;
const_pointer address(const_reference) const ;
pointer allocate(size_type,
allocator< void >::const_pointer = 0) ;
voi d deallocate(pointer, size_type) ;

size_type max_size() const ;
voi d construct(pointer, const T &) ;

}:

Description
This allocator provides a standard C++ interface to the MP1_Alloc_mem and MP1_Free_mem routines of MPI-2. It is intended to

be used with the containers in the Standard Library (vector, in particular) in cases where the contents of the container will be directly

voi d destroy(pointer) ;
transmitted via MPI. This allocator is also used internally by the library for character buffers that will be used in the transmission of

The allocator class template only provides MPI memory allocation when the underlying MPI implementation is either MPI-2
compliant or is known to provide MP1_Alloc_mem and MP1_Free_mem as extensions. When the MPI memory allocation routines

data.
httpo://www.renderx.com/

are not available, al locator is brought in directly from namespace std, so that standard allocators are used throughout. The macro
30

BOOST_MPI_HAS_MEMORY_ALLOCATION will be defined when the MPI-2 memory allocation facilities are available.

al | ocat or public construct/copy/destruct

allocator();

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Default-construct an allocator.
allocator &);

Copy-construct an allocator.

allocator(const
t enpl at e<t ypenane U > allocator(const allocator< U > &);
Copy-construct an allocator from another allocator for a different value type

~allocator();

4,
Destroy an allocator.
al | ocat or public member functions

pointer address(reference x) const ;

:O);

1
Returns the address of object x.
const_pointer address(const_reference x) const ;

allocator< voi d >::const_pointer

Returns the address of object x.
pointer allocate(size_type n,
n The number of elements for which memory should be allocated.

Allocate enough memory for n elements of type T.
a pointer to the newly-allocated memory

Parameters:

Returns:
voi d deallocate(pointer p, size_type) ;
ate() function and not have already been freed.

Deallocate memory referred to by the pointer p.

Parameters:

size_type max_size() const ;
Returns the maximum number of elements that can be allocated with al locate ().

voi d construct(pointer p, const T & val) ;

Construct a copy of val at the location referenced by p.

voi d destroy(pointer p) ;
31

7.
Destroy the object referenced by p.

p The pointer whose memory should be deallocated. This pointer shall have been returned from the al loc-

httpo://www.renderx.com/

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Struct template rebind

boost::mpi::allocator::rebind — Retrieve the type of an allocator similar to this allocator but for a different value type.
Synopsis

// In header: <boost/mpi/allocator.hpp>

// Retrieve the type of an allocator similar to this allocator but for a different value type. tem[]
pl at e<typenane U >

struct rebind {

// types

t ypedef allocator< U > other;

};

Specializations

 Class allocator<void>

32

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Boost.MPI

Function template operator==

boost::mpi::operator== — Compare two allocators for equality.
Synopsis
// In header: <boost/mpi/allocator.hpp>

t enpl at e<typenane T1 , typenane T2 >
bool operator==(const allocator< Tl > &,
const allocator< T2 > &);

Description
Since MPI allocators have no state, all MPI allocators are equal.

Returns: true

33

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Function template operator!=

boost::mpi::operator!= — Compare two allocators for inequality.
Synopsis
// In header: <boost/mpi/allocator.hpp>

t enpl at e<typenane T1 , typenane T2 >
bool operator !=(const allocator< Tl > &,
const allocator< T2 > &);

Description
Since MPI allocators have no state, all MPI allocators are equal.

Returns: false

Header <boost/mpi/collectives.hpp>

This header contains MPI collective operations, which implement various parallel algorithms that require the coordination of all
processes within a communicator. The header col lectives_fwd. hpp provides forward declarations for each of these operations.
To include only specific collective algorithms, use the headers boost/mpi/collectives/algorithm_name.hpp.

34

render

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../boost/mpi/collectives.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

nanespace boost {
nanespace mpi {
tenpl ate<typenane T >
voi d all_gather(const communicator &, const T &,
std::vector< T > &);
tenpl ate<typenane T >
voi d all_gather(const communicator &, const T &, T *);
tenpl ate<typenane T >
voi d all_gather(const communicator &, const T *, int,
std::vector< T > &);
tenpl ate<typenane T >
voi d all_gather(const communicator &, const T *, int, T *);
tenpl at e<typenane T , typenane Op >
voi d all_reduce(const communicator &, const T &, T &, Op);
tenpl at e<typenanme T , typenane Op >
T all_reduce(const communicator &, const T &, Op);
tenpl at e<typenanme T , typenane Op >
voi d all_reduce(const communicator &, const T *, int, T *,
op);
tenpl ate<typenane T >
void all_to_all(const communicator &,
const std::vector< T > &,
std::vector< T > &);
tenpl ate<typenane T >
void all_to_all(const communicator &, const T *, T *);
tenpl ate<typenane T >
void all_to_all(const communicator &,
const std::vector< T > &, int,
std::vector< T > &);
tenpl ate<typenane T >
void all_to_all(const communicator &, const T *, int, T *);
tenpl ate<typenane T >
voi d broadcast(const communicator &, T &, int);
tenpl ate<typenane T >
voi d broadcast(const communicator &, T *, int, int);
tenpl ate<typenane T >
voi d broadcast(const communicator &, skeleton_proxy< T > &,
int);
tenpl ate<typenane T >
voi d broadcast(const communicator &,
const skeleton_proxy< T > &, int);
tenpl ate<typenane T >
voi d gather(const communicator &, const T &,
std::vector< T > &, int);
tenpl ate<typenane T >
voi d gather(const communicator &, const T &, T *, int);
tenpl ate<typenane T >
voi d gather(const communicator &, const T &, int);
tenpl ate<typenane T >
voi d gather(const communicator &, const T *, int,
std::vector< T > &, int);
tenpl ate<typenane T >
voi d gather(const communicator &, const T *, int, T *, int);
tenpl ate<typenane T >
voi d gather(const communicator &, const T *, int, int);
tenpl ate<typenane T >
voi d scatter(const communicator &, const std::vector< T > &,
T &, int);
tenpl ate<typenane T >
voi d scatter(const communicator &, const T *, T &, int);
tenpl ate<typenane T >
voi d scatter(const communicator &, T &, int);
tenpl ate<typenane T >

35

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

voi d scatter(const communicator &, const std::vector< T > &,
T*,int, int);

tenpl ate<typenane T >

voi d scatter(const communicator &, const T *, T *, int, int);
tenpl ate<typenane T >

voi d scatter(const communicator &, T *, int, int);
tenpl at e<typename T , typename Op >

voi d reduce(const communicator &, const T &, T &, Op, int);
tenpl at e<typename T , typename Op >

voi d reduce(const communicator &, const T &, Op, int);
tenpl at e<typename T , typename Op >

voi d reduce(const communicator &, const T *, int, T *, Op,

int);

tenpl at e<typename T , typename Op >

voi d reduce(const communicator &, const T *, int, Op, int);
tenpl at e<typename T , typename Op >

voi d scan(const communicator &, const T &, T &, Op);
tenpl at e<typename T , typename Op >

T scan(const communicator &, const T &, Op);
tenpl at e<typename T , typename Op >

voi d scan(const communicator &, const T *, int, T *, Op);

36

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Function all_gather
boost::mpi::all_gather — Gather the values stored at every process into vectors of values from each process.

Synopsis
// In header: <boost/mpi/collectives.hpp>
voi d all_gather(const communicator & comm, const T & in_value,
std::vector< T > & out_values);

tenpl ate<typenane T >
T * out_values);
voi d all_gather(const communicator & comm, const T * in_values,
n, std::vector< T > & out_values);

tenpl ate<typenane T >

int

voi d all_gather(const communicator & comm, const T & in_value,
tenpl ate<typenane T >

n, T * out_values);

tenpl ate<typenane T >
voi d all_gather(const communicator & comm, const T * in_values,
When the type T has an associated MPI data type, this routine invokes MP1_Al Igather to gather the values.
The communicator over which the all-gather will occur.
A vector or pointer to storage that will be populated with the values from each process, indexed

Description
The value to be transmitted by each process. To gather an array of values, in_values points

int
all_gather is a collective algorithm that collects the values stored at each process into a vector of values indexed by the process
number they came from. The type T of the values may be any type that is serializable or has an associated MPI data type.

to the n local values to be transmitted.

comm

in_value
by the process ID number. If it is a vector, the vector will be resized accordingly.

Parameters:
out_values

37

httpo://www.renderx.com/

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Function all reduce
boost::mpi::all_reduce — Combine the values stored by each process into a single value available to all processes.

Synopsis

// In header: <boost/mpi/collectives.hpp>

T & out_value, Op op);

t enpl at e<typenane T , typenane Op >
voi d all_reduce(const communicator & comm, const T & in_value,
T all_reduce(const communicator & comm, const T & in_value,

t enpl at e<typenane T , typenane Op >
voi d all_reduce(const communicator & comm, const T * in_values,
int n, T * out_values, Op op);

Op op);
tenpl ate<typenane T , typenane Op >
all_reduce is a collective algorithm that combines the values stored by each process into a single value available to all processes.
The values are combined in a user-defined way, specified via a function object. The type T of the values may be any type that is
serializable or has an associated MPI data type. One can think of this operation as a al I_gather, followed by an std: :accumu-

The local value to be combined with the local values of every other process. For reducing arrays,

late() over the gather values and using the operation op.

comm

When the type T has an associated MPI data type, this routine invokes MP1_Al I reduce to perform the reduction. If possible, built-
in_value

Description
in MPI operations will be used; otherwise, al I_reduce () will create a custom MPI_Op for the call to MP1_Allreduce.
The communicator over which the reduction will occur.
in_values is a pointer to the local values to be reduced and n is the number of values to reduce.
The binary operation that combines two values of type T and returns a third value of type T. For
types T that has ssociated MPI data types, op will either be translated into an MPI_Op (via
MP1_Op_create) or, if possible, mapped directly to a built-in MPI operation. See is_mpi_op

Parameters:

op
in the operations. hpp header for more details on this mapping. For any non-built-in operation,

See reduce for more information.
commutativity will be determined by the is_commmutative trait (also in operations.hpp):
users are encouraged to mark commutative operations as such, because it gives the implementation

additional lattitude to optimize the reduction operation.
Will receive the result of the reduction operation. If this parameter is omitted, the outgoing value

out_value
will instead be returned.

If no out_value parameter is supplied, returns the result of the reduction operation.

Returns:

38
httpo://www.renderx.com/

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Function all_to_all
boost::mpi::all_to_all — Send data from every process to every other process.

& comm,
T > & in_values,
& comm, const T * in_values,

out_values);
n,

Synopsis

// In header: <boost/mpi/collectives.hpp>
const std::vector<

tenpl ate<typenane T >
voi d all_to_all(const communicator
std::vector< T > &
tenpl ate<typenane T >
voi d all_to_all(const communicator
T * out_values);
tenpl ate<typenane T >
voi d all_to_all(const communicator & comm,
const std::vector< T > & in_values, int
std::vector< T > & out_values);
& comm, const T * in_values,
n, T * out_values);

voi d all_to_all(const communicator
the in_values vector is sent to process j and placed in the ith position of the out_values vector in process j. The type T of the
values may be any type that is serializable or has an associated MPI data type. If n is provided, then arrays of n values will be

tenpl ate<typenane T >

int
Description
all_to_all is a collective algorithm that transmits p values from every process to every other process. On process i, jth value of

When the type T has an associated MPI data type, this routine invokes MP1_AlItoal I to scatter the values.
The communicator over which the all-to-all communication will occur.

A vector or pointer to storage that contains the values to send to each process, indexed by the

A vector or pointer to storage that will be updated to contain the values received from other

transferred from one process to another.
comm
in_values
process 1D number.
processes. The jth value in out_values will come from the procss with rank j.

Parameters:
out_values

39
httpo://www.renderx.com/

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

n,

Function broadcast
boost::mpi::broadcast — Broadcast a value from a root process to all other processes.

// In header: <boost/mpi/collectives.hpp>
root);

Synopsis
voi d broadcast(const communicator & comm, T & value, int root);
root);

tenpl ate<typenane T >
voi d broadcast(const communicator & comm, T * values, int

tenpl ate<typenane T >
int root);
voi d broadcast(const communicator & comm,
skeleton_proxy< T > & value, int

tenpl ate<typenane T >
tenpl ate<typenane T >
voi d broadcast(const communicator & comm,

Description

broadcast is a collective algorithm that transfers a value from an arbitrary root process to every other process that is part of the
given communicator. The broadcast algorithm can transmit any Serializable value, values that have associated MPI data types,
When the type T has an associated MPI data type, this routine invokes MP1_Bcast to perform the broadcast.
The rank/process ID of the process that will be transmitting the value.
(if the rank of comm is not equal to root). When the value is a skeleton_proxy, only the skeleton
of the object will be broadcast. In this case, the root will build a skeleton from the object help in the

const skeleton_proxy< T > & value, int
packed archives, skeletons, and the content of skeletons; see the send primitive for communicators for a complete list. The type T
shall be the same for all processes that are a part of the communicator comm, unless packed archives are being transferred: with
packed archives, the root sends a packed_oarchive or packed_skeleton_oarchive whereas the other processes receive a

The value (or values, if n is provided) to be transmitted (if the rank of comm is equal to root) or received

packed_iarchive or packed_skeleton_iarchve, respectively.
The communicator over which the broadcast will occur.
proxy and all of the non-roots will reshape the objects held in their proxies based on the skeleton sent

Parameters: comm
root
value

from the root.

40
httpo://www.renderx.com/

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Function gather
boost::mpi::gather — Gather the values stored at every process into a vector at the root process.

root);
root);

// In header: <boost/mpi/collectives.hpp>
voi d gather(const communicator & comm, const T & in_value,

Synopsis
tenpl ate<typenane T >
voi d gather(const communicator & comm, const T & in_value,
std::vector< T > & out_values, int root);

tenpl ate<typenane T >
int root);

T * out_values, int
voi d gather(const communicator & comm, const T & in_value,
voi d gather(const communicator & comm, const T * in_values,

tenpl ate<typenane T >
voi d gather(const communicator & comm, const T * in_values,
n, std::vector< T > & out_values, int

tenpl ate<typenane T >
int

n, T * out_values, int root);
voi d gather(const communicator & comm, const T * in_values,

tenpl ate<typenane T >
int

tenpl ate<typenane T >
int
n, int root);
Description
gather is a collective algorithm that collects the values stored at each process into a vector of values at the root process. This
vector is indexed by the process number that the value came from. The type T of the values may be any type that is serializable or
The value to be transmitted by each process. For gathering arrays of values, in_values points

has an associated MPI data type.
A vector or pointer to storage that will be populated with the values from each process, indexed

When the type T has an associated MPI data type, this routine invokes MP1_Gather to gather the values.
The communicator over which the gather will occur.

comm

in_value
by the process ID number. If it is a vector, it will be resized accordingly. For non-root processes,

to storage for n*comm.size() values.
this parameter may be omitted. If it is still provided, however, it will be unchanged.
The process ID number that will collect the values. This value must be the same on all processes.

Parameters:
out_values

root

41
httpo://www.renderx.com/

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Function scatter
boost::mpi::scatter — Scatter the values stored at the root to all processes within the communicator.

// In header: <boost/mpi/collectives.hpp>
const std::vector< T > & in_values, T & out_value,
T * in_values,

Synopsis

tenpl ate<typenane T >
voi d scatter(const communicator & comm,
int root);
tenpl ate<typenane T >
voi d scatter(const communicator & comm, const
T & out_value, int root);
tenpl ate<typenane T >
voi d scatter(const communicator & comm, T & out_value, int root);
const std::vector< T > & in_values,
T * out_values, int n, int root);
voi d scatter(const communicator & comm, const T * in_values,
root);
n,

tenpl ate<typenane T >
voi d scatter(const communicator & comm,

tenpl ate<typenane T >

T * out_values, int n, int
voi d scatter(const communicator & comm, T * out_values, int
int root);
process rank. For non-root processes, this parameter may be omitted. If it is still provided, however,

Description

scatter is a collective algorithm that scatters the values stored in the root process (inside a vector) to all of the processes in the
The communicator over which the gather will occur.

tenpl ate<typenane T >
communicator. The vector out_values (only significant at the root) is indexed by the process number to which the corresponding
value will be sent. The type T of the values may be any type that is serializable or has an associated MPI data type.
When the type T has an associated MPI data type, this routine invokes MP1_Scatter to scatter the values.
A vector or pointer to storage that will contain the values to send to each process, indexed by the
The value received by each process. When scattering an array of values, out_values points to

it will be unchanged.

comm
in_values

the n values that will be received by each process.
The process ID number that will scatter the values. This value must be the same on all processes.

Parameters:
out_value

root

42
httpo://www.renderx.com/

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Function reduce

boost::mpi::reduce — Combine the values stored by each process into a single value at the root.
root);

Synopsis
// In header: <boost/mpi/collectives.hpp>
t enpl at e<typenane T , typenane Op >
voi d reduce(const communicator & comm, const T & in_value,
T & out_value, Op op, int
voi d reduce(const communicator & comm, const T & in_value,
root);

n, T * out_values, Op op, int

t enpl at e<typenane T , typenane Op >
Op op, int root);
t enpl at e<typenane T , typenane Op >
voi d reduce(const communicator & comm, const T * in_values,
voi d reduce(const communicator & comm, const T * in_values,
root);

int

Description

int
tenpl ate<typenane T , typenane Op >
n, Op op, int
reduce is a collective algorithm that combines the values stored by each process into a single value at the root. The values can be
combined arbitrarily, specified via a function object. The type T of the values may be any type that is serializable or has an associated
MPI data type. One can think of this operation as a gather to the root, followed by an std: :accumulate() over the gathered
The communicator over which the reduction will occur.

MPI operations will be used; otherwise, reduce() will create a custom MP1_Op for the call to MPI_Reduce.

The local value to be combined with the local values of every other process. For reducing arrays,

in_values contains a pointer to the local values. In this case, n is the number of values that will
be reduced. Reduction occurs independently for each of the n values referenced by in_values,

e.g., calling reduce on an array of n values is like calling reduce n separate times, one for each

values and using the operation op.
When the type T has an associated MPI data type, this routine invokes MP1_Reduce to perform the reduction. If possible, built-in

comm

in_value
The binary operation that combines two values of type T into a third value of type T. For types T

Parameters:
that has ssociated MPI data types, op will either be translated into an MPI1_Op (via

MP1_Op_create) or, if possible, mapped directly to a built-in MPI operation. See is_mpi_op

op
in the operations. hpp header for more details on this mapping. For any non-built-in operation,

location in in_values and out_values.
commutativity will be determined by the is_commmutative trait (also in operations.hpp):
users are encouraged to mark commutative operations as such, because it gives the implementation

additional lattitude to optimize the reduction operation.

Will receive the result of the reduction operation, but only for the root process. Non-root processes
may omit if parameter; if they choose to supply the parameter, it will be unchanged. For reducing

arrays, out_values contains a pointer to the storage for the output values.
The process ID number that will receive the final, combined value. This value must be the same

out_value
on all processes.

root

43

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

n,

Function scan
boost::mpi::scan — Compute a prefix reduction of values from all processes in the communicator.

Synopsis

// In header: <boost/mpi/collectives.hpp>
voi d scan(const communicator & comm, const T & in_value,

T & out_value, Op op);

tenpl ate<typenane T , typenane Op >
tenpl ate<typenane T , typenane Op >
T scan(const communicator & comm, const T & in_value, Op op);
tenpl ate<typenane T , typenane Op >
T * out_values, Op op);
scan is a collective algorithm that combines the values stored by each process with the values of all processes with a smaller rank.
The values can be arbitrarily combined, specified via a function object op. The type T of the values may be any type that is serializable
or has an associated MPI data type. One can think of this operation as a gather to some process, followed by an std: :prefix_sum(Q)

voi d scan(const communicator & comm, const T * in_values, int
over the gathered values using the operation op. The ith process returns the ith value emitted by std: :prefix_sum().

Description
operations will be used; otherwise, scan() will create a custom MP1_Op for the call to MPI_Scan.
The communicator over which the prefix reduction will occur.
The local value to be combined with the local values of other processes. For the array variant,
the in_values parameter points to the n local values that will be combined.
The binary operation that combines two values of type T into a third value of type T. For types T
that has ssociated MPI data types, op will either be translated into an MPI1_Op (via
MP1_Op_create) or, if possible, mapped directly to a built-in MPI operation. See is_mpi_op

When the type T has an associated MPI data type, this routine invokes MP1_Scan to perform the reduction. If possible, built-in MPI
in the operations. hpp header for more details on this mapping. For any non-built-in operation,
If provided, the ith process will receive the value op(in_value[0], op(in_value[1], op(..., in_value[i])

comm
in_value

Parameters:
op
commutativity will be determined by the is_commmutative trait (also in operations.hpp).

...)). For the array variant, out_values contains a pointer to storage for the n output values.

The prefix reduction occurs independently for each of the n values referenced by in_values,
e.g., calling scan on an array of n values is like calling scan n separate times, one for each location

out_value
in in_values and out_values.
If no out_value parameter is provided, returns the result of prefix reduction.

Returns:

Header <boost/mpi/collectives_fwd.hpp>
This header provides forward declarations for all of the collective operations contained in the header col lectives. hpp.

This header defines the communicator class, which is the basis of all communication within Boost.MPI, and provides point-to-

Header <boost/mpi/communicator.hpp>

point communication operations.
44
httpo://www.renderx.com/

render

http://www.boost.org/doc/libs/release/doc/html/../../boost/mpi/collectives_fwd.hpp
http://www.boost.org/doc/libs/release/doc/html/../../boost/mpi/communicator.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

nanespace boost {
nanespace mpi {
cl ass communicator;

enum comm_create_kind;

const int any_source;
const int any_tag;

BOOST_MP1_DECL bool
oper at or ==(const communicator &, const communicator &);

bool operator !=(const communicator &, const communicator &);

45

httpo://www.renderx.com/

3
2
iy

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Class communicator

boost::mpi::communicator — A communicator that permits communication and synchronization among a set of processes.
Synopsis
// In header: <boost/mpi/communicator.hpp>

cl ass communicator {
public:
// construct/copy/destruct
communicator();
communicator(const MPI_Comm &, comm_create_kind);
communicator(const communicator &, const boost::mpi::group &);

// public member functions
int rank() const ;
int size() const ;
boost: :mpi::group group() const ;
tenpl ate<typenane T > void send(int, int, const T &) const ;
tenpl ate<typenane T >

void send(int, int, const skeleton_proxy< T > &) const ;
tenpl ate<typenane T > void send(int, int, const T *, int) const;
void send(int, int) const;
tenpl at e<typenane T > status recv(int, int, T &) const;
tenpl ate<typenane T >

status recv(int, int, const skeleton_proxy< T > &) const ;
tenpl ate<typenane T >

status recv(int, int, skeleton_proxy< T > &) const ;
tenpl ate<typenane T > status recv(int, int, T *, int) const;
status recv(int, int) const;
tenpl ate<typenane T > request isend(int, int, const T &) const ;
tenpl ate<typenane T >

request isend(int, int, const skeleton_proxy< T > &) const ;
tenpl ate<typenane T >

request isend(int, int, const T *, int) const;
request isend(int, int) const;
tenpl ate<typenane T > request irecv(int, int, T &) const ;
tenpl ate<typenane T > request irecv(int, int, T *, int) const;
request irecv(int, int) const;
status probe(int = any_source, int = any_tag) const ;
optional< status > iprobe(int = any source, int = any_ tag) const ;
voi d barrier() const ;
oper at or bool () const ;
operator MPI_Comm() const ;
communicator split(int) const;
communicator split(int, int) const;
optional< intercommunicator > as_intercommunicator() const ;
optional< graph_communicator > as_graph_communicator() const ;
bool has_cartesian_topology() const ;
voi d abort(int) const ;

}:

Description

The communicator class abstracts a set of communicating processes in MPI. All of the processes that belong to a certain commu-
nicator can determine the size of the communicator, their rank within the communicator, and communicate with any other processes
in the communicator.

46

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

comuni cat or public construct/copy/destruct

communicator();

Build a new Boost.MPI communicator for MP1_COMM_WORLD.
Constructs a Boost.MPI communicator that attaches to MP1_COMM_WORLD. This is the equivalent of constructing with

(MP1_COMM_WORLD, comm_attach).
communicator(const MPI_Comm & comm, comm_create_kind kind);
Build a new Boost.MPI communicator based on the MPI communicator comm.
comm may be any valid MPI communicator. If comm is MPI_COMM_NULL, an empty communicator (that cannot be used for
communication) is created and the kind parameter is ignored. Otherwise, the kind parameters determines how the Boost.MPI
If kind is comm_duplicate, duplicate comm to create a new communicator. This new communicator will be freed when the
Boost.MP1 communicator (and all copies of it) is destroyed. This option is only permitted if comm is a valid MPI intracommu-

nicator or if the underlying MPI implementation supports MPI 2.0 (which supports duplication of intercommunicators).
If kind is comm_take_ownership, take ownership of comm. It will be freed automatically when all of the Boost.MPI com-
municators go out of scope. This option must not be used when comm is MPI_COMM_WORLD.

communicator will be related to comm:
If kind is comm_attach, this Boost. MPI communicator will reference the existing MPI communicator comm but will not free
comm when the Boost. MP1 communicator goes out of scope. This option should only be used when the communicator is managed

by the user or MPI library (e.g., MPI_COMM_WORLD).

communicator(const communicator & comm,
Build a new Boost.MPI communicator based on a subgroup of another MPI communicator.

const boost::mpi::group & subgroup);
This routine will construct a new communicator containing all of the processes from communicator comm that are listed within
comm
A subgroup of the MPI communicator, comm, for which we will construct a new communicator.

the group subgroup. Equivalent to MP1_Comm_create.
An MPI communicator.
subgroup

Parameters:
comuni cat or public member functions

“int
The rank of the process in the communicator, which will be a value in [0, size())

rank() const ;
This routine is equivalent to MP1_Comm_rank.

Returns:
The number of processes in the communicator.
47

int size() const ;
This routine is equivalent to MP1_Comm_size.

Returns:
" boost::mpi::group group() const ;

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

Boost.MPI

This routine constructs a new group whose members are the processes within this communicator. Equivalent to calling
MP1_Comm_group.

"tenpl ate<typenane T >

6

void send(int dest, int tag, const T & value) const ;

This routine executes a potentially blocking send with tag tag to the process with rank dest. It can be received by the destination
process with a matching recv call.

The given value must be suitable for transmission over MPI. There are several classes of types that meet these requirements:

 Types with mappings to MPI data types: If is_mpi_datatype<T> is convertible to mpl: :true_, then value will be trans-
mitted using the MPI data type get_mpi_datatype<T>(). All primitive C++ data types that have MPI equivalents, e.g., int,
float, char, double, etc., have built-in mappings to MPI data types. You may turn a Serializable type with fixed structure
into an MPI data type by specializing is_mpi_datatype for your type.

» Serializable types: Any type that provides the serialize() functionality required by the Boost.Serialization library can be
transmitted and received.

» Packed archives and skeletons: Data that has been packed into an mpi : -packed_oarchive or the skeletons of data that have
been backed into an mpi : :packed_skeleton_oarchive can be transmitted, but will be received as mpi : : packed_iarchive
and mpi : :packed_skeleton_iarchive, respectively, to allow the values (or skeletons) to be extracted by the destination
process.

» Content: Content associated with a previously-transmitted skeleton can be transmitted by send and received by recv. The
receiving process may only receive content into the content of a value that has been constructed with the matching skeleton.

For types that have mappings to an MPI data type (including the concent of a type), an invocation of this routine will result in a
single MP1_Send call. For variable-length data, e.g., serialized types and packed archives, two messages will be sent via MP1_Send:
one containing the length of the data and the second containing the data itself. Note that the transmission mode for variable-length
data is an implementation detail that is subject to change.

Parameters: dest The rank of the remote process to which the data will be sent.
tag The tag that will be associated with this message. Tags may be any integer between zero and an
implementation-defined upper limit. This limit is accessible via environment: :max_tag().
value The value that will be transmitted to the receiver. The type T of this value must meet the aforemen-
tioned criteria for transmission.

"tenpl ate<typenane T >

voi d send(i nt dest, int tag, const skeleton_proxy< T > & proxy) const ;

This routine executes a potentially blocking send with tag tag to the process with rank dest. It can be received by the destination
process with a matching recv call. This variation on send will be used when a send of a skeleton is explicitly requested via code
such as:

comm.send(dest, tag, skeleton(object));

The semantics of this routine are equivalent to that of sending a packed_skeleton_oarchive storing the skeleton of the object.

Parameters: dest The rank of the remote process to which the skeleton will be sent.
proxy The skeleton_proxy containing a reference to the object whose skeleton will be transmitted.
tag The tag that will be associated with this message. Tags may be any integer between zero and an

implementation-defined upper limit. This limit is accessible via environment: :max_tag().

"tenpl ate<typenane T >
void send(i nt dest, int tag, const T * values, int n) const;

48

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

This routine executes a potentially blocking send of an array of data with tag tag to the process with rank dest. It can be received

The process rank of the remote process to which the data will be sent.
The number of values stored in the array. The destination process must call receive with at least

by the destination process with a matching array recv call.
If T is an MPI datatype, an invocation of this routine will be mapped to a single call to MPI_Send, using the datatype

The tag that will be associated with this message. Tags may be any integer between zero and an

n
implementation-defined upper limit. This limit is accessible via environment: :max_tag().

get_mpi_datatype<T>().
dest
this many elements to correctly receive the message.
The array of values that will be transmitted to the receiver. The type T of these values must be

Parameters:
tag

values
mapped to an MPI data type.
This routine executes a potentially blocking send of a message to another process. The message contains no extra data, and can

voi d send(i nt dest, int tag) const;

therefore only be received by a matching call to recv().
dest The process rank of the remote process to which the message will be sent.
The tag that will be associated with this message. Tags may be any integer between zero and an im-

plementation-defined upper limit. This limit is accessible via environment: :max_tag().

Parameters:
status recv(int source, int tag, T & value) const ;

or the constant any_source, indicating that we can receive the message from any process.
The tag that matches a particular kind of message sent by the source process. This may be any tag
value permitted by send. Alternatively, the argument may be the constant any_tag, indicating

t enpl at e<typenane T >
The process that will be sending data. This will either be a process rank within the communicator

This routine blocks until it receives a message from the process source with the given tag. The type T of the value must be

tag
suitable for transmission over MPI, which includes serializable types, types that can be mapped to MPI data types (including most

source

built-in C++ types), packed MPI archives, skeletons, and content associated with skeletons; see the documentation of send for
a complete description.

tag

Parameters:
Will contain the value of the message after a successful receive. The type of this value must match
the value transmitted by the sender, unless the sender transmitted a packed archive or skeleton: in
these cases, the sender transmits a packed_oarchive or packed_skeleton_oarchive and the

that this receive matches a message with any tag.
value
destination receives a packed_iarchive or packed_skeleton_iarchive, respectively.
Information about the received message.
skeleton_proxy< T > & proxy) const ;
This routine blocks until it receives a message from the process source with the given tag containing a skeleton.
The skeleton_proxy containing a reference to the object that will be reshaped to match the re-

tenpl at e<typenane T >
status recv(i nt source, int tag,
const

ceived skeleton.
The process that will be sending data. This will either be a process rank within the communicator

proxy
or the constant any_source, indicating that we can receive the message from any process.

Returns:
The tag that matches a particular kind of message sent by the source process. This may be any tag
value permitted by send. Alternatively, the argument may be the constant any_tag, indicating

source
that this receive matches a message with any tag.

Parameters:
httpo://www.renderx.com/

tag
Information about the received message.
49

Returns:

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

status recv(i nt source, int tag, skeleton_proxy< T > & proxy) const ;
This routine blocks until it receives a message from the process source with the given tag containing a skeleton.
The skeleton_proxy containing a reference to the object that will be reshaped to match the re-

‘tenpl ate<typenane T >

ceived skeleton.
The process that will be sending data. This will either be a process rank within the communicator

or the constant any_source, indicating that we can receive the message from any process.
The tag that matches a particular kind of message sent by the source process. This may be any tag
value permitted by send. Alternatively, the argument may be the constant any_tag, indicating

proxy
that this receive matches a message with any tag.

n

source

Parameters:
that this receive matches a message with any tag.

tag

Parameters:
source
tag
Returns: Information about the received message.
t enpl at e<typenane T >
status recv(int source, int tag, T * values, int n) const;
This routine blocks until it receives an array of values from the process source with the given tag. If the type T is
The number of values that can be stored into the values array. This shall not be smaller than the
number of elements transmitted by the sender.
The process that will be sending data. This will either be a process rank within the communicator
or the constant any_source, indicating that we can receive the message from any process.
The tag that matches a particular kind of message sent by the source process. This may be any tag
value permitted by send. Alternatively, the argument may be the constant any_tag, indicating
Will contain the values in the message after a successful receive. The type of these elements must

match the type of the elements transmitted by the sender.

values
Information about the received message.
std::range_error
This routine blocks until it receives a message from the process source with the given tag.
nicator or the constant any_source, indicating that we can receive the message from any process.

Throws:
The process that will be sending the message. This will either be a process rank within the commu-

Returns:
2 . .
status recv(i nt source, int tag) const ;

source
The tag that matches a particular kind of message sent by the source process. This may be any tag
value permitted by send. Alternatively, the argument may be the constant any_tag, indicating

that this receive matches a message with any tag.

Returns:
"terrpl ate<typenanme T >

request isend(int dest, int tag, const T & value) const;
the status of the communication or wait until it has completed.

Parameters:
tag
Information about the received message.
The isend method is functionality identical to the send method and transmits data in the same way, except that isend will not
block while waiting for the data to be transmitted. Instead, a request object will be immediately returned, allowing one to query

The rank of the remote process to which the data will be sent.
The tag that will be associated with this message. Tags may be any integer between zero and an
implementation-defined upper limit. This limit is accessible via environment: :max_tag().

dest

tag
The value that will be transmitted to the receiver. The type T of this value must meet the aforemen-

httpo://www.renderx.com/

tioned criteria for transmission.
50

a request object that describes this communication.

Parameters:
value

Returns:

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

‘tenpl ate<typenane T >
const

14

request isend(int dest, int tag,
This routine is functionally identical to the send method for skeleton_proxy objects except that isend will not block while

skeleton_proxy< T > & proxy) const ;
waiting for the data to be transmitted. Instead, a request object will be immediately returned, allowing one to query the status of

The rank of the remote process to which the skeleton will be sent.

the communication or wait until it has completed.
The skeleton_proxy containing a reference to the object whose skeleton will be transmitted.

The semantics of this routine are equivalent to a hon-blocking send of a packed_skeleton_oarchive storing the skeleton of

dest
The tag that will be associated with this message. Tags may be any integer between zero and an
implementation-defined upper limit. This limit is accessible via environment: :max_tag().

the object.

Parameters:
a request object that describes this communication.

proxy

tag

Returns:

)'terrpl ate<typenane T >

request isend(int dest, int tag, const T * values, int n) const ;

This routine is functionally identical to the send method for arrays except that isend will not block while waiting for the data
to be transmitted. Instead, a request object will be immediately returned, allowing one to query the status of the communication
The number of values stored in the array. The destination process must call receive with at least

1
The process rank of the remote process to which the data will be sent.

The tag that will be associated with this message. Tags may be any integer between zero and an

n
implementation-defined upper limit. This limit is accessible via environment: :max_tag().

or wait until it has completed.
Parameters: dest
this many elements to correctly receive the message.
tag
values The array of values that will be transmitted to the receiver. The type T of these values must be
mapped to an MPI data type.
a request object that describes this communication.
This routine is functionally identical to the send method for sends with no data, except that isend will not block while waiting
for the message to be transmitted. Instead, a request object will be immediately returned, allowing one to query the status of the

Returns:

y request isend(int dest, int tag) const ;
dest The process rank of the remote process to which the message will be sent.

communication or wait until it has completed.
The tag that will be associated with this message. Tags may be any integer between zero and an im-
plementation-defined upper limit. This limit is accessible via environment: :max_tag().
a request object that describes this communication.

Parameters:

Returns:
“tenpl at e<t ypename T >

7
request irecv(int source, int tag, T & value) const ;

The process that will be sending data. This will either be a process rank within the communicator
The tag that matches a particular kind of message sent by the source process. This may be any tag
value permitted by send. Alternatively, the argument may be the constant any_tag, indicating

tag
The irecv method is functionally identical to the recv method and receive data in the same way, except that irecv will not

or the constant any_source, indicating that we can receive the message from any process.

source
httpo://www.renderx.com/

block while waiting for data to be transmitted. Instead, it immediately returns a request object that allows one to query the status
51

of the receive or wait until it has completed.
that this receive matches a message with any tag.

Parameters:
tag

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Will contain the value of the message after a successful receive. The type of this value must match
the value transmitted by the sender, unless the sender transmitted a packed archive or skeleton: in
these cases, the sender transmits a packed_oarchive or packed_skeleton_oarchive and the

value
destination receives a packed_iarchive or packed_skeleton_iarchive, respectively.

a request object that describes this communication.
source, int tag, T * values, int n) const;
The number of values that can be stored into the values array. This shall not be smaller than the

Returns:
‘tenpl at e<typenanme T >

request irecv(nt

number of elements transmitted by the sender.

18
The process that will be sending data. This will either be a process rank within the communicator

n
or the constant any_source, indicating that we can receive the message from any process.

This routine initiates a receive operation for an array of values transmitted by process source with the given tag.

source
The tag that matches a particular kind of message sent by the source process. This may be any tag
value permitted by send. Alternatively, the argument may be the constant any_tag, indicating

Parameters:
that this receive matches a message with any tag.

Will contain the values in the message after a successful receive. The type of these elements must

match the type of the elements transmitted by the sender.

tag
a request object that describes this communication.
The process that will be sending the message. This will either be a process rank within the commu-

Returns:
"request irecv(int source, int tag) const ;

9
The tag that matches a particular kind of message sent by the source process. This may be any tag
value permitted by send. Alternatively, the argument may be the constant any_tag, indicating

values
This routine initiates a receive operation for a message from process source with the given tag that carries no data.
nicator or the constant any_source, indicating that we can receive the message from any process.

that this receive matches a message with any tag.

source
tag
a request object that describes this communication.

Returns:

2

may come from any source.
Determine if there is a message available with the given tag. If any_tag, then the message returned

Parameters:
‘status probe(i nt source = any_source, int tag = any_tag) const ;
This operation waits until a message matching (source, tag) is available to be received. It then returns information about that
message. The functionality is equivalent to MP1_Probe. To check if a message is available without blocking, use iprobe.
Determine if there is a message available from this rank. If any_source, then the message returned

source
may have any tag.
Returns information about the first message that matches the given criteria.

Returns:
optional< status >

2L
iprobe(i nt source = any _source, int tag = any_tag) const ;

Parameters:
Determine if there is a message available from this rank. If any_source, then the message returned
Determine if there is a message available with the given tag. If any_tag, then the message returned

may come from any source.

tag
This operation determines if a message matching (source, tag) is available to be received. If so, it returns information about
until a message is available, use wait.

that message; otherwise, it returns immediately with an empty optional. The functionality is equivalent to MP1_1probe. To wait

source
may have any tag.
52

Parameters:
tag

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI
If a matching message is available, returns information about that message. Otherwise, returns an empty

boost: :optional.

Returns:
A)

voi d barrier() const ;
"simultaneously". It is equivalent to MP1_Barrier.

Y/
This routine is a collective operation that blocks each process until all processes have entered it, then releases all of the processes

Evaluates true in a boolean context if this communicator is valid for communication, i.e., does not represent MPI_COMM_NULL.

Otherwise, evaluates false.
MPI_Comm() const ;

"oper at or

2

operator bool () const ;
This routine permits the implicit conversion from a Boost. MPI communicator to an MP1 communicator.
The associated MPI communicator.

Returns:
> communicator split(int color) const;

group.

Split the communicator into multiple, disjoint communicators each of which is based on a particular color. This is a collective
color

operation that returns a new communicator that is a subgroup of this. This routine is functionally equivalent to MP1_Comm_split.
The color of this process. All processes with the same color value will be placed into the same
A new communicator containing all of the processes in this that have the same color.

Returns:
> communicator split(int color, int key) const ;

Split the communicator into multiple, disjoint communicators each of which is based on a particular color. This is a collective
color

operation that returns a new communicator that is a subgroup of this. This routine is functionally equivalent to MP1_Comm_split.
The color of this process. All processes with the same color value will be placed into the same

Parameters:
A key value that will be used to determine the ordering of processes with the same color in the res-
ulting communicator. If omitted, the rank of the processes in this will determine the ordering of

key

Parameters:
group.
processes in the resulting group.
A new communicator containing all of the processes in this that have the same color.
"optional< intercommunicator > as_intercommunicator() const ;
Determine if the communicator is in fact an intercommunicator and, if so, return that intercommunicator.

Returns:

7
an optional containing the intercommunicator, if this communicator is in fact an intercommunicator. Otherwise,

Returns:
httpo://www.renderx.com/

"optional< graph_communicator > as_graph_communicator() const ;
53

returns an empty optional.
Determine if the communicator has a graph topology and, if so, return that graph_communicator. Even though the communic-
ators have different types, they refer to the same underlying communication space and can be used interchangeably for commu-

nication.

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI
an optional containing the graph communicator, if this communicator does in fact have a graph topology. Other-

wise, returns an empty optional.

29'booI
Determines whether this communicator has a Cartesian topology.

1void abort(i nt errcode) const ;
ation, this may either abort the entire program (and possibly return errcode to the environment) or only abort some processes,

Returns:

has_cartesian_topology() const ;

Abort all tasks in the group of this communicator.

Makes a "best attempt" to abort all of the tasks in the group of this communicator. Depending on the underlying MPI implement-
The error code to return from aborted processes.

errcode

allowing the others to continue. Consult the documentation for your MPI implementation. This is equivalent to a call to MP1_Abort
Will not return.

Parameters:
Returns:

54
httpo://www.renderx.com/

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Type comm_create_kind

boost::mpi::comm_create_kind — Enumeration used to describe how to adopt a C MP1_Comm into a Boost. MPI communicator.

// In header: <boost/mpi/communicator.hpp>
comm_attach };

Synopsis
enum comm_create_kind { comm_duplicate, comm_take_ownership,
The values for this enumeration determine how a Boost.MPI communicator will behave when constructed with an MPI communic-

Description

ator. The options are:
» comm_duplicate: Duplicate the MPI_Comm communicator to create a new communicator (e.g., with MPI_Comm_dup). This

new MPI_Comm communicator will be automatically freed when the Boost.MPI communicator (and all copies of it) is destroyed.

e comm_take_ownership: Take ownership of the communicator. It will be freed automatically when all of the Boost.MPI com-
municators go out of scope. This option must not be used with MPI_COMM_WORLD.

» comm_attach: The Boost.MPI communicator will reference the existing MPI communicator but will not free it when the
Boost.MPI communicator goes out of scope. This option should only be used when the communicator is managed by the user or

MPI library (e.g., MPI_COMM_WORLD).

55

httpo://www.renderx.com/

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Global any_source

boost::mpi::any_source — A constant representing "any process.".
Synopsis

// In header: <boost/mpi/communicator.hpp>

const int any_source;

Description

This constant may be used for the source parameter of receive operations to indicate that a message may be received from any
source.

56

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Global any_tag

boost::mpi::any_tag — A constant representing "any tag.".
Synopsis

// In header: <boost/mpi/communicator.hpp>

const int any_tag;

Description

This constant may be used for the tag parameter of receive operations to indicate that a send with any tag will be matched by
the receive.

57

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Function operator==

boost::mpi::operator== — Determines whether two communicators are identical.
Synopsis
// In header: <boost/mpi/communicator.hpp>

BOOST_MP1_DECL bool
oper at or ==(const communicator & comml, const communicator & comm2);

Description
Equivalent to calling MP1_Comm_compare and checking whether the result is MP1_IDENT.

Returns: True when the two communicators refer to the same underlying MPI communicator.

58

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Function operator!=

boost::mpi::operator!= — Determines whether two communicators are different.
Synopsis
// In header: <boost/mpi/communicator.hpp>

bool operator !=(const communicator & comml,
const communicator & comm2);

Description

Returns: I(comml == commz2)

Header <boost/mpi/config.hpp>

This header provides MPI configuration details that expose the capabilities of the underlying MPI implementation, and provides
auto-linking support on Windows.

MPICH_IGNORE_CXX_SEEK
BOOST_MP1_HAS_MEMORY_ALLOCATION
BOOST_MP1_HAS_NOARG_INITIALIZATION
BOOST_MP1_CALLING_CONVENTION

59

render

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../boost/mpi/config.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Macro MPICH_IGNORE_CXX_SEEK

MPICH_IGNORE_CXX_SEEK
Synopsis

// In header: <boost/mpi/config.hpp>

MPICH_IGNORE_CXX_SEEK

60

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Macro BOOST_MPI_HAS_MEMORY_ALLOCATION

BOOST_MPI_HAS_MEMORY_ALLOCATION — Define this macro to avoid expensice MPI_Pack/Unpack calls on homogeneous

BOOST_MPI1_HAS_MEMORY_ALLOCATION
locator class template will provide Standard Library-compliant access to these memory-allocation routines.

machines.
Description
Determine if the MPI implementation has support for memory allocation. This macro will be defined when the underlying MPI im-

Synopsis
// In header: <boost/mpi/config.hpp>
plementation has support for the MPI-2 memory allocation routines MP1_Alloc_mem and MP1_Free_mem. When defined, the al -

61
httpo://www.renderx.com/

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Macro BOOST_MPI_HAS_NOARG_INITIALIZATION

BOOST_MPI_HAS_NOARG_INITIALIZATION — Determine if the MPI implementation has supports initialization without

command-line arguments.

Synopsis
// In header: <boost/mpi/config.hpp>
BOOST_MPI1_HAS_NOARG_INITIALIZATION

Description

This macro will be defined when the underlying implementation supports initialization of MPI without passing along command-line
arguments, e.g., MP1_Init(NULL, NULL).When defined, the environment class will provide a default constructor. This macro
is always defined for MPI-2 implementations.

62
httpo://www.renderx.com/

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Macro BOOST_MPI_CALLING_CONVENTION

BOOST_MPI_CALLING_CONVENTION — Specifies the calling convention that will be used for callbacks from the underlying
C MPI.

Synopsis

// In header: <boost/mpi/config.hpp>

BOOST_MPI_CALLING_CONVENTION

Description

This is a Windows-specific macro, which will be used internally to state the calling convention of any function that is to be used as
a callback from MPI. For example, the internally-defined functions that are used in a call to MP1_Op_create. This macro is likely
only to be useful to users that wish to bypass Boost.MPI, registering their own callbacks in certain cases, e.g., through
MP1_Op_create.

Header <boost/mpi/datatype.hpp>

This header provides the mapping from C++ types to MPI data types.

BOOST_IS_MPI_DATATYPE(T)

namespace boost {
namespace mpi {

t enpl at e<t ypenane

t enpl at e<t ypenane

t enpl at e<t ypenane

struct is_mpi_integer_datatype;

struct is_mpi_floating_point_datatype;
struct is_mpi_logical_datatype;

t enpl at e<t ypenane struct is_mpi_complex_datatype;

t enpl at e<t ypenane struct is_mpi_byte_datatype;

t enpl at e<typenanme T> struct is_mpi_builtin_datatype;
tenpl at e<typenanme T > struct is_mpi_datatype;

t enpl at e<typenanme T > MPI_Datatype get_mpi_datatype(const T &);

A=
VVVVYV

63

render

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../boost/mpi/datatype.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Struct template is_mpi_integer_datatype

boost::mpi::is_mpi_integer_datatype — Type trait that determines if there exists a built-in integer MPI data type for a given C++
type.

Synopsis

// In header: <boost/mpi/datatype.hpp>
tenpl ate<typenane T >

struct is_mpi_integer_datatype {

};

Description

This ytpe trait determines when there is a direct mapping from a C++ type to an MPI data type that is classified as an integer data
type. See is_mpi_builtin_datatype for general information about built-in MPI data types.

64

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Struct template is_mpi_floating_point_datatype

boost::mpi::is_mpi_floating_point_datatype — Type trait that determines if there exists a built-in floating point MPI data type for
a given C++ type.

Synopsis

// In header: <boost/mpi/datatype.hpp>
tenpl ate<typenane T >

struct is_mpi_Ffloating_point_datatype {
};

Description

This ytpe trait determines when there is a direct mapping from a C++ type to an MPI data type that is classified as a floating point
data type. See is_mpi_builtin_datatype for general information about built-in MPI data types.

65

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Struct template is_mpi_logical datatype

boost::mpi::is_mpi_logical_datatype — Type trait that determines if there exists a built-in logical MPI data type for a given C++
type.

Synopsis

// In header: <boost/mpi/datatype.hpp>
tenpl ate<typenane T >

struct is_mpi_logical_datatype {

};

Description

This ytpe trait determines when there is a direct mapping from a C++ type to an MPI data type that is classified as an logical data
type. See is_mpi_builtin_datatype for general information about built-in MPI data types.

66

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Struct template is_mpi_complex_datatype

boost::mpi::is_mpi_complex_datatype — Type trait that determines if there exists a built-in complex MPI data type for a given C++
type.

Synopsis

// In header: <boost/mpi/datatype.hpp>
tenpl ate<typenane T >

struct is_mpi_complex_datatype {

};

Description

This ytpe trait determines when there is a direct mapping from a C++ type to an MPI data type that is classified as an complex data
type. See is_mpi_builtin_datatype for general information about built-in MPI data types.

67

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Struct template is_mpi_byte datatype

boost::mpi::is_mpi_byte datatype — Type trait that determines if there exists a built-in byte MPI data type for a given C++ type.
Synopsis

// In header: <boost/mpi/datatype.hpp>
tenpl ate<typenane T >

struct is_mpi_byte datatype {

};

Description

This ytpe trait determines when there is a direct mapping from a C++ type to an MPI data type that is classified as an byte data type.
See is_mpi_builtin_datatype for general information about built-in MPI data types.

68

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Struct template is_mpi_builtin_datatype
boost::mpi::is_mpi_builtin_datatype — Type trait that determines if there exists a built-in MPI data type for a given C++ type.

Synopsis

This type trait determines when there is a direct mapping from a C++ type to an MPI type. For instance, the C++ int type maps

// In header: <boost/mpi/datatype.hpp>
directly to the MPI type MP1_INT. When there is a direct mapping from the type T to an MPI type, is_mpi_builtin_datatype

t enpl at e<t ypenane T>
struct is_mpi_builtin_datatype {
will derive from mpl - - true_ and the MPI data type will be accessible via get_mpi_datatype.
of MPI's built-in types, specialize either this trait or one of the traits corresponding to categories of MPI data types (is_mpi_in-
teger_datatype, is_mpi_TFfloating_point_datatype, is_mpi_Jlogical_datatype, is_mpi_complex_datatype, or

}:

Description
In general, users should not need to specialize this trait. However, if you have an additional C++ type that can map directly to only

is_mpi_builtin_datatype). is_mpi_builtin_datatype derives mpl : :true_ if any of the traits corresponding to MPI data

type categories derived mpl - - true_

69

httpo://www.renderx.com/

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Struct template is_mpi_datatype
boost::mpi::is_mpi_datatype — Type trait that determines if a C++ type can be mapped to an MPI data type.

Synopsis
// In header: <boost/mpi/datatype.hpp>
public boost::mpi::is;mpi_builtin_datatype< T >

tenpl ate<typenane T >
is_mpi_datatype derives mpl : :true_ and the MPI data type will be accessible via get_mpi_datatype.

struct

{
}:

is_mpi_datatype
Description
This type trait determines if it is possible to build an MPI data type that represents a C++ data type. When this is the case,

For any C++ type that maps to a built-in MPI data type (see is_mpi_builtin_datatype), is_mpi_data_type is trivially true.

However, any POD (“Plain Old Data") type containing types that themselves can be represented by MPI data types can itself be
represented as an MPI data type. For instance, a point3d class containing three double values can be represented as an MPI data
type. To do so, first make the data type Serializable (using the Boost.Serialization library); then, specialize the is_mpi_datatype

trait for the point type so that it will derive mpl: :true_

namespace boost { namespace mpi {
template<> struct is_mpi_datatype<point>

public mpl::true_ { };

3}

70

httpo://www.renderx.com/

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Function template get_mpi_datatype
boost::mpi::get_mpi_datatype — Returns an MPI data type for a C++ type.

Synopsis
tenpl ate<typenane T > MPI_Datatype get _mpi_datatype(const T & X);

// In header: <boost/mpi/datatype.hpp>
Description
The function creates an MPI data type for the given object x. The first time it is called for a class T, the MPI data type is created and
cached. Subsequent calls for objects of the same type T return the cached MPI data type. The type T must allow creation of an MPI

data type. That is, it must be Serializable and is_mpi_datatype<T> must derive mpl: :true_
For fundamental MPI types, a copy of the MPI data type of the MPI library is returned.
Note that since the data types are cached, the caller should never call MP1_Type_free() for the MPI data type returned by this call.
x for an optimized call, a constructed object of the type should be passed; otherwise, an object will be default-
constructed.
The MPI data type corresponding to type T.

Parameters:

Returns:

71
httpo://www.renderx.com/

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Macro BOOST _IS_MP|_DATATYPE

BOOST _IS_MPI_DATATYPE
Synopsis

// In header: <boost/mpi/datatype.hpp>

BOOST_IS_MPI_DATATYPE(T)

Header <boost/mpi/datatype_fwd.hpp>

This header provides forward declarations for the contents of the header datatype . hpp. It is expected to be used primarily by user-
defined C++ classes that need to specialize is_mpi_datatype.

namespace boost {
namespace mpi {
struct packed;
}
}

72

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../boost/mpi/datatype_fwd.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Struct packed

boost::mpi::packed — a dummy data type giving MPI_PACKED as its MPI_Datatype
Synopsis
// In header: <boost/mpi/datatype_fwd.hpp>

struct packed {
};

Header <boost/mpi/environment.hpp>

This header provides the environment class, which provides routines to initialize, finalization, and query the status of the Boost
MPI environment.

namespace boost {
namespace mpi {
cl ass environment;

73

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../boost/mpi/environment.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Class environment
boost::mpi::environment — Initialize, finalize, and query the MPI environment.

Synopsis

// In header: <boost/mpi/environment.hpp>
= true)

cl ass environment {
public:

// construct/copy/destruct
environment(bool = true);
environment(int &, char **&, bool

~environment();
// public static functions
voi d abort(int) ;
initializedQ ;

static
static bool
static finalized() ;
static
static int collectives_tag(Q ;
static
static optional< int > io_rank(Q) ;
static std::string processor_name() ;

}:

bool

int max_tagQ) ;

optional< int > host_rank() ;

Description
The environment class is used to initialize, finalize, and query the MPI environment. It will typically be used in the main(Q)

function of a program, which will create a single instance of environment initialized with the arguments passed to the program:

mpi::environment env(argc, argv);

{

3
true);

The instance of envi ronment will initialize MPI (by calling MP1_Init) in its constructor and finalize MPI (by callingMP1_Finalize

int main(int argc, char* argv[])
for normal termination or MP1_Abort for an uncaught exception) in its destructor.
The use of environment is not mandatory. Users may choose to invoke MPI1_Init and MP1_Final ize manually. In this case, no

environment object is needed. If one is created, however, it will do nothing on either construction or destruction.

environment(boo

Initialize the MPI environment.
If the MPI environment has not already been initialized, initializes MPI with a call to MP1_Init. Since this constructor does not
exception.

envi ronnent public construct/copy/destruct
abort_on_exception
take command-line arguments (argc and argv), it is only available when the underlying MPI implementation supports calling
MPI_Init with NULL arguments, indicated by the macro BOOST_MP1_HAS_NOARG_INITIALIZATION.
When true, this object will abort the program if it is destructed due to an uncaught

abort_on_exception
httpo://www.renderx.com/

74

Parameters:

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

abort_on_exception = true);

When true, this object will abort the program if it is destructed due to an uncaught
exception.
The number of arguments provided in argv, as passed into the program's main

bool
function.
The array of argument strings passed to the program via main.

Initialize the MPI environment.

environment(i nt & argc, char **& argv,
If the MPI environment has not already been initialized, initializes MPI with a call to MP1_Init.
abort_on_exception

Parameters:
argc
argv
~environment();
Shuts down the MPI environment.
If this environment object was used to initialize the MPI environment, and the MPI environment has not already been shut
down (finalized), this destructor will shut down the MPI environment. Under normal circumstances, this only involves invoking

MPI_Finalize. However, if destruction is the result of an uncaught exception and the abort_on_exception parameter of the
constructor had the value true, this destructor will invoke MP1_Abort with MP1_COMM_WORLD to abort the entire MPI program

with a result code of -1.
envi ronnent public static functions

static void abort(int errcode) ;

1.
The error code to return to the environment.

ation. This is equivalent to a call to MP1_Abort with MP1_COMM_WORLD.

Abort all MPI processes.
Aborts all MPI processes and returns to the environment. The precise behavior will be defined by the underlying MPI implement-

errcode
Will not return.

Parameters:

Returns:
initializedQ ;

Determine if the MPI environment has already been initialized.

static bool
This routine is equivalent to a call to MPI_Initialized.
true if the MPI environment has been initialized

Returns:
finalized() ;
Determine if the MPI environment has already been finalized.

static bool
The routine is equivalent to a call to MP1_Finalized.
true if the MPI environment has been finalized.

httpo://www.renderx.com/

Returns:
static int max_tagQ ;
75

Retrieves the maximum tag value.

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Returns the maximum value that may be used for the tag parameter of send/receive operations. This value will be somewhat
smaller than the value of MP1_TAG_UB, because the Boost.MPI implementation reserves some tags for collective operations.

the maximum tag value.

Returns:

The tag value used for collective operations.

static int collectives_tag() ;
Returns the reserved tag value used by the Boost.MPI implementation for collective operations. Although users are not permitted

to use this tag to send or receive messages, it may be useful when monitoring communication patterns.

Returns:

Retrieves the rank of the host process, if one exists.

the tag value used for collective operations.
static optional< int > host_rank() ;
If there is a host process, this routine returns the rank of that process. Otherwise, it returns an empty optional<int>. MPI does

not define the meaning of a "host" process: consult the documentation for the MPI implementation. This routine examines the

MP1_HOST attribute of MP1_COMM_WORLD.
The rank of the host process, if one exists.
This routine returns the rank of a process that can perform input/output via the standard C and C++ I/O facilities. If every process

Returns:

static optional< int > io_rank(Q ;
Retrieves the rank of a process that can perform input/output.

can perform /O using the standard facilities, this routine will return any_source; if no process can perform 1/O, this routine

will return no value (an empty optional). This routine examines the MP1_10 attribute of MP1_COMM_WORLD.
the rank of the process that can perform 1/O, any_source if every process can perform 1/O, or no value if no

process can perform 1/0.

static std::string processor_name() ;

Returns:
This routine returns the name of this processor. The actual form of the name is unspecified, but may be documented by the under-
lying MPI implementation. This routine is implemented as a call to MPI_Get_processor_name.

the name of this processor.

Header <boost/mpi/exception.hpp>

Retrieve the name of this processor.
Returns:
This header provides exception classes that report MPI errors to the user and macros that translate MPI error codes into Boost.MPI

exceptions.
httpo://www.renderx.com/

BOOST_MPI1_CHECK_RESULT(MPIFunc, Args)
76

render

http://www.boost.org/doc/libs/release/doc/html/../../boost/mpi/exception.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

nanespace boost {
nanespace mpi {
cl ass exception;

}
}

77
httpo://www.renderx.com/

g
iy

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Class exception
boost::mpi::exception — Catch-all exception class for MPI errors.

Synopsis

// In header: <boost/mpi/exception.hpp>

cl ass exception {
// construct/copy/destruct

public:
exception(const char *, int);

~exception();

// public member functions
const char * what() const ;
const char * routine() const ;
int result_code() const ;
int error_class() const ;

erable, depending on the underlying MPI implementation. Consult the documentation for your MPI implementation to determine

};
result_code);

Description
Instances of this class will be thrown when an MP1 error occurs. MPI failures that trigger these exceptions may or may not be recov-

the effect of MPI errors.
excepti on public construct/copy/destruct

exception(const char * routine, int
it will not be copied.

1

Build a new exception exception.
result_code
routine

Parameters:
~exception();

excepti on public member functions
const char * what() const ;

1.
A description of the error that occurred

const char * routine() const ;
Retrieve the name of the MPI routine that reported the error.

result_code() const ;
78

3'int
int error_class() const ;

The result code returned from the MPI routine that aborted with an error.
The MPI routine in which the error occurred. This should be a pointer to a string constant:

httpo://www.renderx.com/

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3

H
3

Boost.MPI

Macro BOOST MPI_CHECK_RESULT

BOOST_MPI_CHECK_RESULT
Synopsis

// In header: <boost/mpi/exception.hpp>

BOOST_MPI_CHECK_RESULT(MPIFunc, Args)

Description

Call the MPI routine MPIFunc with arguments Args (surrounded by parentheses). If the result is not MPI_SUCCESS, use
boost::throw_exception to throw an exception or abort, depending on BOOST_NO_EXCEPTIONS.

Header <boost/mpi/graph_communicator.hpp>

This header defines facilities to support MPI communicators with graph topologies, using the graph interface defined by the Boost
Graph Library. One can construct a communicator whose topology is described by any graph meeting the requirements of the Boost
Graph Library's graph concepts. Likewise, any communicator that has a graph topology can be viewed as a graph by the Boost Graph
Library, permitting one to use the BGL's graph algorithms on the process topology.

79

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../boost/mpi/graph_communicator.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

nanespace boost {
tenpl at e<> struct graph_traits<mpi::graph_communicator>;

nanespace mpi {
cl ass graph_communicator;
// Returns the source vertex from an edge in the graph topology of a communicator.

int source(const std::pair<int, int > & edge,
const graph_communicator &);

// Returns the target vertex from an edge in the graph topology of a communicator.

int target(const std::pair<int, int > & edge,
const graph_communicator &);
// Returns an iterator range containing all of the edges outgoing from the given vertex in a []

graph topology of a communicator.
unspecified out_edges(i nt vertex,
const graph_communicator & comm);

// Returns the out-degree of a vertex in the graph topology of a communicator.

int out_degree(int vertex, const graph_communicator & comm);
// Returns an iterator range containing all of the neighbors of the given vertex in the commul[J

nicator®s graph topology.
unspecified adjacent_vertices(i nt vertex,
const graph_communicator & comm);
// Returns an iterator range that contains all of the vertices with the communicator®s graph [J
i.e., all of the process ranks in the communicator.
std::pair< counting_iterator< int >, counting_iterator< int > >

topology,
vertices(const graph_communicator & comm);
// Returns the number of vertices within the graph topology of the communicator, i.e., the num[J

ber of processes in the communicator.
i nt num_vertices(const graph_communicator & comm);
// Returns an iterator range that contains all of the edges with the communicator®"s graph tol[J

pology.
unspecified edges(const graph_communicator & comm);
// Returns the number of edges in the communicator®s graph topology.
i nt num_edges(const graph_communicator & comm);
identity_property_map
get(vertex_index_t, const graph_communicator &);
i nt get(vertex_index_t, const graph_communicator &, int);

}
}

80

httpo://www.renderx.com/

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Class graph_communicator
boost::mpi::graph_communicator — An MPI communicator with a graph topology.

publ i ¢ boost::mpi::communicator {

Synopsis
graph_communicator(const MPI_Comm &, comm_create_kind);

// In header: <boost/mpi/graph_communicator.hpp>
cl ass graph_communicator
graph_communicator(const communicator &, const Graph &,

= false);

// construct/copy/destruct
= false);

t enpl at e<t ypenane Graph >
RankMap, boo
via a graph, using the interface defined by the Boost Graph Library. The graph_communicator class meets the requirements of

public:
bool
t enpl at e<t ypenane Graph , typenane RankMap >
graph_communicator(const communicator &, const Graph &,

}:

Description
A graph_communicator is a communicator whose topology is expressed as a graph. Graph communicators have the same func-

tionality as (intra)communicators, but also allow one to query the relationships among processes. Those relationships are expressed

the BGL Graph, Incidence Graph, Adjacency Graph, Vertex List Graph, and Edge List Graph concepts.

gr aph_communi cat or public construct/copy/destruct
graph_communicator(const MPI_Comm & comm, comm_create_kind kind);
Build a new Boost.MPI graph communicator based on the MPI communicator comm with graph topology.
comm may be any valid MPI communicator. If comm is MPI_COMM_NULL, an empty communicator (that cannot be used for
communication) is created and the kind parameter is ignored. Otherwise, the kind parameter determines how the Boost.MPI

1

communicator will be related to comm:
If kind is comm_attach, this Boost. MPI communicator will reference the existing MPI communicator comm but will not free

If kind is comm_duplicate, duplicate comm to create a new communicator. This new communicator will be freed when the
comm when the Boost. MP1 communicator goes out of scope. This option should only be used when the communicator is managed

Boost.MPI communicator (and all copies of it) is destroyed. This option is only permitted if the underlying MP1 implementation

supports MPI 2.0; duplication of intercommunicators is not available in MPI 1.x.

If kind is comm_take_ownership, take ownership of comm. It will be freed automatically when all of the Boost.MPI com-
reorder = false);

municators go out of scope.

by the user.
t enpl at e<t ypenanme Graph >
graph_communicator(const communicator & comm,
the communicator; in this case, the resulting communicator will be a NULL communicator.
httpo://www.renderx.com/

The communicator that the new, graph communicator will be based on.
81

const Graph & graph, boo
Create a new communicator whose topology is described by the given graph. The indices of the vertices in the graph will be assumed

to be the ranks of the processes within the communicator. There may be fewer vertices in the graph than there are processes in
comm

Parameters:

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI
Any type that meets the requirements of the Incidence Graph and Vertex List Graph concepts
from the Boost Graph Library. This structure of this graph will become the topology of the com-

municator that is returned.

graph
Whether MPI is permitted to re-order the process ranks within the returned communicator, to

better optimize communication. If false, the ranks of each process in the returned process will
match precisely the rank of that process within the original communicator.

reorder

const Graph & graph, RankMap rank,
false);
Create a new communicator whose topology is described by the given graph. The rank map (rank) gives the mapping from vertices

bool

" tenpl at e<typenane Graph , typenane RankMap >
graph_communicator(const communicator & comm,
reorder =
in the graph to ranks within the communicator. There may be fewer vertices in the graph than there are processes in the commu-
comm The communicator that the new, graph communicator will be based on. The ranks in rank refer

nicator; in this case, the resulting communicator will be a NULL communicator.
to the processes in this communicator.
Any type that meets the requirements of the Incidence Graph and Vertex List Graph concepts
from the Boost Graph Library. This structure of this graph will become the topology of the com-
This map translates vertices in the graph into ranks within the current communicator. It must be
a Readable Property Map (see the Boost Property Map library) whose key type is the vertex type

graph

Parameters:
of the graph and whose value type is int.

rank
Whether MPI is permitted to re-order the process ranks within the returned communicator, to

municator that is returned.
better optimize communication. If false, the ranks of each process in the returned process will
match precisely the rank of that process within the original communicator.

reorder

82

httpo://www.renderx.com/

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Function get

boost::mpi::get — Returns a property map that maps from vertices in a communicator's graph topology to their index values.
Synopsis

// In header: <boost/mpi/graph_communicator.hpp>

identity_property_map
get(vertex_index_t, const graph_communicator &);

Description

Since the vertices are ranks in the communicator, the returned property map is the identity property map.

83

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Function get

boost::mpi::get — Returns the index of a vertex in the communicator's graph topology.
Synopsis

// In header: <boost/mpi/graph_communicator.hpp>

i nt get(vertex_index_t, const graph_communicator &, int vertex);

Description

Since the vertices are ranks in the communicator, this is the identity function.

84

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Struct graph_traits<mpi::graph_communicator>
boost::graph_traits<mpi::graph_communicator> — Traits structure that allows a communicator with graph topology to be view as

a graph by the Boost Graph Library.

Synopsis
// In header: <boost/mpi/graph_communicator.hpp>
struct graph_traits<mpi::graph_communicator> {
vertex_descriptor;
edge_descriptor;
directed_category;
edge_parallel_category
out_edge_iterator;
degree_size_type;

adjacency_iterator;

std::pair< int, int >
vertex_iterator;
vertices_size_type;

disallow_parallel_edge_ tag

// types
t ypedef int
t ypedef
t ypedef directed_tag
t ypedef
t ypedef unspecified
t ypedef int
t ypedef unspecified
t ypedef counting_iterator< int >
t ypedef int
t ypedef unspecified edge_iterator;
t ypedef int edges_size_type;
// public static functions
static vertex_descriptor null_vertex(Q) ;
};
Description
The specialization of graph_traits for an MPI communicator allows a communicator with graph topology to be viewed as a
graph. An MPI communicator with graph topology meets the requirements of the Graph, Incidence Graph, Adjacency Graph, Vertex
List Graph, and Edge List Graph concepts from the Boost Graph Library.
graph_traits public static functions
static vertex_descriptor null_vertex() ;
Header <boost/mpi/group.hpp>
This header defines the group class, which allows one to manipulate and query groups of processes.
oper at or ==(const group &, const group &)
group &);
group &, const group &);
group &, const group &);
group &, const group &);

namespace boost {
namespace mpi {
cl ass group;
BOOST_MPI1_DECL bool
BOOST_MPI1_DECL group operator | (const
BOOST_MPI_DECL group oper at or &(const

oper at or '=(const group &, const
BOOST_MPI_DECL group oper at or -(const

bool

85

render

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../boost/mpi/group.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Class group

boost::mpi::group — A group is a representation of a subset of the processes within a communicator

Synopsis
// In header: <boost/mpi/group.hpp>

class group {
group(const MPI_Group &, bool);

public:
t enpl at e<t ypenane Inputlterator , typenane Outputlterator >
Inputlterator, const group &,

// construct/copy/destruct
groupQ);

// public member functions
optional< int > rank() const ;
int size() const;

Outputlterator) ;

translate_ranks(Inputlterator,
Inputlterator) ;

Outputlterator
oper at or bool () const ;
MPI_Group() const ;
t enpl at e<t ypenane Inputlterator >
group include(Inputlterator,
Inputlterator) ;
The group class allows one to create arbitrary subsets of the processes within a communicator. One can compute the union, inter-
section, or difference of two groups, or create new groups by specifically including or excluding certain processes. Given a group,

oper at or
t enpl at e<t ypenane Inputlterator >
group exclude(Inputlterator,

};
Description

one can create a new communicator containing only the processes in that group.
adopt);

gr oup public construct/copy/destruct

~group();
MPI_Group & in_group, boo

" group(const

MP1_Group
copies) will free the group (via MP1_Comm_free) when the last copy is destroyed. Otherwise,

This routine allows one to construct a Boost. MPI group from a C MPI_Group. The group object can (optionally) adopt the
MPI_Group, after which point the group object becomes responsible for freeing the MP1_Group when the last copy of group
Whether the group should adopt the MP1_Group. When true, the group object (or one of its

adopt
the user is responsible for calling MP1_Group_free.
The MP1_Group used to construct this group.

disappears.

Parameters:
in_group
group public member functions
86
httpo://www.renderx.com/

optional< int > rank() const ;

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

The rank of the calling process in the group, which will be a value in [0, size()). If the calling process is not in the

This routine is equivalent to MP1_Group_rank.
group, returns an empty value.

Returns:
Inputlterator last,

int size() const ;
This routine is equivalent to MP1_Group_size.
The number of processes in the group.
group & to_group, Outputlterator out) ;
the corresponding processes in to_group. The corresponding rank values are written via the output iterator out. When there is

Returns:
Outputl terator
const

3

" tenpl at e<t ypenane Inputlterator , typenane Outputlterator >
translate_ranks(Inputlterator first,
This routine translates each of the integer rank values in the iterator range [first, last) from the current group into rank values of

first Beginning of the iterator range of ranks in the current group.
Past the end of the iterator range of ranks in the current group.
The output iterator to which the translated ranks will be written.

The group that we are translating ranks to.

output iterator.
last

out
to_group

no correspondence between a rank in the current group and a rank in to_group, the value MP1_UNDEFINED is written to the

Parameters:
the output iterator, which points one step past the last rank written.

Returns:
bool () const ;

True if the group is not empty, false if it is empty.

The MPI_Group handle manipulated by this object. If this object represents the empty group, returns

oper at or

Returns:
MPI_Group() const ;

oper at or
Inputlterator last) ;

MP1_Group
Returns:
MPI_GROUP_EMPTY.
" tenpl at e<t ypenane Inputlterator >
group include(Inputlterator first,
This routine creates a new group which includes only those processes in the current group that are listed in the integer iterator

range [first, last). Equivalent to MP1_Group_incl.
first The beginning of the iterator range of ranks to include.

A new group containing those processes with ranks [first, last) in the current group.
Inputlterator last) ;

last Past the end of the iterator range of ranks to include.

" tenpl at e<typenane Inputlterator >
group exclude(Inputlterator first,
httpo://www.renderx.com/

Returns:
This routine creates a new group which includes all of the processes in the current group except those whose ranks are listed in
the integer iterator range [first, last). Equivalent to MP1_Group_excl.
87

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

First The beginning of the iterator range of ranks to exclude.
last Past the end of the iterator range of ranks to exclude.

Returns: A new group containing all of the processes in the current group except those processes with ranks [first, last) in
the current group.

88

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Function operator==

boost::mpi::operator== — Determines whether two process groups are identical.
Synopsis

// In header: <boost/mpi/group.hpp>

BOOST_MPI1_DECL bool operator==(const group & gl, const group & g2);

Description
Equivalent to calling MP1_Group_compare and checking whether the result is MP1_IDENT.

Returns: True when the two process groups contain the same processes in the same order.

89

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Function operator!=

boost::mpi::operator!= — Determines whether two process groups are not identical.
Synopsis

// In header: <boost/mpi/group.hpp>

bool operator !'=(const group & gl, const group & g2);

Description
Equivalent to calling MP1_Group_compare and checking whether the result is not MP1_IDENT.

Returns: False when the two process groups contain the same processes in the same order.

90

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Function operator|

boost::mpi::operator] — Computes the union of two process groups.

Synopsis

// In header: <boost/mpi/group.hpp>

BOOST_MPI_DECL group operator |(const group & gl, const group & g2);

Description

This routine returns a new group that contains all processes that are either in group g1 or in group g2 (or both). The processes that
are in g1 will be first in the resulting group, followed by the processes from g2 (but not also in gi1). Equivalent to
MPI_Group_union.

91

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Function operator&

boost::mpi::operator& — Computes the intersection of two process groups.
Synopsis

// In header: <boost/mpi/group.hpp>

BOOST_MPI1_DECL group operator &(const group & gl, const group & g2);

Description

This routine returns a new group that contains all processes that are in group g1 and in group g2, ordered in the same way as g1.
Equivalent to MPI_Group_intersection.

92

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Function operator-

boost::mpi::operator- — Computes the difference between two process groups.
Synopsis
// In header: <boost/mpi/group.hpp>

BOOST_MPI1_DECL group operator-(const group & gl, const group & g2);

Description

This routine returns a new group that contains all processes that are in group g1 but not in group g2, ordered in the same way as
gl. Equivalent to MPI_Group_difference.

Header <boost/mpi/intercommunicator.hpp>

This header defines the intercommunicator class, which permits communication between different process groups.

nanespace boost {
nanespace mpi {
cl ass intercommunicator;
}
}

93

render

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../boost/mpi/intercommunicator.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Class intercommunicator
boost::mpi::intercommunicator — Communication facilities among processes in different groups

publ i ¢ boost::mpi::communicator {

Synopsis

// In header: <boost/mpi/intercommunicator.hpp>

intercommunicator

// construct/copy/destruct
intercommunicator(const communicator &, int,
const communicator &, int);

cl ass

public:
intercommunicator(const MPI_Comm &, comm_create_kind);

local_size() const ;

// public member functions

int
boost::mpi::group local_group() const ;
local_rank() const ;

boost::mpi::group remote_group() const ;
The intercommunicator class provides communication facilities among processes from different groups. An intercommunicator

remote_size() const ;
communicator merge(bool) const ;
is always associated with two process groups: one "local™ process group, containing the process that initiates an MPI operation (e.g.,
the sender in a send operation), and one "remote™ process group, containing the process that is the target of the MPI operation.

int
While intercommunicators have essentially the same point-to-point operations as intracommunicators (the latter communicate only

int

};
Description

within a single process group), all communication with intercommunicators occurs between the processes in the local group and the
MPI_Comm & comm, comm_create_kind kind);

processes in the remote group; communication within a group must use a different (intra-)communicator.

i nt ercommuni cat or public construct/copy/destruct

intercommunicator(const

Build a new Boost.MPI intercommunicator based on the MPI intercommunicator comm.

comm may be any valid MPI intercommunicator. If comm is MPI_COMM_NULL, an empty communicator (that cannot be used
for communication) is created and the kind parameter is ignored. Otherwise, the kind parameter determines how the Boost.MPI
 If kind is comm_duplicate, duplicate comm to create a new communicator. This new communicator will be freed when the

Boost.MPI communicator (and all copies of it) is destroyed. This option is only permitted if the underlying MPI implementation
local_leader,

communicator will be related to comm:
supports MPI 2.0; duplication of intercommunicators is not available in MPI 1.x.
 If kind is comm_attach, this Boost. MPI communicator will reference the existing MPI communicator comm but will not free

» If kind is comm_take_ownership, take ownership of comm. It will be freed automatically when all of the Boost.MPI com-
comm when the Boost. MP1 communicator goes out of scope. This option should only be used when the communicator is managed

municators go out of scope.

const communicator & peer, int remote_leader);
94

httpo://www.renderx.com/

by the user.
intercommunicator(const communicator & local, int

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

The rank within the Tocal intracommunicator that will serve as its leader.
The intracommunicator containing all of the processes that will go into the remote group.
The rank within the peer group that will serve as its leader.

Constructs a new intercommunicator whose local group is Iocal and whose remote group is peer. The intercommunicator can
then be used to communicate between processes in the two groups. This constructor is equivalent to a call to MP1__Intercomm_cre-
ate.
local The intracommunicator containing all of the processes that will go into the local group.
local_leader

Parameters:

peer
remote_leader
i nt erconmuni cat or public member functions
Returns the size of the local group, i.e., the number of local processes that are part of the group.

local_size() const ;

1'int

boost: :mpi::group local_group() const ;
Returns the local group, containing all of the local processes in this intercommunicator.

local_rank() const ;
Returns the size of the remote group, i.e., the number of processes that are part of the remote group.

3‘int
Returns the rank of this process within the local group.

remote_size() const ;

4'int
boost: :mpi::group remote_group() const ;

Returns the remote group, containing all of the remote processes in this intercommunicator.
Merge the local and remote groups in this intercommunicator into a new intracommunicator containing the union of the processes

communicator merge(bool high) const ;
Whether the processes in this group should have the higher rank numbers than the processes in the
other group. Each of the processes within a particular group shall have the same "high" value.

in both groups. This method is equivalent to MP1_Intercomm_merge.
high

Returns: the new, merged intracommunicator

Parameters:
Header <boost/mpi/nonblocking.hpp>
This header defines operations for completing non-blocking communication requests.

95
httpo://www.renderx.com/

render

http://www.boost.org/doc/libs/release/doc/html/../../boost/mpi/nonblocking.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

nanespace boost {
nanespace mpi {
t enpl at e<t ypenane Forwardlterator >
test_any(Forwardlterator, Forwardlterator);
t enpl at e<t ypenane Forwardlterator , typenane Outputlterator >

std: :pair< status, Forwardlterator >
wait_all(Forwardlterator, Forwardlterator, Outputlterator);

t enpl at e<t ypenane Forwardlterator >
wait_any(Forwardlterator, Forwardlterator);
optional< std::pair< status, Forwardlterator > >

Outputlterator
t enpl at e<t ypenane Forwardlterator >
voi d wait_all(Forwardlterator, Forwardlterator);
t enpl at e<t ypenane Forwardlterator , typenane Outputlterator >
optional< Outputlterator >
test_all(Forwardlterator, Forwardlterator, Outputlterator);
t enpl at e<t ypenane Forwardlterator >
bool test_all(Forwardlterator, Forwardlterator);
t enpl at e<t ypenane Bidirectionallterator ,
typenane Outputlterator >
std: :pair< Outputlterator, Bidirectionallterator >
wait_some(Bidirectionallterator, Bidirectionallterator,

Outputlterator);
t enpl at e<t ypenane Bidirectionallterator >
wait_some(Bidirectionallterator, Bidirectionallterator);

Outputlterator);

Bidirectional lterator
std::pair< Outputlterator, Bidirectionallterator >
test_some(Bidirectionallterator, Bidirectionallterator);

t enpl at e<t ypenane Bidirectionallterator ,
typenane Outputlterator >
test_some(Bidirectionallterator, Bidirectionallterator,

t enpl at e<t ypenane Bidirectionallterator >
Bidirectional lterator

96

httpo://www.renderx.com/

render =
>

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Function template wait_any

boost::mpi::wait_any — Wait until any non-blocking request has completed

Synopsis
// In header: <boost/mpi/nonblocking.hpp>
t enpl at e<t ypenane Forwardlterator >
std: :pair< status, Forwardlterator >
wait_any(Forwardlterator first, Forwardlterator last)
This routine takes in a set of requests stored in the iterator range [first,last) and waits until any of these requests has been completed.
The iterator that denotes the end of the sequence of request objects. This may not be equal to First.

Description
first The iterator that denotes the beginning of the sequence of request objects.

last

A pair containing the status object that corresponds to the completed operation and the iterator referencing the
completed request.

It provides functionality equivalent to MPI_Wai tany.

Parameters:

Returns:

97
httpo://www.renderx.com/

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Function template test_any
boost::mpi::test_any — Test whether any non-blocking request has completed

Synopsis

// In header: <boost/mpi/nonblocking.hpp>
optional< std::pair< status, Forwardlterator > >
This routine takes in a set of requests stored in the iterator range [first,last) and tests whether any of these requests has been completed.

t enpl at e<t ypenane Forwardlterator >

test_any(Forwardlterator first, Forwardlterator last);
This routine is similar to wait_any, but will not block waiting for requests to completed. It provides functionality equivalent to

Description
The iterator that denotes the end of the sequence of request objects.

MPI1_Testany.
last
If any outstanding requests have completed, a pair containing the status object that corresponds to the completed

first The iterator that denotes the beginning of the sequence of request objects.
operation and the iterator referencing the completed request. Otherwise, an empty optional<>.

Parameters:

Returns:

98

httpo://www.renderx.com/

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Function wait_all
boost::mpi::wait_all — Wait until all non-blocking requests have completed.

Synopsis
// In header: <boost/mpi/nonblocking.hpp>
t enpl at e<t ypename Forwardlterator , typenanme Outputlterator >

wait_all(Forwardlterator first, Forwardlterator last,

Outputlterator
t enpl at e<t ypenane Forwardlterator >

first The iterator that denotes the beginning of the sequence of request objects.
The iterator that denotes the end of the sequence of request objects.

Description
This routine takes in a set of requests stored in the iterator range [first,last) and waits until all of these requests have been completed.

Outputlterator out);
voi d wait_all(Forwardlterator first, Forwardlterator last);
If provided, an output iterator through which the status of each request will be emitted. The status
objects are emitted in the same order as the requests are retrieved from [first,last).

It provides functionality equivalent to MPI_Waitall.

last

out

Parameters:
If an out parameter was provided, the value out after all of the status objects have been emitted.

Returns:

99
httpo://www.renderx.com/

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Function test_all
boost::mpi::test_all — Tests whether all non-blocking requests have completed.

Synopsis
// In header: <boost/mpi/nonblocking.hpp>
t enpl at e<t ypename Forwardlterator , typenanme Outputlterator >

test_all(Forwardlterator first, Forwardlterator last,

optional< Outputlterator >
Outputlterator out);

bool

test_all(Forwardlterator first, Forwardlterator last);
Description
This routine takes in a set of requests stored in the iterator range [first,last) and determines whether all of these requests have been

t enpl at e<t ypenane Forwardlterator >

completed. However, due to limitations of the underlying MPI implementation, if any of the requests refers to a non-blocking send
or receive of a serialized data type, test_al I will always return the equivalent of false (i.e., the requests cannot all be finished
at this time). This routine performs the same functionality as wait_al I, except that this routine will not block. This routine provides

first
last
out

functionality equivalent to MP1_Testall.
The iterator that denotes the beginning of the sequence of request objects.
The iterator that denotes the end of the sequence of request objects.
If provided and all requests hav been completed, an output iterator through which the status of each
request will be emitted. The status objects are emitted in the same order as the requests are retrieved
If an out parameter was provided, the value out after all of the status objects have been emitted (if all requests

from [first,last).

Parameters:
were completed) or an empty optional<>. If no out parameter was provided, returns true if all requests have

completed or false otherwise.

Returns:

100
httpo://www.renderx.com/

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Function wait_some
boost::mpi::wait_some — Wait until some non-blocking requests have completed

Synopsis
// In header: <boost/mpi/nonblocking.hpp>
t enpl at e<t ypenane Bidirectionallterator ,
typenane Outputlterator >
std::pair< Outputlterator, Bidirectionallterator >
wait_some(Bidirectionallterator first,
Bidirectional lterator last, Outputlterator out);

Bidirectional lterator

t enpl at e<t ypenane Bidirectionallterator >
wait_some(Bidirectionallterator first,
Bidirectional lterator last);
an output iterator is provided, status objects will be emitted for each of the completed requests. This routine provides functionality

It then completes all of the requests it can, partitioning the input sequence into pending requests followed by completed requests. If
The iterator that denotes the end of the sequence of request objects. This may not be equal to first.

Description
This routine takes in a set of requests stored in the iterator range [first,last) and waits until at least one of the requests has completed.

If provided, the status objects corresponding to completed requests will be emitted through this output

last

out

equivalent to MP1_Waitsome.
iterator.

Parameters: first The iterator that denotes the beginning of the sequence of request objects.
If the out parameter was provided, a pair containing the output iterator out after all of the status objects have

been written through it and an iterator referencing the first completed request. If no out parameter was provided,

only the iterator referencing the first completed request will be emitted.

Returns:

101
httpo://www.renderx.com/

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Function test_some
boost::mpi::test_some — Test whether some non-blocking requests have completed

Synopsis
// In header: <boost/mpi/nonblocking.hpp>
t enpl at e<t ypenane Bidirectionallterator ,
typenane Outputlterator >
std::pair< Outputlterator, Bidirectionallterator >
test_some(Bidirectionallterator first,
Bidirectional lterator last, Outputlterator out);

Bidirectional lterator
but does not wait until any requests have completed. This routine provides functionality equivalent to MP1_Testsome.

Description
This routine takes in a set of requests stored in the iterator range [first,last) and tests to see if any of the requests has completed. It

t enpl at e<t ypenane Bidirectionallterator >
test_some(Bidirectionallterator first,
Bidirectional lterator last);
completes all of the requests it can, partitioning the input sequence into pending requests followed by completed requests. If an
output iterator is provided, status objects will be emitted for each of the completed requests. This routine is similar to wait_some,
The iterator that denotes the end of the sequence of request objects. This may not be equal to first.

If provided, the status objects corresponding to completed requests will be emitted through this output

last
iterator.

Parameters: first The iterator that denotes the beginning of the sequence of request objects.
If the out parameter was provided, a pair containing the output iterator out after all of the status objects have

been written through it and an iterator referencing the first completed request. If no out parameter was provided,

only the iterator referencing the first completed request will be emitted.

Returns:

Header <boost/mpi/operations.hpp>
is_commutative;

minimum;

out
This header provides a mapping from function objects to MP1_0Op constants used in MPI collective operations. It also provides sev-
bitwise_and;

Op , typename T > struct
maximum;

struct

eral new function object types not present in the standard <functional> header that have direct mappings to MP1_Op.
bitwise or;
is_mpi_op;

namespace boost {
namespace mpi {
t enpl at e<t ypenane
t enpl at e<t ypenane >
tenpl at e<typenane T > struct
tenpl at e<typenane T > struct
tenpl at e<typenane T > struct
T > struct logical_xor;
T > struct bitwise_xor;
Op , typename T > struct

t enpl at e<t ypenane
t enpl at e<t ypenane
t enpl at e<t ypenane

}
102
httpo://www.renderx.com/

render

http://www.boost.org/doc/libs/release/doc/html/../../boost/mpi/operations.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Struct template is_commutative

boost::mpi::is_commutative — Determine if a function object type is commutative.
Synopsis

// In header: <boost/mpi/operations.hpp>

t enpl at e<typenane Op , typename T >
struct is_commutative {

}:

Description

This trait determines if an operation Op is commutative when applied to values of type T. Parallel operations such as reduce and
prefix_sum can be implemented more efficiently with commutative operations. To mark an operation as commutative, users should
specialize is_commutative and derive from the class mpl : - true_.

103

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Struct template maximum

boost::mpi::maximum — Compute the maximum of two values.
Synopsis

// In header: <boost/mpi/operations.hpp>

tenpl ate<typenane T >
struct maximum {

// public member functions
const T & operator(Q(const T &, const T &) const ;

};

Description

This binary function object computes the maximum of the two values it is given. When used with MPI and a type T that has an asso-
ciated, built-in MPI data type, translates to MP1_MAX.

maxi mumpublic member functions

1'const T & operator Q(const T & x, const T & y) const ;

Returns: the maximum of x and y.

104

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Struct template minimum

boost::mpi::minimum — Compute the minimum of two values.
Synopsis

// In header: <boost/mpi/operations.hpp>

tenpl ate<typenane T >
struct minimum {

// public member functions
const T & operator(Q(const T &, const T &) const ;

};

Description

This binary function object computes the minimum of the two values it is given. When used with MPI and a type T that has an asso-
ciated, built-in MPI data type, translates to MP1_MIN.

m ni mumpublic member functions

L const T & operator(Q(const T & x, const T & y) const ;

Returns: the minimum of x and y.

105

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Struct template bitwise_and

boost::mpi::bitwise_and — Compute the bitwise AND of two integral values.
Synopsis

// In header: <boost/mpi/operations.hpp>

tenpl ate<typenane T >
struct bitwise_and {

// public member functions
T operator Q(const T &, const T &) const ;

};

Description

This binary function object computes the bitwise AND of the two values it is given. When used with MPI and a type T that has an
associated, built-in MPI data type, translates to MP1_BAND.

bi t wi se_and public member functions

1'T operator Q(const T & x, const T & y) const ;

Returns: X &Y.

106

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Struct template bitwise_or

boost::mpi::bitwise_or — Compute the bitwise OR of two integral values.
Synopsis

// In header: <boost/mpi/operations.hpp>

tenpl ate<typenane T >
struct bitwise_or {

// public member functions
T operator Q(const T &, const T &) const ;

};

Description

This binary function object computes the bitwise OR of the two values it is given. When used with MPI and a type T that has an as-
sociated, built-in MPI data type, translates to MP1_BOR.

bi t wi se_or public member functions

1'T operator Q(const T & x, const T & y) const ;

Returns: the x | y.

107

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Struct template logical_xor

boost::mpi::logical_xor — Compute the logical exclusive OR of two integral values.
Synopsis

// In header: <boost/mpi/operations.hpp>

tenpl ate<typenane T >
struct logical_xor {

// public member functions
T operator Q(const T &, const T &) const ;

};

Description

This binary function object computes the logical exclusive of the two values it is given. When used with MPI and a type T that has
an associated, built-in MPI data type, translates to MP1_LXOR.

| ogi cal _xor public member functions

1'T operator Q(const T & x, const T & y) const ;

Returns: the logical exclusive OR of x and y.

108

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Struct template bitwise_xor

boost::mpi::bitwise_xor — Compute the bitwise exclusive OR of two integral values.
Synopsis

// In header: <boost/mpi/operations.hpp>

tenpl ate<typenane T >
struct bitwise_xor {

// public member functions
T operator Q(const T &, const T &) const ;

};

Description

This binary function object computes the bitwise exclusive OR of the two values it is given. When used with MPI and a type T that
has an associated, built-in MPI data type, translates to MP1_BXOR.

bi t wi se_xor public member functions

1'T operator Q(const T & x, const T & y) const ;

Returns: xMy.

109

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Struct template is_mpi_op
boost::mpi::is_mpi_op — Determine if a function object has an associated MP1_Op

Synopsis
tenpl at e<typenane Op , typenane T >
This trait determines if a function object type Op, when used with argument type T, has an associated MP1_Op. If so, is_mpi_op<Op,T>

// In header: <boost/mpi/operations.hpp>
will derive from mpl : - false_ and will contain a static member function op that takes no arguments but returns the associated

struct is_mpi_op {

}:

Users may specialize is_mpi_op for any other class templates that map onto operations that have MP1_Op equivalences, such as
boost/mpi/operations.hpp headers whenever possible. For function objects that are class templates with a single template

Description
MPI_Op value. For instance, is_mpi_op<std: :plus<int>,int>op() returns MP1_SUM.

bitwise OR, logical and, or maximum. However, users are encouraged to use the standard function objects in the functional and

parameter, it may be easier to specialize is_bui ltin_mpi_op.
This header provides the facilities for packing Serializable data types into a buffer using MP1_Pack. The buffers can then be trans-

Header <boost/mpi/packed iarchive.hpp>
mitted via MPI and then be unpacked either via the facilities in packed_oarchive.hpp or MP1_Unpack.

namespace boost {
namespace mpi {

cl ass packed_iarchive;

t ypedef packed_iprimitive iprimitive;

}
}

110

httpo://www.renderx.com/

render

http://www.boost.org/doc/libs/release/doc/html/../../boost/mpi/packed_iarchive.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Class packed iarchive
boost::mpi::packed_iarchive — An archive that packs binary data into an MPI buffer.

Synopsis
// In header: <boost/mpi/packed_iarchive.hpp>
= boost::archive::no_header,

packed_iarchive(MPl_Comm const &, buffer_type &,
= boost::archive::no_header)

= 0);

cl ass packed_iarchive {
int
packed_iarchive(MP1_Comm const &, std::size_t = O,

public:

// construct/copy/destruct
unsi gned i nt
unsi gned i nt

// public member functions

tenpl ate<class T > void load_override(T &, int, mpl::false) ;

tenpl ate<class T > void load_override(T &, int, mpl::true) ;

tenpl ate<class T > void load_override(T &, int) ;
The packed_iarchive class is an Archiver (as in the Boost.Serialization library) that packs binary data into a buffer for transmission
via MPI. It can operate on any Serializable data type and will use the MP1_Pack function of the underlying MPI implementation to

};
boost: :archive: :no_header,

Description

int position =
0,

perform serialization.
packed_i ar chi ve public construct/copy/destruct
" packed_iarchive(MPI_Comm const & comm, buffer_type & b,
unsi gned int flags =
= 0);
Construct a packed_iarchive for transmission over the given MPI communicator and with an initial buffer.
A user-defined buffer that will be filled with the binary representation of serialized objects.
The communicator over which this archive will be sent.
Control the serialization of the data types. Refer to the Boost.Serialization documentation before
Set the offset into buffer b at which deserialization will begin.

b

comm

flags
changing the default flags.

Parameters:
position

' packed_iarchive(MPI_Comm const & comm, std::size_t s

unsi gned int flags = boost::archive::no_header);
Construct a packed_iarchive for transmission over the given MPI communicator.
The communicator over which this archive will be sent.

Control the serialization of the data types. Refer to the Boost.Serialization documentation before

comm

flags
changing the default flags.

The size of the buffer to be received.

Parameters:
s

111
httpo://www.renderx.com/

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

packed_i ar chi ve public member functions

1
tenpl ate<class T >
voi d load_override(T & x, int version, mpl::false) ;

2‘tenplate<c|ass T > void load_override(T & x, int, mpl::true) ;

3'tenplate<c|ass T > void load_override(T & x, int version) ;

Header <boost/mpi/packed_oarchive.hpp>

This header provides the facilities for unpacking Serializable data types from a buffer using MP1_Unpack. The buffers are typically
received via MPI and have been packed either by via the facilities in packed_iarchive.hpp or MPI_Pack.

namespace boost {
namespace mpi {
cl ass packed_oarchive;

t ypedef packed_oprimitive oprimitive;
}
}

112

render

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../boost/mpi/packed_oarchive.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Class packed_oarchive
boost::mpi::packed_oarchive — An archive that unpacks binary data from an MPI buffer.

Synopsis
// In header: <boost/mpi/packed_oarchive.hpp>
= boost::archive::no_header)

= boost::archive::no_header)

// construct/copy/destruct
unsi gned i nt

public:
unsi gned i nt

cl ass packed_oarchive {
packed_oarchive(MP1_Comm const &, buffer_type &,
packed_oarchive(MP1_Comm const &,

// public member functions
tenpl ate<class T >
voi d save_override(T const &, int, mpl::false) ;

tenpl ate<class T >
voi d save_override(T const &, int, mpl::true) ;

tenpl ate<class T > void save_override(T const &, int) ;

};
Description

The packed_oarchive class is an Archiver (as in the Boost.Serialization library) that unpacks binary data from a buffer received
via MPI. It can operate on any Serializable data type and will use the MP1_Unpack function of the underlying MPI implementation
boost: :archive::no_header);

to perform deserialization.
packed_oar chi ve public construct/copy/destruct
' packed_oarchive(MPI_Comm const & comm, buffer_type & b,
unsi gned int flags

The communicator over which this archive will be received.

b

Construct a packed_oarchive to receive data over the given MPI communicator and with an initial buffer.
A user-defined buffer that contains the binary representation of serialized objects.
comm
Control the serialization of the data types. Refer to the Boost.Serialization documentation before

changing the default flags.

flags

Parameters:
unsi gned int flags = boost::archive::no_header);

' packed_oarchive(MPI_Comm const & comm,
Construct a packed_oarchive to receive data over the given MP1 communicator.
The communicator over which this archive will be received.

2
Control the serialization of the data types. Refer to the Boost.Serialization documentation before

comm
flags
changing the default flags.

Parameters:
packed_oar chi ve public member functions
113

voi d save_override(T const & x, int version, mpl::false) ;
httpo://www.renderx.com/

"tenplate<class T >

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

2'tenplate<c|ass T >
voi d save_override(T const & x, int, mpl::true) ;

3'tenplate<c|ass T > void save_override(T const & X, int version) ;

Header <boost/mpi/python.hpp>

This header interacts with the Python bindings for Boost.MPI. The routines in this header can be used to register user-defined and
library-defined data types with Boost.MPI for efficient (de-)serialization and separate transmission of skeletons and content.

nanespace boost {
nanmespace mpi {
nanmespace python {

tenpl at e<typenane T >

voi d register_serialized(const T & = TQ),
PyTypeObject * = 0);

tenpl ate<typename T >

voi d register_skeleton_and_content(const T & = TQ),
PyTypeObject * = 0);

114

render

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/../../boost/mpi/python.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Function template register_serialized

T0,
= 0);

boost::mpi::python::register_serialized — Register the type T for direct serialization within Boost.MPI.

tenpl ate<typenane T >

Synopsis
// In header: <boost/mpi/python.hpp>
PyTypeObject * type
Description
The register_serialized function registers a C++ type for direct serialization within Boost.MPI. Direct serialization elides the

use of the Python pickle package when serializing Python objects that represent C++ values. Direct serialization can be beneficial

value value.

C++ objects that do not support pickling.
A sample value of the type T. This may be used to compute the Python type associated with the C++

type

voi d register_serialized(const T & value
both to improve serialization performance (Python pickling can be very inefficient) and to permit serialization for Python-wrapped
The Python type associated with the C++ type T. If not provided, it will be computed from the same
value

type T.

Parameters:

115

httpo://www.renderx.com/

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

=TQO,
= 0);

Function template register_skeleton_and_content
boost::mpi::python::register_skeleton_and_content — Registers a type for use with the skeleton/content mechanism in Python.

PyTypeObject * type

tenpl ate<typenane T >

voi d register_skeleton_and_content(const T & value
Description
The skeleton/content mechanism can only be used from Python with C++ types that have previously been registered via a call to
The Python type associated with the C++ type T. If not provided, it will be computed from the same

value value.

Synopsis
// In header: <boost/mpi/python.hpp>
this function. Both the sender and the transmitter must register the type. It is permitted to call this function multiple times for the
type

same type T, but only one call per process per type is required. The type T must be Serializable.
A sample object of type T that will be used to determine the Python type associated with T, if type is

not specified.

Parameters:
Header <boost/mpi/request.npp>

value
This header defines the class request, which contains a request for non-blocking communication.

namespace boost {
namespace mpi {
cl ass request;

}
}

116

httpo://www.renderx.com/

render

http://www.boost.org/doc/libs/release/doc/html/../../boost/mpi/request.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Class request
boost::mpi::request — A request for a non-blocking send or receive.

Synopsis
// In header: <boost/mpi/request.hpp>

cl ass request {
// construct/copy/destruct

public:

request();
// public member functions

status wait(Q ;

optional< status > test() ;
voi d cancel() ;

};
Description

This structure contains information about a non-blocking send or receive and will be returned from isend or irecv, respectively.
request public construct/copy/destruct

request();
Constructs a NULL request.
request public member functions

status wait() ;

yet. Note that once test() returns a status object, the request has completed and wait() should not be called.

1.
Wait until the communication associated with this request has completed, then return a status object describing the communic-

ation.
optional< status > test() ;
Determine whether the communication associated with this request has completed successfully. If so, returns the status object

describing the communication. Otherwise, returns an empty optional<> to indicate that the communication has not completed

voi d cancel() ;

117
httpo://www.renderx.com/

Cancel a pending communication, assuming it has not already been completed.

Header <boost/mpi/skeleton_and content.hpp>
This header provides facilities that allow the structure of data types (called the "skeleton™) to be transmitted and received separately
from the content stored in those data types. These facilities are useful when the data in a stable data structure (e.g., a mesh or a graph)

will need to be transmitted repeatedly. In this case, transmitting the skeleton only once saves both communication effort (it need not

be sent again) and local computation (serialization need only be performed once for the content).

render

http://www.boost.org/doc/libs/release/doc/html/../../boost/mpi/skeleton_and_content.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

%

Boost.MPI

nanespace boost {
nanespace mpi {
tenpl at e<typenane T> struct skeleton_proxy;

cl ass content;

cl ass packed_skeleton_iarchive;

cl ass packed_skeleton_oarchive;

tenpl ate<cl ass T > const skeleton_proxy< T > skeleton(T &);
tenpl ate<class T > const content get_content(const T &);

118

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Struct template skeleton_proxy
boost::mpi::skeleton_proxy — A proxy that requests that the skeleton of an object be transmitted.

Synopsis

// In header: <boost/mpi/skeleton_and_content.hpp>

skeleton_proxy(T &);
T & object;
};

Description

t enpl at e<t ypenane T>
struct skeleton_proxy {
// construct/copy/destruct
The skeleton_proxy is a lightweight proxy object used to indicate that the skeleton of an object, not the object itself, should be

transmitted separately (often several times) without changing the structure of the object.

transmitted. It can be used with the send and recv operations of communicators or the broadcast collective. When a skelet-
on_proxy is sent, Boost.MPI generates a description containing the structure of the stored object. When that skeleton is received,
the receiving object is reshaped to match the structure. Once the skeleton of an object as been transmitted, its content can be

skel et on_pr oxy public construct/copy/destruct
the object whose structure will be transmitted or altered.

1

skeleton_proxy(T & X);
Constructs a skeleton_proxy that references object x.
X

Parameters:

119

httpo://www.renderx.com/

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Class content
boost::mpi::content — A proxy object that transfers the content of an object without its structure
// In header: <boost/mpi/skeleton_and_content.hpp>

Synopsis

true);

cl ass content {
public:
// construct/copy/destruct

content();
content(MP1_Datatype, boo
content& operat or=(MP1_Datatype);
// public member functions
MP1_Datatype get_mpi_datatype() const ;

The content class indicates that Boost.MPI should transmit or receive the content of an object, but without any information about
the structure of the object. It is only meaningful to transmit the content of an object after the receiver has already received the skel-

void commit() ;
Most users will not use content objects directly. Rather, they will invoke send, recv, or broadcast operations using get_con-

};
Description

eton for the same object.

tent().
committed = true);

true indicates that MP1_Type_commit has already been excuted for the data type d.

cont ent public construct/copy/destruct
content();
This routine initializes the content object with an MPI data type that refers to the content of an object without its structure.

1
Constructs an empty content object. This object will not be useful for any Boost.MPI operations until it is reassigned.

the MPI data type referring to the content of the object.

content(MPI_Datatype d, boo

2.
committed

Parameters:
d
content& operat or=(MP1_Datatype d);
the new MPI data type referring to the content of the object.

d

Replace the MPI data type referencing the content of an object.
*this

Parameters:

Returns:
cont ent public member functions

" MP1_Datatype get_mpi_datatype() const ;

Retrieve the MPI data type that refers to the content of the object.
120

1

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
g

Boost.MPI

Returns: the MPI data type, which should only be transmitted or received using MP1_BOTTOM as the address.

2 void commit() ;

Commit the MPI data type referring to the content of the object.

121

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Class packed_skeleton_iarchive
boost::mpi::packed_skeleton_iarchive — An archiver that reconstructs a data structure based on the binary skeleton stored in a buffer.

// In header: <boost/mpi/skeleton_and_content.hpp>
= boost::archive::no_header);

Synopsis
cl ass packed_skeleton_iarchive {
// construct/copy/destruct
packed_skeleton_iarchive(MPI_Comm const &,
unsi gned int
packed_skeleton_iarchive(packed_iarchive &);

public:
packed_iarchive & get_skeleton() const ;

const
packed_iarchive & get_skeleton() ;

}:

// public member functions
Description
The packed_skeleton_iarchive class is an Archiver (as in the Boost.Serialization library) that can construct the the shape of a

data structure based on a binary skeleton stored in a buffer. The packed_skeleton_iarchive is typically used by the receiver of
a skeleton, to prepare a data structure that will eventually receive content separately.
Users will not generally need to use packed_skeleton_iarchive directly. Instead, use skeleton or get_skeleton.
boost: :archive::no_header);

packed_skel et on_i ar chi ve public construct/copy/destruct

packed_skeleton_iarchive(MPI_Comm const & comm,
The communicator over which this archive will be transmitted.

Construct a packed_skeleton_iarchive for the given communicator.

1
unsi gned int flags
Control the serialization of the skeleton. Refer to the Boost.Serialization documentation before

changing the default flags.

Parameters: comm
flags
packed_skeleton_iarchive(packed_iarchive & archive);
Construct a packed_skeleton_iarchive that unpacks a skeleton from the given archive.
the archive from which the skeleton will be unpacked.

2,
Parameters: archive
packed_skel et on_i ar chi ve public member functions

packed_iarchive & get_skeleton() const ;

' const
' packed_iarchive & get_skeleton() ;
122

Retrieve the archive corresponding to this skeleton.
Retrieve the archive corresponding to this skeleton.

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Class packed_skeleton_oarchive
boost::mpi::packed_skeleton_oarchive — An archiver that records the binary skeleton of a data structure into a buffer.

// In header: <boost/mpi/skeleton_and_content.hpp>
= boost::archive::no_header);

Synopsis

cl ass packed_skeleton_oarchive {

public:

// construct/copy/destruct

packed_skeleton_oarchive(MPI_Comm const &,
unsi gned int

packed_skeleton_oarchive(packed_oarchive &);

const

};
boost: :archive::no_header);

Description

// public member functions
The packed_skeleton_oarchive class is an Archiver (as in the Boost.Serialization library) that can record the shape of a data

packed_oarchive & get_skeleton() const ;
structure (called the "skeleton") into a binary representation stored in a buffer. The packed_skeleton_oarchive is typically used
by the send of a skeleton, to pack the skeleton of a data structure for transmission separately from the content.

Users will not generally need to use packed_skeleton_oarchive directly. Instead, use skeleton or get_skeleton.
unsi gned int flags

packed_skel et on_oar chi ve public construct/copy/destruct

The communicator over which this archive will be transmitted.

' packed_skeleton_oarchive(MP1_Comm const & comm,
Control the serialization of the skeleton. Refer to the Boost.Serialization documentation before

changing the default flags.

comm

Construct a packed_skeleton_oarchive for the given communicator.
flags

Parameters:
' packed_skeleton_oarchive(packed_oarchive & archive);
Construct a packed_skeleton_oarchive that packs a skeleton into the given archive.
the archive to which the skeleton will be packed.

2
Parameters: archive
packed_skel et on_oar chi ve public member functions

packed_oarchive & get_skeleton() const ;

const

Retrieve the archive corresponding to this skeleton.
123

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Function template skeleton
boost::mpi::skeleton — Create a skeleton proxy object.
Synopsis

// In header: <boost/mpi/skeleton_and_content.hpp>

tenpl ate<class T > const skeleton_proxy< T > skeleton(T & X);

Description

This routine creates an instance of the skeleton_proxy class. It will typically be used when calling send, recv, or broadcast, to
indicate that only the skeleton (structure) of an object should be transmitted and not its contents.

Parameters: x the object whose structure will be transmitted.
Returns: a skeleton_proxy object referencing x

124

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Function template get_content
boost::mpi::get_content — Returns the content of an object, suitable for transmission via Boost.MPI.

// In header: <boost/mpi/skeleton_and_content.hpp>

Description
The function creates an absolute MPI datatype for the object, where all offsets are counted from the address 0 (a.k.a. MP1_BOTTOM)

Synopsis
tenpl ate<cl ass T > const content get _content(const T & X);
instead of the address &x of the object. This allows the creation of MPI data types for complex data structures containing pointers,

such as linked lists or trees.
The disadvantage, compared to relative MPI data types is that for each object a new MPI data type has to be created.

The contents of an object can only be transmitted when the receiver already has an object with the same structure or shape as the
sender. To accomplish this, first transmit the skeleton of the object using, e.g., skeleton() or skeleton_proxy.

The type T has to allow creation of an absolute MPI data type (content).
the object for which the content will be transmitted.

X
the content of the object x, which can be used for transmission via send, recv, or broadcast.

Parameters:

Returns:
Header <boost/mpi/skeleton_and_content_fwd.hpp>
This header contains all of the forward declarations required to use transmit skeletons of data structures and the content of data
structures separately. To actually transmit skeletons or content, include the header boost/mpi/skeleton_and_content.hpp.

Header <boost/mpi/status.hpp>

This header defines the class status, which reports on the results of point-to-point communication.

nanespace boost {
nanespace mpi {
cl ass status;

}
}

125

httpo://www.renderx.com/

render

http://www.boost.org/doc/libs/release/doc/html/../../boost/mpi/skeleton_and_content_fwd.hpp
http://www.boost.org/doc/libs/release/doc/html/../../boost/mpi/status.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Class status

boost::mpi::status — Contains information about a message that has been or can be received.
Synopsis
// In header: <boost/mpi/status.hpp>

cl ass status {

public:
// construct/copy/destruct
status();
status(MP1_Status const &);

// public member functions

int source() const ;

int tag() const ;

int error() const;

bool cancelled() const ;

tenpl at e<typenane T > optional< int > count() const ;
operator MPI_Status &() ;

operator const MPI_Status &() const ;
nmut abl e int m_count;

}:

Description

This structure contains status information about messages that have been received (with communicator: - recv) or can be received
(returned from communicator: :probe or communicator: :iprobe). It permits access to the source of the message, message
tag, error code (rarely used), or the number of elements that have been transmitted.

st at us public construct/copy/destruct

1'status();

2'status(MPl_Status const & s);

st at us public member functions
1. ;

int source() const ;

Retrieve the source of the message.
2. . .

int tag() const ;

Retrieve the message tag.
3.)

int error() const ;

Retrieve the error code.

4‘booI cancelled() const ;

126

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Determine whether the communication associated with this object has been successfully cancelled.
> count() const ;

t enpl at e<typenanme T > optional< int

Determines the number of elements of type T contained in the message. The type T must have an associated data type, i.e.,
the number of T elements in the message, if it can be determined.

is_mpi_datatype<T> must derive mpl::true_. In cases where the type T does not match the transmitted type, this routine

will return an empty optional<int>.

Returns:

operator MPI_Status &() ;
References the underlying MP1_Status
operator const MPI_Status &() const ;

References the underlying MPI1_Status

Header <boost/mpi/timer.hpp>

This header provides the timer class, which provides access to the MPI timers

namespace boost {
namespace mpi {
cl ass timer;

}
}

127

httpo://www.renderx.com/

render

http://www.boost.org/doc/libs/release/doc/html/../../boost/mpi/timer.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

Class timer

boost::mpi::timer — A simple timer that provides access to the MPI timing facilities.
Synopsis
// In header: <boost/mpi/timer.hpp>

class timer {

public:
// construct/copy/destruct
timer();

// public member functions
voi d restart() ;
double elapsed() const ;
double elapsed_max() const ;
double elapsed_min() const ;
// public static functions
static bool time_is_global(Q) ;
};
Description
The timer class is a simple wrapper around the MPI timing facilities that mimics the interface of the Boost Timer library.
ti mer public construct/copy/destruct

1'timer();

Initializes the timer
Postconditions: elapsed() ==

t

mer public member functions
"void restart() ;

Restart the timer.

Postconditions: elapsed() ==
" double elapsed() const ;

Return the amount of time that has elapsed since the last construction or reset, in seconds.
" double elapsed_max() const ;

Return an estimate of the maximum possible value of elapsed(). Note that this routine may return too high a value on some systems.
" double elapsed_min() const ;

Returns the minimum non-zero value that elapsed() may return. This is the resolution of the timer.

128

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

static bool
Determines whether the elapsed time values are global times or local processor times.

ti mer public static functions
time_is_global(Q ;
Boost.MPI provides an alternative MPI interface from the Python programming language via the boost.mpi module. The Boost.MPI
Python bindings, built on top of the C++ Boost.MP1 using the Boost.Python library, provide nearly all of the functionality of Boost.MPI

within a dynamic, object-oriented language.
The Boost.MPI Python module can be built and installed from the libs/mpi/bui Id directory. Just follow the configuration and

Python Bindings
installation instructions for the C++ Boost.MPI. Once you have installed the Python module, be sure that the installation location is

% (mpi.rank, mpi.size)

Quickstart

Getting started with the Boost.MPI Python module is as easy as importing boost.mpi. Our first "Hello, World!" program is just

two lines long:

in your PYTHONPATH.
import boost_mpi as mpi
print "1 am process %d of %d.*

Go ahead and run this program with several processes. Be sure to invoke the python interpreter from mpirun, e.g.,

mpirun -np 5 python hello_world.py

This will return output such as:
am process 1 of 5.
am process 3 of 5.
am process 2 of 5.
am 4 of 5.
am 0

process
process of 5.
program that prints "Hello, world!" by transmitting Python strings:

Point-to-point operations in Boost.MPI have nearly the same syntax in Python as in C++. We can write a simple two-process Python

"Hello®)

if mpi.world.rank ==
mpi.world._send(1, O,
msg = mpi.world.recv(l, 1)
to write any initialization code in Python: just loading the boost.mpi module makes the appropriate MP1_InitandMPI_Finalize

print msg,"!"
msg = mpi.world.recv(0, 0)
..

else:
print (msg +
mpi.world._send(0, 1,
httpo://www.renderx.com/

import boost_mpi as mpi
There are only a few notable differences between this Python code and the example in the C++ tutorial. First of all, we don't need
129

"world®)
calls. Second, we're passing Python objects from one process to another through MPI. Any Python object that can be pickled can be
transmitted; the next section will describe in more detail how the Boost.MPI Python layer transmits objects. Finally, when we receive

objects with recv, we don't need to specify the type because transmission of Python objects is polymorphic.

render

http://www.python.org
http://www.boost.org/libs/python/doc
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

When experimenting with Boost.MPI in Python, don't forget that help is always available via pydoc: just pass the name of the
module or module entity on the command line (e.g., pydoc boost.mpi .communicator) to receive complete reference document-

ation. When in doubt, try it!
Boost.MPI can transmit user-defined data in several different ways. Most importantly, it can transmit arbitrary Python objects by
pickling them at the sender and unpickling them at the receiver, allowing arbitrarily complex Python data structures to interoperate

Transmitting User-Defined Data
with MPI.
Boost.MP1 also supports efficient serialization and transmission of C++ objects (that have been exposed to Python) through its C++
interface. Any C++ type that provides (de-)serialization routines that meet the requirements of the Boost.Serialization library is eligible
for this optimization, but the type must be registered in advance. To register a C++ type, invoke the C++ function register_seri-

alized. If your C++ types come from other Python modules (they probably will!), those modules will need to link against the

boost_mpi and boost_mpi_python libraries as described in the installation section. Note that you do not need to link against the

Finally, Boost.MPI supports separation of the structure of an object from the data it stores, allowing the two pieces to be transmitted
separately. This "skeleton/content™ mechanism, described in more detail in a later section, is a communication optimization suitable

Boost.MP1 Python extension module.

for problems with fixed data structures whose internal data changes frequently.

Boost.MPI supports all of the MPI collectives (scatter, reduce, scan, broadcast, etc.) for any type of data that can be transmitted

with the point-to-point communication operations. For the MPI collectives that require a user-specified operation (e.g., reduce and
scan), the operation can be an arbitrary Python function. For instance, one could concatenate strings with al 1_reduce:

mpi.all_reduce(my_string,
Combine the results from all processes. all_to_all Every process sends data to every other process. broadcast Broadcast data from

Collectives
lambda x,y: X + y)
The following module-level functions implement MPI collectives: all_gather Gather the values from all processes. all_reduce
one process to all other processes. gather Gather the values from all processes to the root. reduce Combine the results from all processes
to the root. scan Prefix reduction of the values from all processes. scatter Scatter the values stored at the root to all processes.

Skeleton/Content Mechanism

Boost.MPI provides a skeleton/content mechanism that allows the transfer of large data structures to be split into two separate stages,
with the skeleton (or, "shape™) of the data structure sent first and the content (or, "data") of the data structure sent later, potentially
several times, so long as the structure has not changed since the skeleton was transferred. The skeleton/content mechanism can improve
performance when the data structure is large and its shape is fixed, because while the skeleton requires serialization (it has an unknown
To use the skeleton/content mechanism from Python, you must first register the type of your data structure with the skeleton/content
mechanism from C++. The registration function is register_skeleton_and_content and resides in the <boost/mpi/py-

size), the content transfer is fixed-size and can be done without extra copies.
Once you have registered your C++ data structures, you can extract the skeleton for an instance of that data structure with skeleton().

httpo://www.renderx.com/

thon.hpp> header.
mpi.world.send(1, O, skeleton(my_data_structure))
130

The resulting skeleton_proxy can be transmitted via the normal send routine, e.g.,
skeleton_proxy objects can be received on the other end via recv (), which stores a newly-created instance of your data structure

with the same "shape" as the sender in its #object attribute:

render

http://www.python.org
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

shape = mpi.world.recv(0, 0)

my_data_structure = shape.object
Once the skeleton has been transmitted, the content (accessed via get_content) can be transmitted in much the same way. Note,

however, that the receiver also specifies get_content(my_data_structure) in its call to receive:

send(1l, 0, get_content(my_data_structure))

if mpi.rank
mpi.-world.

else:
mpi.-world.

recv(0, 0, get_content(my_data_structure))
Of course, this transmission of content can occur repeatedly, if the values in the data structure--but not its shape--changes.
The skeleton/content mechanism is a structured way to exploit the interaction between custom-built MPI datatypes and MP1_BOTTOM,
Boost.MP1 is a C++ library whose facilities have been exposed to Python via the Boost.Python library. Since the Boost.MPI Python
C++/Python programs using Boost.MPI can interact, e.g., sending a value from Python but receiving that value in C++ (or vice

to eliminate extra buffer copies.
bindings are build directly on top of the C++ library, and nearly every feature of C++ library is available in Python, hybrid

versa). However, doing so requires some care. Because Python objects are dynamically typed, Boost.MPI transfers type information

C++/Python MPI Compatibility
along with the serialized form of the object, so that the object can be received even when its type is not known. This mechanism

differs from its C++ counterpart, where the static types of transmitted values are always known.
The only way to communicate between the C++ and Python views on Boost.MPI is to traffic entirely in Python objects. For Python,
this is the normal state of affairs, so nothing will change. For C++, this means sending and receiving values of type boost: : py-
thon: :object, from the Boost.Python library. For instance, say we want to transmit an integer value from Python:

In C++, we would receive that value into a Python object and then extract an integer value:

comm.recv(0, 0, value);

boost: :python: :object value;
int int_value

comm.send(1, 0, 17)
boost: :python: :extract<int>(value);
In the future, Boost.MPI will be extended to allow improved interoperability with the C++ Boost.MPI and the C MPI bindings.

Reference
Design Philosophy
container of strings from one process to another requires an extra level of manual bookkeeping; and passing a map from strings to
containers of strings is positively infuriating. The Parallel MPI library allows all of these data types to be passed using the same

The Boost.MPI1 Python module, boost.mpi, has its own reference documentation, which is also available using pydoc (from the
simple send() and recv() primitives. Likewise, collective operations such as reduce() allow arbitrary data types and function

The design philosophy of the Parallel MPI library is very simple: be both convenient and efficient. MPI is a library built for high-

command line) or help(boost.mpi) (from the Python interpreter).
performance applications, but it's FORTRAN-centric, performance-minded design makes it rather inflexible from the C++ point of
view: passing a string from one process to another is inconvenient, requiring several messages and explicit buffering; passing a
131

objects, much like the C++ Standard Library would.

render

httpo://www.renderx.com/

http://www.boost.org/libs/python/doc
http://www.boost.org/doc/libs/release/doc/html/boost.mpi.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.MPI

The higher-level abstractions provided for convenience must not have an impact on the performance of the application. For instance,
sending an integer via send must be as efficient as a call to MP1_Send, which means that it must be implemented by a simple call
to MP1_Send; likewise, an integer reduce () using std: :plus<int> must be implemented with a call to MP1_Reduce on integers

using the MP1_SUM operation; anything less will impact performance. In essence, this is the "don't pay for what you don't use" principle:

if the user is not transmitting strings, s/he should not pay the overhead associated with strings.

Sometimes, achieving maximal performance means foregoing convenient abstractions and implementing certain functionality using
lower-level primitives. For this reason, it is always possible to extract enough information from the abstractions in Boost.MPI to

Performance Evaluation

minimize the amount of effort required to interface between Boost.MPI and the C MPI library.
Message-passing performance is crucial in high-performance distributed computing. To evaluate the performance of Boost.MPI, we
modified the standard NetPIPE benchmark (version 3.6.2) to use Boost.MPI and compared its performance against raw MPI. We
ran five different variants of the NetPIPE benchmark:
1. MPI: The unmodified NetPIPE benchmark.
Boost.MPI: NetPIPE modified to use Boost.MPI calls for communication.

2.
MPI (Datatypes): NetPIPE modified to use a derived datatype (which itself contains a single MP1_BYTE) rathan than a fundamental

Boost.MPI (Datatypes): NetPIPE modified to use a user-defined type Char in place of the fundamental char type. The Char
type contains a single char, a serial ize () method to make it serializable, and specializes is_mpi_datatype to force Boost. MPI

to build a derived MPI data type for it.
Boost.MPI (Serialized): NetPIPE modified to use a user-defined type Char in place of the fundamental char type. This Char
type contains a single char and is serializable. Unlike the Datatypes case, is_mpi_datatype is not specialized, forcing Boost. MPI

to perform many, many serialization calls.
The actual tests were performed on the Odin cluster in the Department of Computer Science at Indiana University, which contains

3.
datatype.
128 nodes connected via Infiniband. Each node contains 4GB memory and two AMD Opteron processors. The NetPIPE benchmarks

were compiled with Intel's C++ Compiler, version 9.0, Boost 1.35.0 (prerelease), and Open MPI version 1.1. The NetPIPE results

follow:

132
httpo://www.renderx.com/

render

http://www.scl.ameslab.gov/netpipe/
http://www.cs.indiana.edu/
http://www.iub.edu
http://www.open-mpi.org/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Boost.MPI

HetPIFE Bandwidth ouver Infinibkand

laaaag T T T T T T

laeg -

186

Bandwidth in MB-s=

6.1 |
MPI ——
Boost.MPI —
MFI ¢Datatypes) ——
Boost.MPI (Datatypes) ————
Eoost.MPI (Serialized)
.81 1]]]] 1

1 1@ lag 1868 1aaga lagaon le+as le+a?

Mezzage Size in Bytes

There are a some observations we can make about these NetPIPE results. First of all, the top two plots show that Boost. MPI1 performs
on par with MPI for fundamental types. The next two plots show that Boost.MPI performs on par with MPI for derived data types,
even though Boost.MPI provides a much more abstract, completely transparent approach to building derived data types than raw
MPI. Overall performance for derived data types is significantly worse than for fundamental data types, but the bottleneck is in the
underlying MPI implementation itself. Finally, when forcing Boost.MPI to serialize characters individually, performance suffers
greatly. This particular instance is the worst possible case for Boost.MPI, because we are serializing millions of individual characters.
Overall, the additional abstraction provided by Boost.MPI does not impair its performance.

Revision History

* Boost 1.36.0:
 Support for non-blocking operations in Python, from Andreas Kléckner
« Support for graph topologies.

» Boost 1.35.0: Initial release, containing the following post-review changes
 Support for arrays in all collective operations
 Support default-construction of environment

» 2006-09-21: Boost.MPI accepted into Boost.

Acknowledgments

Boost.MPI1 was developed with support from Zurcher Kantonalbank. Daniel Egloff and Michael Gauckler contributed many ideas
to Boost.MPI's design, particularly in the design of its abstractions for MPI data types and the novel skeleton/context mechanism
for large data structures. Prabhanjan (Anju) Kambadur developed the predecessor to Boost.MPI that proved the usefulness of the
Serialization library in an MPI setting and the performance benefits of specialization in a C++ abstraction layer for MPI. Jeremy

Siek managed the formal review of Boost.MPI.

133

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

	Boost.MPI
	Table of Contents
	Introduction
	Getting started
	MPI Implementation
	Configure and Build
	Installing and Using Boost.MPI
	Testing Boost.MPI

	Tutorial
	Point-to-Point communication
	Non-blocking communication
	User-defined data types

	Collective operations
	Broadcast
	Gather
	Reduce

	Managing communicators
	Separating structure from content
	Performance optimizations
	Serialization optimizations
	Homogeneous machines

	Mapping from C MPI to Boost.MPI

	Reference
	Header <boost/mpi.hpp>
	Header <boost/mpi/allocator.hpp>
	Class allocator<void>
	Struct template rebind

	Class template allocator
	Struct template rebind

	Function template operator==
	Function template operator!=

	Header <boost/mpi/collectives.hpp>
	Function all_gather
	Function all_reduce
	Function all_to_all
	Function broadcast
	Function gather
	Function scatter
	Function reduce
	Function scan

	Header <boost/mpi/collectives_fwd.hpp>
	Header <boost/mpi/communicator.hpp>
	Class communicator
	Type comm_create_kind
	Global any_source
	Global any_tag
	Function operator==
	Function operator!=

	Header <boost/mpi/config.hpp>
	Macro MPICH_IGNORE_CXX_SEEK
	Macro BOOST_MPI_HAS_MEMORY_ALLOCATION
	Macro BOOST_MPI_HAS_NOARG_INITIALIZATION
	Macro BOOST_MPI_CALLING_CONVENTION

	Header <boost/mpi/datatype.hpp>
	Struct template is_mpi_integer_datatype
	Struct template is_mpi_floating_point_datatype
	Struct template is_mpi_logical_datatype
	Struct template is_mpi_complex_datatype
	Struct template is_mpi_byte_datatype
	Struct template is_mpi_builtin_datatype
	Struct template is_mpi_datatype
	Function template get_mpi_datatype
	Macro BOOST_IS_MPI_DATATYPE

	Header <boost/mpi/datatype_fwd.hpp>
	Struct packed

	Header <boost/mpi/environment.hpp>
	Class environment

	Header <boost/mpi/exception.hpp>
	Class exception
	Macro BOOST_MPI_CHECK_RESULT

	Header <boost/mpi/graph_communicator.hpp>
	Class graph_communicator
	Function get
	Function get
	Struct graph_traits<mpi::graph_communicator>

	Header <boost/mpi/group.hpp>
	Class group
	Function operator==
	Function operator!=
	Function operator|
	Function operator&
	Function operator-

	Header <boost/mpi/intercommunicator.hpp>
	Class intercommunicator

	Header <boost/mpi/nonblocking.hpp>
	Function template wait_any
	Function template test_any
	Function wait_all
	Function test_all
	Function wait_some
	Function test_some

	Header <boost/mpi/operations.hpp>
	Struct template is_commutative
	Struct template maximum
	Struct template minimum
	Struct template bitwise_and
	Struct template bitwise_or
	Struct template logical_xor
	Struct template bitwise_xor
	Struct template is_mpi_op

	Header <boost/mpi/packed_iarchive.hpp>
	Class packed_iarchive

	Header <boost/mpi/packed_oarchive.hpp>
	Class packed_oarchive

	Header <boost/mpi/python.hpp>
	Function template register_serialized
	Function template register_skeleton_and_content

	Header <boost/mpi/request.hpp>
	Class request

	Header <boost/mpi/skeleton_and_content.hpp>
	Struct template skeleton_proxy
	Class content
	Class packed_skeleton_iarchive
	Class packed_skeleton_oarchive
	Function template skeleton
	Function template get_content

	Header <boost/mpi/skeleton_and_content_fwd.hpp>
	Header <boost/mpi/status.hpp>
	Class status

	Header <boost/mpi/timer.hpp>
	Class timer

	Python Bindings
	Quickstart
	Transmitting User-Defined Data
	Collectives
	Skeleton/Content Mechanism
	C++/Python MPI Compatibility
	Reference

	Design Philosophy
	Performance Evaluation
	Revision History
	Acknowledgments

