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Avstract

A new correlation method based upon the inverse
Fourier transform of the phase difference hetween two
imeges is described. The result is a highly accurate
alignment technique which exhibits an extremely narrow
correlation peak, is relatively scene-independent, and
is insensitive to narrow bandwidth noise dnd convo-
lutional image degradations. Through the use of phase
weighting functions, the method may be generslized in
order to provide immunity to verious types of noisc or
image distortions. - An efficient implementation can be
devised which involves'hO‘greater complexity than that
required for circuler cross correlation.

Introduction

The sccurate registration of displaced images is an
important problem in meny areas of current technology
such as target tracking, platform stabilization,
velocity sensors, map matching, scene change detection,
and multispectral imape correlation. The most commonly
used image matching techniques employ the cross corre-
Jation algorithm or closely related variations. Insuf-
ficient attention has been devoted to the development
of alternative correlation methods which are optimal
for image degradations which cannot be approximated by
additive white noise.

The phase correlation algorithm is based upon the
fact that the information pertaining to the displace-
ment of two images resides in the phase of the cross
power spectrwa. This concept has been generally over-
looked in previous treatments of the image matching
problem. The application of the phase correlation
technique results in a sharp peak at the point of repiz-
tration on the order of one resolution eclement in width.
The method is relatively scene-independent and ambigui-
ties which arise through the use of circular cross
correlation ere avoided. It is particularly useful for
aligning images taken with different sensors or under
varying conditions of illumination. Large relétive
displacements cun be accurately determined without re-
quiring that one image be contained within the other.

Phase Correlation Algorithm

The phase correlation algorithim proceeds as follows.
The two-dimensional discrete Pourier transrorms Gy and
Gp Of a pair of sampled images g and g, are computed,
and bhe phase difference eI 22) 5o ohtainea for(F)
each spatial frequency ?: where Gi(iﬁ = |Gi(f)]ed¢i R
(1 =1, 2). If either Gy or Gp is O ut some frequency,
the corresponding phase factor is ambiguous and is
therefore replaced by zero. The phase correlation
function is piven by:

a=r1 ey (1)
where ¢ = @1 - ¢p enl F { ] deno@es the inverse
Fourier transform. The function eJGS thus represents
the phase of the cross power. spectrwn, GlGP .

For infinite or cyclically shifted images_such that

ga(?) = g1<27+-33, the Fourier shift theorem™ gives
~ gont-L
6,(F) = ¢ (el L (2)
so that ¢ = - of.L. The correlation function (1) is

then & deltg’function located at the point of regis-
tration, 6(r - L). The discrete form of the phase
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correlation function for sampled, cyclically shifted
images is given by the product of shifted sinc-functions
of the rectangular coordinates. This result holds re-
merkably well for finite images taken from a continuous
scene, even when the common area (overlap) between the
images is small, or when a substantial amount of noise
i3 present.

Some related studies have been performed by Lo and
Parikh® who attempted to estimate the shift vector in
the transform domain by using differences between suc-
cessive phase angles. The ensemble of shift vector de-
terminations derived in this mammer was theu averaged
in order to obtain & best estimate for the displacement.
The results were considerably less accurate than those
obtained using phase correlation because of the larye
dispersion that is usually present in the shit't vector
data. This problem is neatly eliminated in the phase
correlation method by taking the inverse Fourier trans-
form of the phase difference matrix, ed”.

The phase correlation algorithm may be generalized
by introducing an arbitrary weighting function H{f) in
the spatilal frequency domain giving

ay = F ey . (3)
For instance, if the weighting function is »f the form
IGlGéfla, the resulting fawmily of correlation elgorithms
include both phase correlation (¢ = 0) and conventional
cyelic cross correlation (¢ = 1). Immunity to various
types of noise or image distortions may be provided by
the proper choice of weighting function.

Performance Characteristics

The phase correlation signal/rms noise ratio (SNR)
can be expressed guite simply as a function of the peak

amplitude and the square root of the total number of
sample points.

Consider first the case of two NxN element images
having no common features. The phase angle difference
¢ can be considered to be a randow variable uniformly
distributed over 2w radians. The N° d-mstrix ampli-
tudes (normalized to unit total power) can then be
approximetely represented by gaussian random variables
heving zero mean and standard deviation equal to N,

In the csse of two imeges which have some degree of
congruence, the power is divided between a coherent
peak located at the point of imege registration (signal)
and the incoherent peaks (noise) resulting from the
random component of the phases. The amplitude of the
coherent peak is a direct measuwre of the degree of
image congruence. If the peak amplitude is denoted by
A, vhere 0 = A <1, then the signal pover is A2 and the
noise power is 1 - A=, The standard deviation of the
noise is thus: .
1 aByYe

G = N(l - A%) (L)
and the phase correlation SRR is
A
Vo (5)

- A . (6)
(- A2)172 -

Using the gaussian model Tor the dietribution of
noise peaks, the probsbility that a noise peak will be

= some threshold T 1s given by:

N-Y. pp.4(3-1¢S

3




S0/0)" g (1)

2 1
P = N J. e
1/
Toenf e .
Uising the maximum standard dceviation, g = N, in Eq.
(7) 8nd assuming that KP >> 1, the error probability

can he written as 1

2
N e'Z(NT)

P’_[‘ = —_]f( L . (8)

ELS)

The normalization procedure used to obtain the phase
matrix etfectively "whitens" each image with respect to
itsell so0 that the resulting correlation measure is
relatively scene~independent. As an exasmple, the
Fourier phase factor and hence the phase correlation

function are invariant with respect to either a scaling

or level shift of an image brightness function. In
addition, tke results are fairly insensitive to con-
volutional image degradations which can be represented
by a transfer function T. This c¢an be understood from
the fact that for noise free images subject to the same
degrading process, the degraded image cross power
spectrum ig related to the undegraded spectrum by a
factor fTI‘, so thut the phase~difference matrix re-
mains unchanged.

Phase correlation is clearly a preferred correlation
alporithm in the presence of narrow band noise of un-
known spectral content, since all spectral phase terms
are treated on an equal basis., ‘The technique is par-~
ticularly wuseful for sligning imeges obtained under
diftering conditions ot illwnination, since illumirn-
ation functions are normally slowly varying and there-
fore concentrated at low spatial frequencies. The
cross correlation function, on the other hand, is
dominated by the largest spectral components and is
optimal with respect to white noise.

The position of & correlation surface peak is in
general a continuous function of image displacement.
Given a sufficiently high SNR, it is therefore possible
to measure non-integer displacements thru the use of
interpolation. It is particularly advantageous to use
the phase correlation surface for interpolation since
it is characterized by a very sharp, symmetric peak of
known functional form. Computer simulations have veri-
fied that highly accurate displscement computations- can
be made by using interpolation with only a few data
points around the maximum value.

Implementation

A hardware implementation of the phase correlation
method can be made involving no greater complexity
than that required for circular cross correlation. The
computation consists of the following steps:

1. The input consists of two sampled images %y
and g, which have the same dimensions (say
NxN);

2., The two-dimensional Fast Fourier transformd
(FFT) is taken of each image resulting in
two complex NxN element arrays, Gl and G;

3. The phase difference matrix is derived by
*
forming the cross power spectrum, G1G2 »
and dividing by its modulus;

Ii. The phase correlation function, &, is then
obtained as a real NxN element array by
taking the inversce FFT of the phase differ-
ence array.

The computatiou can be further simplified by replac-
ing step 3 with a phase quentization slgorithm. With
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this approach, the phase difference matrix e‘](gbl - $2)
is approximated by quantizing each phase to eight
levels using three binary decisions involving the real
and Imaginary components of the spectral elements,
followed Ly a 3-bit subtraction. This process is
clearly easier to implement than multiplying two complex
guantities and dividing by the modulus of the yproduct.
In order to test the phase quantization concept, a
series of computer simu%ations wvas made using the in-
verse chirp z-transtorm™ in order to obtain a high
resolution sampling of the phase correlation function.
It was found that for 6bxGh clement images, the use of
an eight level quantization introduced a rms displace-
ment error of only 1/80 of a resolution element.

Computer Simulation

An image registration experiment was performed using
two successive frames of imagery taken from a moving
platform. The film was scanned and digitized to 8 bits
with a resolution of 296x256 pixels. The digitized
images are reproduced in Figure 1 using Gk gray shades.
The image overlap region, which represents only 4% of
the image area, has becen outlined in white. The
common region in the two frames reveals differences due
to change in iillumination and perspective 1n eddition
to film grain noise.

The correlation surfaces obtained using phase corre-
lation and cyclic cross correlation are shown in Figure
2 a, b. In both cases, the positive amplitude vari-
ation has been scaled to cover the range (0, 1). Cross
sections along the row and column which intersect at
the peak are shown in Figure 2 ¢, d. The phase corre-
lation surface is characterized by a very sharp peak al
the correct point of registration plus very low ampli-
tude peaks at other locations. The cross correlation
surface has a3 lower, broader peak centered at the
registration point which is only a local maximum.
Higher amplitudes are obtained over other portions of
the cross correlation surface due to illumination
differences between the imagea.
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Fig. 1 Displaced Aerial Photos.
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Fig. 2 Correlation Surfaces Obtained Using Displaced Aerial Photos.

Phase
correlation and cross correlation results are shown in (a) and (b).
Row end column cross sections through the peak are shown in (¢) and (d).




