
Copyright Gilad Bracha 2002-2004

Gilad Bracha

Pluggable Type
Systems

Copyright Gilad Bracha 2003-2004

The Paradox of Type
Systems

• Type systems help reliability and security by
mechanically proving program properties

• Type systems hurt reliability and security by
making things complex and brittle

Copyright Gilad Bracha 2002-2004

Well known advantages:

• Machine-checkable documentation

• Types provide conceptual framework

• Early error detection

• Performance advantages

Mandatory Typing

Copyright Gilad Bracha 2002-2004

Disadvantages:

• Brittleness/Rigidity

• Lack of expressive power

Mandatory Typing

Copyright Gilad Bracha 2002-2004

Disadvantages:

• Brittleness/Rigidity

• Lack of expressive power

Mandatory Typing

Copyright Gilad Bracha 2002-2004

• Security/Robustness - as strong as the type system/the
weakest link

• Persistence/Serialization

• Type systems for VM and language collide

Brittleness of
Mandatory Typing

Copyright Gilad Bracha 2002-2004

• Security/Robustness - as strong as the type system/the
weakest link

• Persistence/Serialization

• Type systems for VM and language collide

Brittleness of
Mandatory Typing

Copyright Gilad Bracha 2002-2004

How Mandatory Typing
Undermines Security

• Once a mandatory type system is in place, people rely
on it for:

• Optimization

• Security Guarantees

• If type system fails, behavior is completely undefined

Copyright Gilad Bracha 2002-2004

Example: Class Loaders

Class loading becomes incredibly subtle (cf. Liang and
Bracha, OOPSLA 98)

• Class loaders define name spaces for types

• JVM has nominal type system

• Inconsistent namespaces mean inconsistent types

• Failure to detect inconsistencies across class loaders
leads to catastrophic failure (forgeable pointers, privacy
violations etc.)

Copyright Gilad Bracha 2002-2004

Example: Class Loaders

class A { C getC() { return new B().getC();}}

class B { C getC() { return new C();}}

• A and B defined in different, but overlapping namespaces
N1 and N2. N1 and N2 agree on B but differ on C.

• One version of C may have a pointer as its first field,
the other an int; or one may have a private field and the
other may have a public one.

• Attacker may create suitable versions to suit their
needs

Copyright Gilad Bracha 2002-2004

Example: Class Loaders

Class loading based type spoofing never caused a real
security breach, because other security layers protect
against unauthorized class loader definition.

One may not always be so lucky.

Copyright Gilad Bracha 2002-2004

How Mandatory Typing
Undermines Security

 Wait, type systems shouldn’t fail! A good type system will
be formally proven to be sound and complete

• Real systems tend to be too complex to formalize

• Formalizations make simplifying assumptions

• These assumptions tend to be wrong

• Implementations tend to have bugs

Copyright Gilad Bracha 2002-2004

How Mandatory Typing
Undermines Security

• Type Systems are subtle and hard

• Relying on them is dangerous

Copyright Gilad Bracha 2002-2004

• Security/Robustness - as strong as the type system/the
weakest link

• Persistence/Serialization

• Type systems for VM and language collide

Brittleness of Mandatory Typing

Copyright Gilad Bracha 2002-2004

Consider Serialization in mainstream languages

• Nominal typing forces serialization to separate objects
from their behavior

• Versioning problems galore

• Exposes class internals, compiler implementation details

Persistence and Typing

Copyright Gilad Bracha 2002-2004

Consider Serialization in mainstream languages

• Nominal typing forces serialization to separate objects
from their behavior

• Versioning problems galore

• Exposes class internals, compiler implementation details

Persistence and Typing

Copyright Gilad Bracha 2002-2004

Nominal Typing Separates
Objects from their Classes

• When serializing an object one might naturally serialize
its class as well

• This guarantees that data and behavior match

• Class can change over time, but clients are ok as long as
public API is preserved

Nominal Typing
Separates Objects from

their Classes

class Point { // initial version

private int x, y;

public int getX() { return x;}

public int getY() {return y;}

}

Nominal Typing
Separates Objects from

their Classes

class Point { // new version

private double rho, theta;

public int getX() { return cos(rho, theta);}

public int getY() { return sin(rho, theta);}

}

Copyright Gilad Bracha 2002-2004

Nominal Typing Separates
Objects from their Classes

• New version of point differs in format, size

• Should not be a problem for clients - public API
unchanged

• Deserialization can create distinct classes named Point

• Works with dynamic or structural typing

• But ...

Copyright Gilad Bracha 2002-2004

Nominal Typing Separates
Objects from their Classes

• Nominal typing cannot tolerate two classes named
Point!

• “Solution”:

• Serialize object together with the name of its class

• Deserialization binds object to class of stored name

Copyright Gilad Bracha 2002-2004

Consider Serialization in mainstream languages

• Nominal typing forces serialization to separate objects
from their behavior

• Versioning problems galore

• Exposes class internals, compiler implementation details

Persistence and Typing

Copyright Gilad Bracha 2002-2004

• Persistence works well with structural typing; nominal
typing does not

• Nominal typing suited to practical languages; structural
typing problematic

• Mandatory typing forces a choice between two
suboptimal options

Persistence and Typing

Copyright Gilad Bracha 2002-2004

• Persistence bugs can undermine type system

• Undermining a mandatory type system leads to
catastrophic failure

Persistence and Typing

Copyright Gilad Bracha 2002-2004

• Security/Robustness - as strong as the type system/the
weakest link

• Persistence/Serialization

• Type systems for VM and language collide

Brittleness of Mandatory Typing

Copyright Gilad Bracha 2002-2004

Run-time and compile-time type systems may be
misaligned

• Cases where Java source code will not verify

• Definite assignment rules clash with verifier inference
algorithm

• Weird cases with try-finally, boolean expressions

Type Systems Collide

Copyright Gilad Bracha 2002-2004

• Performance disadvantage is greatly overstated

• Importance of performance also overstated

• Other advantages of static types can be had without
the downside

• Enter Pluggable, Optional Type Systems

Having our Cake and Eating it
too

Copyright Gilad Bracha 2002-2004

• Performance disadvantage is greatly overstated

• Importance of performance also overstated

• Other advantages of static types can be had without
the downside

• Enter Pluggable, Optional Type Systems

Having our Cake and Eating it
too

Copyright Gilad Bracha 2002-2004

• How do I define optional typing

• Concrete example:Strongtalk

• Principled arguments for optional typing

Optional Typing

Copyright Gilad Bracha 2002-2004

• How do I define optional typing

• Concrete example:Strongtalk

• Principled arguments for optional typing

Optional Typing

Copyright Gilad Bracha 2002-2004

• Run-time semantics are independent of type system

• Type annotations are optional

Optional Type Systems

Copyright Gilad Bracha 2002-2004

• Run-time semantics are independent of type system

• Type annotations are optional

Optional Type Systems

Copyright Gilad Bracha 2002-2004

Common Constructs Precluded
by Optional Typing

• Public fields

• Class based encapsulation, i.e.

class C {

private int secret;

public int expose(C c) { return c.secret;}

}

• Type based overloading

draw(Cowboy c)

draw(Shape s)

Copyright Gilad Bracha 2002-2004

• How do I define optional typing

• Concrete example:Strongtalk

• Principled arguments for optional typing

Optional Typing

Copyright Gilad Bracha 2002-2004

• An optional type system for Smalltalk

• Fastest Smalltalk ever, but does not rely on types for
performance

• Very good fit for object oriented languages

Strongtalk

Copyright Gilad Bracha 2002-2004

• How do I define optional typing

• Concrete example:Strongtalk

• Principled arguments for optional typing

Optional Typing

Copyright Gilad Bracha 2002-2004

Closely related to theory of programming languages:
Formal calculi use pluggable typing all the time, e.g. :

• Evaluation rules of lambda calculus need not change to
accommodate type system

• Type system only determines which programs are
guaranteed not to “fail”

Theoretical Justification

Copyright Gilad Bracha 2002-2004

Traditional type systems introduce bidirectional
dependency:

• Type system depends on executable language

• Semantics of executable language depend on type
system (e.g., casts, overloading, accessibility)

Language Evolution

Copyright Gilad Bracha 2002-2004

Optional typing breaks dependency of executable
language on type system

• Type system can evolve faster than language

• Programs that were untypeable in the past can be
typechecked now, but run the same

Language Evolution

Copyright Gilad Bracha 2002-2004

• Type inference relates to type system as type system
relates to executable language

• Inference naturally depends on type system but type
system should not depend on type inference

• Counterexample : Hindley-Milner restricts polymorphic
recursion

Type Inference

Copyright Gilad Bracha 2002-2004

• Type inference has caused us a lot of grief in the JVM

• Verifier complexity -> security bugs, maintenance
headaches, performance overhead

Type Inference

Copyright Gilad Bracha 2002-2004

• Performance disadvantage is greatly overstated

• Importance of performance also overstated

• Other advantages of static types can be had without
the downside

• Enter Pluggable, Optional Type Systems

Having our Cake and Eating it
too

Copyright Gilad Bracha 2002-2004

We want various static analyses to coexist

• Traditional types, ownership types, tracing information
flow

Make it easy to experiment with new tools.

How to integrate into the language?

From Optional to Pluggable

Copyright Gilad Bracha 2002-2004

• Allows programmers to add user-defined annotations
to ASTs

• Popularized by C#; Being added to Java

Metadata

Copyright Gilad Bracha 2002-2004

• Types are just one kind of metadata

• Tools can choose which metadata to display

• Require ability to add metadata to every node of AST;
Java and C# fall short

• Metadata might self-identify and choose its own syntax;
is this a good idea?

Types, Syntax & Metadata

Copyright Gilad Bracha 2002-2004

Variants of this idea have been around for quite a while,
but not quite the same

• Optional Types in Common Lisp

• Soft Typing in Scheme (Cartwright/Fagan)

• Type system for Erlang (Marlow/Wadler)

• Cecil (Chambers/Litvinov)

• BabyJ type system for JavaScript (Anderson, Giannini)

Related Work

Copyright Gilad Bracha 2002-2004

• Mandatory typing causes significant engineering
problems

• Mandatory typing actually undermines security

• The deeper in the system one requires types, the more
acute the problems

• Types should be optional: runtime semantics must not
depend on static type system

• Type systems should be pluggable: multiple type systems
for different needs

Conclusions

