
 1

MRPGA: An Extension of MapReduce for Parallelizing Genetic Algorithms

Chao Jin, Christian Vecchiola and Rajkumar Buyya

Grid Computing and Distributed Systems (GRIDS) Laboratory

Department of Computer Science and Software Engineering

The University of Melbourne, Australia

Email: {chaojin, csve, raj}@csse.unimelb.edu.au

Abstract

The MapReduce programming model allows users

to easily develop distributed applications in data

centers. However, many applications cannot be exactly

expressed with MapReduce due to their specific

characteristics. For instance, Genetic Algorithms (GAs)

naturally fit into an iterative style. That does not follow

the two phase pattern of MapReduce. This paper

presents an extension to the MapReduce model

featuring a hierarchical reduction phase. This model is

called MRPGA (MapReduce for Parallel GAs), which

can automatically parallelize GAs. We describe the

design and implementation of the extended MapReduce

model on a .NET-based enterprise Grid system in

detail. The evaluation of this model with its runtime

system is presented using example applications.

1. Introduction
Genetic Algorithms (GAs) are a class of

evolutionary algorithms [16], which are widely used in

many domains, such as CAD/CAM, scheduling,

chemistry, and biology [7]. In particular, GAs are used

to search for an nearly optimal solution in complex

spaces with a computationally intensive solution [19].

Normally, GAs abstract the problem space as a

population of individuals and deploy a randomized

optimization method to generate offspring for

searching near-optimal individuals. Generally, this

process takes a long time for large problem sizes. To

improve efficiency, Parallel Genetic Algorithms (PGAs)

have been adopted. PGAs [8] normally split a problem

space into a number of smaller sub-spaces, then

explore sub-optimal solutions for each sub-space, and

finally find out a set of optimal solutions based on the

sub-optimal solutions. PGAs can not only reduce the

execution time, but also can tackle more complex

problems by taking advantage of distributed computing

systems. Furthermore, PGAs are more versatile than

their corresponding sequential version as they have a

less possibility of getting stuck in local optima.

However, parallelized GAs still face the common

development difficulties in distributed environments,

such as communication and synchronization between

distributed components. Furthermore, due to the

increase of cloud computing [3][13], PGAs have to

solve more challenging problems common in data

centers, such as heterogeneity and frequent failures.

Many existing models for PGAs are based on message

passing interface (MPI), which is not designed for

cloud computing. Thus, it is important to explore a

more suitable solution for performing distributed GAs

in data centers.

The MapReduce model [10] provides a parallel

design pattern for simplifying application

developments in distributed environments. This model

can split a large problem space into small pieces and

automatically parallelize the execution of small tasks

on the smaller space. It was proposed by Google for

easily harnessing a large number of resources in data

centers to process data-intensive applications and has

been proposed to form the basis of a “data center

computer” [5]. This model allows users to benefit from

advanced features of distributed computing without

worrying about the difficulty of coordinating the

execution of parallel tasks in distributed environments.

This paper explores how to extend MapReduce to

support PGAs. The iteration style of GAs cannot be

expressed directly with MapReduce. We extend

MapReduce by adding a phase for global selection at

the end of every iteration of PGAs. Furthermore, we

expose a coordinator client for coordinating the

execution of PGAs iterations. The contribution of this

paper includes:

 2

1. An extension to MapReduce for automatically

parallelizing GAs with sequential

programming through 3 components: Map,

Reduce, and Reduce, called MRPGA.

2. A runtime system on the .NET platform for

MRPGA to coordinate the parallel execution

of GA applications within a distributed

environment.

3. Evaluation on the runtime system and

programming model through real world

experiments over an enterprise Grid.

The remainder of the paper is organized as follows.

Section 2 reviews the MapReduce programming model.

Section 3 presents the extension to MapRedce through

a distributed model of PGAs. Section 4 presents the

architecture of MRPGA. Section 5 describes the

implementation. Section 6 discusses the experimental

evaluation of the system. Section 7 concludes the paper

with pointers to future work.

2. MapReduce Overview
MapReduce is triggered by map and reduce

operations in functional languages, such as Lisp. This

model abstracts computation problems through two

functions: map and reduce. All problems formulated in

this way can be parallelized automatically.

Essentially, the MapReduce model allows users to

write Map/Reduce components with functional-style

code. These components are then composed as a

dataflow graph with fixed dependency relationship to

explicitly specify its parallelism. Finally, the

MapReduce runtime system can transparently explore

the parallelism and schedule these components to

distributed resources for execution.

All data processed by MapReduce are in the form of

key/value pairs. The execution happens in two phases.

In the first phase, a map function is invoked once for

each input key/value pair and it can generate output

key/value pairs as intermediate results. In the second

one, all the intermediate results are merged and

grouped by keys. The reduce function is called once for

each key with associated values and produces output

values as final results.

2.1. MapReduce Model
A map function takes a key/value pair as input and

produces a list of key/value pairs as output. The type of

output key and value can be different from input key

and value:

),(),(:: 2211 valuekeylistvaluekeymap ⇒

A reduce function takes a key and an associated

value list as input and generates a list of new values as

output:

)())(,(:: 322 valuelistvaluelistkeyreduce ⇒

2.2. MapReduce Execution
A MapReduce application is executed in a parallel

manner through two phases. In the first phase, all map

operations can be executed independently with each

other. In the second phase, each reduce operation may

depend on the outputs generated by any number of map

operations. However, similar to map operations, all

reduce operations can be executed independently.

From the perspective of dataflow, MapReduce

execution consists of m independent map tasks and r

independent reduce tasks, each of which may be

dependent on m map tasks. Generally the intermediate

results are partitioned into r pieces for r reduce tasks.

The MapReduce runtime system schedules map and

reduce tasks to distributed resources, which handles

many tough problems, including parallelization,

concurrency control, network communication and fault

tolerance. Furthermore, it performs several

optimizations to decrease overhead involved in the

scheduling, network communication and intermediate

grouping of results.

As MapReduce can be easily understood, its

abstraction considerably improves the productivity of

parallel/distributed development, especially for novice

programmers.

3. MapReduce

for PGA

The MapReduce model cannot be used to express

PGAs directly. This section describes an extension to

MapReduce through adding an additional reduce phase

for population selection after analyzing the general

requirements of PGAs.

3.1. Overview of PGA
Genetic algorithms abstract the problem space as a

population of individuals, and explore the optimum

individual through a loop of operations. Usually the

individual is represented by a string of symbols, and

each step of the loop produces a new generation with

reproduction, mutation, evaluation and selection

operations. Given a generation of individuals as

ancestors, the reproduction operation generates their

offspring by combining several ancestors and the

mutation operation performs simple stochastic

variations on each offspring to generate a new version

of it. The evaluation operation evaluates the offspring

according to an objective function and the selection

operation chooses the best one from the population for

next generation. This process repeats until the optimum

individual is found.

 3

Among these operations, the evaluation and

selection operation consumes most of the time and has

been estimated to take more than 1 CPU year for the

problems in complex domains [15].

There are several models for PGAs. We choose the

distributed model as a general presentation of the

principle of PGA. With this model, there exist many

elementary worker GA working on separate

populations. Each worker performs same computations

as the rest. Fig. 1 illustrates the principle of PGAs with

a distributed model. Essentially, after mutation and

crossover operations, there exists a communication

phase, where each worker communicates with

neighbors for exchanging a set of individuals or

statistics. After this communication phase, the offspring

will be selected as the starting point to evolve next

generation.

Each individual, P, consists of u elements, a1,…,au.

T is the function that determines whether the optimum

value has been generated.

)...1(, uiaaPP yixiyx ∈>⇔>

)...1(, uiaaPP yixiyx ∈<⇔<

)...1(,),,(),(ujiaajaai yjxjyixi ∈<∃∧>∃

⇔= yx PP OR

)...1(, uiaa yixi ∈==

Fig. 2 Comparison Rule of Individuals.

To perform the selection operation, the individual

with the best value of evaluation are chosen. Each

individual after evaluation still consists of an array of u

elements: a1,…,au. Given any two individuals, Px and

Py, Px is bigger than Py only if every element of Px is

bigger than the corresponding element of Py, as

illustrated in Fig. 2.

3.2. MRPGA: MapReduce

for PGA

We deploy MapReduce to parallelize those parts of

a PGA that are the most time-consuming. Essentially, a

map operation can be used to express the phase of local

evaluation. The communication phase can be achieved

by collecting dependent inputs for the reduce operation

through the runtime system. However, the execution of

selection cannot be achieved by one reduce operation,

because after the local selection, a global selection is

required. Therefore, we have to express the selection

phase through two phases of reduce operations. Thus

the whole execution model consists of three phases:

map, reduce and reduce.

3.2.1. Key/Value Pairs for MRPGA. The types for

input key/value pairs of MRPGA are illustrated as

follows:

Key1 : Integer

Value1 : Individual

Key2 : Integer

Value2 : Set of Individuals

Key3 : Individual

Vaue3 : Integer

At first, each individual is identified by a numerical

key. After being evaluated in the map phase, each

individual will be associated with a common key as the

result. This intermediate result is kept on the local

machine. In the standard MapReduce, with this

common key, all mutated individuals will be associated

together without any partition. However, MRPGA

deploys a different policy. Essentially, the set of

individuals associated with the common key is

partitioned according to their locations.

Each reduce function will be called for each

partition, which is actually taken as the input list of

value. As a result, a set of sub-optimal individuals is

produced with the selection algorithm implemented by

users in the 1
st
 phase of reduce operation.

In the final reduce phase, all sets of sub-optimal

individuals are collected and then merged and sorted.

Only the best individuals are selected by the system as

the input of final reduce function.

3.2.2. Map Phase. The map operation is for every

individual and is called once for each of the individuals

in each of the steps of the loop. As an input fed into the

map function, key is the index of the individual, while

value is the individual. The map operation extracts the

individual from value, performs evaluation, and then

submits the result as an intermediate output, as shown

in Fig 3. In the figure, Emit is used to submit results.

function Distributed_GA()

t = 0 /* index of generation */

P[0] = a1[0], …, au[0] /* initialization */

Evaluation(a1[0],…,an[0])

while not ΤΤΤΤ(P[t]) do

P’[t] = Mutation(Crossover(P[t]))

Evaluation(a
’
1[0],…,a

’
n[0])

<Communication>

P[t+1] = Selection(P’[t])

t = t + 1

endwhile

return Optimum(P[t])

Fig. 1 Parallel Genetic Algorithm.

 4

The results generated by the map phase are kept in a

persistent database on the local machine. All the results

are associated with same key, default_key. We adopt a

partition policy different from the standard

implementation of MapReduce. The intermediate

results generated by Map functions are not partitioned

by key. However, they are automatically split into

pieces according to their locations. This partition

policy allows each of the reduce tasks to collect

dependent input just from the local machine without

fetching data from a remote machine.

Intermediate results produced by map operations on

the same node will be merged by key as the input for

the 1st phase of reduce operation.

3.2.3. The 1

st
 Phase of Reduce. The 1

st
 phase of

reduce operation is for each of the partition groups

generated by the map phase. As illustrated in Fig.4, the

reduce operation extracts populations from value_list,

and performs selection operation on those populations

to choose local optimum individuals. Finally, it submits

the selection result as input for final_reducer.

The key of intermediate result is individual and the

value is just a number. All the intermediate results

generated by the 1
st
 phase of reduce operations are

collected as the input for the 2
nd

 phase of reduce

operation.

3.2.4. The 2
nd

 Phase of Reduce. The 2
nd

 phase of

reduce operation is for the global selection, called once

at the end of each iteration of the loop. Essentially,

there is only one operation in the 2
nd

 reduce phase. The

final reducer takes the intermediate result generated by

the reducer in the first phase and produces the final

selection results for the current generation. This result

will be taken as the input for the next round of MRPGA

operations.

Local optimum individuals selected by the operation

in the 1
st
 phase of reduce are merged and sorted to

select the global optimum individuals. The merging

and sorting are performed by the runtime system.

Through a special optimization [described in Section 4],

only the best individuals are fed to the final reducer as

input. Therefore, the final reducer just extracts each

optimum individual from key and submits it as the final

results, as illustrated in Fig. 5.

To achieve the iterations for the population

evolution, a coordinator is adopted. As illustrated in

Fig. 6, the coordinator works on the reproduction,

mutation, and submission of offspring to the scheduler

of MRPGA and on the collection optimum individuals

for each of the rounds of the evolution. Users do not

have to face the difficulties of distributed computing.

Instead, they only need to work on sequential

programming for all the components, including one

map function, two reduce functions and one

coordinator. The runtime system coordinates the

parallel execution of map and reduce tasks.

procedure MapReduce_GA()

t = 0 /* index of generation */

P[0] = a1[0], …, au[0] /* initialization */

Evaluation (a1[0],…,an[0])

while not ΤΤΤΤ(P[t]) do

 P’[t] = Mutation(Crossover(P[t]))

 SendToScheduler(P’[t])

 P[t+1] = ReceiveFromScheduler(t)

 t = t + 1

endwhile

return P[t]

Fig. 6 Coordinator.

function reducer(key, value_list)

 i = 0 /* index variable */

foreach value in value_list

P[i]= a1[i], …, au[i]= Individual(value)

 i++

 /* perform local selection */

 P
’
 = Selection(P)

/* submit local optimum individuals*/

 foreach individual in P
’

 Emit(individual, 1)

Fig. 4 The First Phase of Reduce Operation.

function mapper(key, value)

 /* translation */

 P= a1[0], …, au[0]= Individual(value)

/* perform evaluation */

 P’=Evaluation(a
’
1[0],…,a

’
n[0])

/* Submit intermediate results */

 Emit(default_key, P’)

Fig. 3 Map Operation for Parallel GA.
function final_reducer(key, value)

 /* translation */

P= a1[0], …, au[0]= Individual(key)

/* submit global optimum individuals*/

Emit(P, 1)

Fig. 5 The Second Phase of Reduce Operation.

 5

C
o
o
rd

in
a
to

r

MapReduce

Runtime System

1
st
 Reduce Phase Map Phase

Worker 1

Mapper

Worker m

 Mapper

Worker 1

 Reducer

Worker r

Reducer

2
nd

 Reduce Phase

 Reducer

Seed Population

 Master

O
ffsp

rin
g
 P

a
rtitio

n
s

Fig. 7 Architecture of MRPGA.

4. Architecture
The architecture of the runtime system that supports

MRPGA is shown in Fig. 7. The runtime system

consists of one master, and multiple mapper and

reducer workers. Mapper workers are responsible for

executing the map function defined by users and

reducer workers execute the reduce function, while the

master schedules the execution of parallel tasks.

The control flow of execution consists of the

following stages:

1) The coordinator generates offspring and performs

mutation. Then, it sends the offspring to the master for

evaluation and selection.

2) The master splits the offspring into m pieces

respectively for m map tasks. The value of m is chosen

so as to maximize parallelism for map tasks. Generally

this value is larger than the number of machines.

3) Each piece of offspring is sent to a machine with

a mapper worker. The mapper worker iterates over the

individuals in the piece of input to execute the map

function for each individual. Intermediate results

generated by the map function are kept locally.

4) Each reducer worker is assigned with reduce

tasks for the 1
st
 phase of reduce operations. Normally

the input is taken from the local machine. In case of

heterogeneity, to make uniformly distribute loads over

all workers, some reduce workers fetch intermediate

results from neighboring machines.

5) The reduce function is invoked to select local

optimum individuals that are then stored on the local

machine.

6) A reducer worker is assigned to execute the final

reduce function. This worker collects all the results

generated in the 1
st
 phase of reduce operation.

7) The final reduce function is invoked to produce

the global optimum individuals as final results.

8) The final results are sent to the client for the next

round of the evolutionary algorithm.

The above stages are repeated until the optimum

individuals meet the specified requirements.

Different from the standard implementation of the

MapReduce runtime system, an additional support is

added for the 2
nd

 reduce phase, including a special

optimization for selecting the global optimum

individuals. Since there is only one reduce task in the

final phase, normally the master selects the most

powerful machine from all the available resources to

execute the final_reduce function.

Usually in the reduce phase, all inputs are collected,

merged through sorting before feeding to the reduce

function. MRPGA adds a policy support in the merging

phase. That allows users to specify the order for the

sorting and the number for the top elements which

users want to process. For instance, to meet the

requirements of the final reducer, users specify an

ascending order, just to process the individuals with the

biggest ranking value. From Fig.2, we can know that

the best offspring means a set of individuals, not just

one individual. For those individuals with biggest rank

value, they will be fed to the final reducer at any order.

To simplify handling faults during execution, the

master replicates the optimum individuals selected by

MRPGA for each round of evolvement. If some

machines become un-available during the execution,

we just restart the execution from the last round. This

fault tolerance mechanism is different from standard

MapReduce implementation and therefore we do not

need a complex distributed file system for reliability

purpose.

 6

5. Implementation
We have implemented MRPGA on the .NET

platform using the C# language. The deployment of

MRPGA is simplified by using Aneka [18]. Aneka is

a .NET-based enterprise Grid software platform. It

allows the creation of enterprise Grid environments.

Each Aneka node consists of a configurable container

hosting mandatory and optional services. The

mandatory services provide the basic capabilities

required in a distributed system, such as

communications between Aneka nodes, security, and

membership. Optional services can be installed to

support the implementation of different programming

models in Grid environments. The master, mapper

worker and reducer worker of MRPGA are all

implemented as optional services and can be loaded

into the Aneka container according to their

configurations. Fig. 8 illustrates a configuration of

deployment scenario of MRPGA within Aneka.

Representatively, one machine is configured with a

master service, while other machines are equipped with

worker services.

The master service utilizes the membership service

supported in Aneka to monitor the status of each

worker. In case of failures, the master adopts policy

described in Section 4 to continue the execution. The

message dispatcher service is adopted by master and

worker services to perform the transfer of intermediate

results between machines.

Users can define map and reduce functions with any

language supported by .NET, such as C++, C# and

Visual Basic. To start execution, the client should

submit map and reduce functions, and initial

populations to the master service. The map and reduce

functions are serialized into binary format through the

object reflection supported by .NET. The master

service first selects available workers by querying the

membership service and splits the initial offspring

according to the settings of worker services. Then, the

master service sends the serialized map function with

pieces of initial population to each worker service.

After one worker completes the execution of the map

function, the master sends the serialized reduce

function to the worker. When all reduce workers finish

the execution for the 1
st
 phase of reduce operation, one

worker is assigned to execute the final reduce operation.

Finally, the optimum individuals generated by the final

reducer are collected by the master service and then

forwarded to the client, which produces a new

generation for next round of evolution.

6. Performance Evaluation
We have developed the MRPGA runtime system

and deployed it with Aneka in several student

laboratories at the University of Melbourne. The

experiments were performed in an enterprise Grid

consisting of 33 nodes drawn from three student

laboratories. Each machine has a single Pentium 4

processor, 1GB of memory, 160GB IDE disk, 1 Gbps

Ethernet and runs Windows XP operating system.

We conducted 2 experiments to evaluate the

overhead and performance of our approach. This

section first evaluates the overhead of MRPGA for

typical GA applications, and then illustrates the

scalability of the system with one example application.

6.1. Overhead of MRPGA
The MapReduce model trades performance for

simplicity of programming. For instance, applications

have to follow the interface of key/value pairs.

However, its overhead cannot be overwhelming.

Otherwise, its performance might not be acceptable.

We use multiobjective evolutionary algorithms (MOEA)

[12], a solution of multiple objective optimizations as

the benchmark for evaluating the overhead of MRPGA

by sequential execution. MOEA are an effective tool

for solving search and optimization problems

containing several incommensurable and possibly

conflicting objectives. MOEA is reported to be used as

a framework to support various applications in the real

word [12].
We have integrated MOEA with MRPGA. This

section presents the overhead introduced by MRPGA

to MOEA. Two benchmark multiobjective problems

were adopted in the experiments: DLTZ4 and DLTZ5.

A more comprehensive description of these two

problems can be found in [11]. In the following, we list

the actual implementation for the evaluation operation:

.N
E

T
 F

ra
m

ew
o
rk

A
n

ek
a
 C

o
n

ta
in

e
r Message Dispatcher

Membership Service

MRPGA

Master Service

.N
E

T
 F

ra
m

ew
o
rk

A
n

ek
a
 C

o
n

ta
in

e
r Message Dispatcher

Membership Service

MapReduce
2
Worker

.N
E

T
 F

ra
m

ew
o
rk

A
n
e
k
a C

o
n
tain

er Message Dispatcher

Membership Service

MapReduce
2

Worker

.N
E

T
 F

ra
m

e
w

o
rk

A
n
ek

a C
o
n
tain

er Message Dispatcher

Membership Service

MRPGA

Worker Service

Master

Machine

Worker

Machines Enterprise Grid

Compulsory Service

Optional Service

Client / User

Fig. 8 Implementation of MRPGA over Aneka.

 7

DTLZ4 is for minimizing:

∏
−

=
+=

1

11)2/cos())(1()(
M

j jM xXgxf π
α

∏
−

=
+−+=

1

1
1)2/cos()2/sin())(1()(

M

j jkM
a

Mk xxXgxf ππ
α

for k = 2, 3, …,M

where:

.,...,2,1,10,)5.0()(2
PixxXMg iXx i

Mi

=≤≤−=∑ ∈

DTLZ5 is for minimizing:

∏
−

=
+=

1

11)cos())(1()(
M

j jMXgxf θ

∏
−

=+−+=
1

11)cos()sin())(1()(
M

j jkMMk Xgxf θθ

for k = 2, 3, …,M

where:

.,...,2,1,10,)5.0()(2
PixxXMg iXx i

Mi

=≤≤−=∑ ∈

2/11 πθ x=

)1(,...,3,2),)(21(
))(1(4

−=+
+

= MqxXg
Xg

qM

M

q

π
θ

In the experiments, we executed the application in a

sequential manner. We chose to produce 300

individuals for every iteration of the evolutionary

algorithm and repeated for 100 generations. The result

is illustrated in Table 1. We executed the sequential

MOAE with MRPGA and without MRPGA. Then the

difference between the two execution times is the

overhead of the sequential MRPGA. Actually, this

overhead is comparably small, less than 1% of the

whole execution time for both DLTZ4 and DLTZ5. In

the next section, it is shown that the overhead is

amortized by the benefits of parallel execution.

Table 1 Overhead of Sequential MRPGA.

 Overhead(s) % Execution Time

DLTZ4 56 <1%

DLTZ5 53 <1%

6.2. Scalability
For the scalability experiments, we used the

framework of MOEA to simulate a real application:

aerodynamic airfoil design [9]. The evaluation costs for

aerodynamic airfoil design are extracted from what

they claim in their respective research paper. The costs

were scaled according to different machine

configurations. We choose this example because its

evaluation phase is one of the most time-consuming

applications as we know.

A cost simulation function is used in the scalability

experiment for realizing the execution time for

evaluation in the application. The simulated cost

follows a normal distribution. The average evaluation

cost for aerodynamic airfoil design it is 10 seconds.

The standard deviation, σ
2
, is configured to be 0.2.

The experiments generated 500 individuals for each

generation and repeated 10 times. We compare the time

consumed by the parallel execution of MRPGA with

that by its sequential version. The parallel execution

was performed on various numbers of machines, from

4 to 32. The scalability results are illustrated in Fig. 9.

Fig. 9 Scalability Experiments.

From the results, we can see that MRPGA supports

scalable performance for embarrassingly parallel tasks,

including the map and reduce phases. The reason is that

the parallel tasks are time-consuming and network

overhead is comparably small. However, the time

consumed by the sequential part of coordinator cannot

be neglected. The reason is MOEA utilizes a complex

algorithm to choose individuals for crossover with the

complexity of O(n
2
). It is our future research to

parallelize the crossover and reproduction operations.

7. Related Work
Parallelizing genetic algorithms have received much

attention from researchers. Many models have been

proposed to meet the challenges of implementing PGAs.

These include the distributed [6], coarse grained [14]

and fine grained models [17]. Many of the existing

approaches try to achieve their targets using MPI.

However, MPI is not flexible enough for handling

heterogeneity and failures, which are common features

of data centers, the increasing popular computation

platform.

MapReduce is a simple programming model for

developing distributed data intensive applications in

data centers. Since it was proposed by Google for

cluster of commodity machines, there have been many

following projects. For instance, Phoenix [4] is a

MapReduce model designed for the shared memory

architecture, while Hadoop [1] is an open source

implementation of MapReduce designed as a general

 8

distributed computing platform. MRPSO [2] utilizes

the MapReduce model to parallelize a computing-

intensive application, Particle Swarm Optimization.

Compared with the above work, we are not aiming

to invent new parallel genetic algorithms. Instead, we

try to simplify the difficulties of developing distributed

genetic algorithms. To the best of our knowledge,

MRPGA is the first work on using MapReduce to

parallelize GAs. Similar to MRPSO, MRPGA is also

targeting computationally intensive problems. However,

GA applications cannot be directly expressed by

MapReduce. Therefore, MRPGA makes an extension

to the MapReduce model, which can naturally express

GA applications and automatically parallelize the

execution.

8. Conclusions
This paper mainly addresses the challenge of using

the MapReduce model to parallelize GAs. As a

stateless programming model, MapReduce cannot

directly express GAs. To achieve our target, we have

extended MapReduce by adding a second reduce phase

and a special optimization on the merge phase for the

added reduce operation. This extension makes PGAs

can benefit from the MapReduce model on handling

heterogeneity and failures. The evaluation on the

runtime system was conducted and the benefits are

presented. Based on our successful start of

MapReduce-based PGAs, in the future, we endeavor to

explore ways of easily parallelizing other population-

based solutions.

Acknowledgements
This work is partially supported by research grants

from the Australian Research Council (ARC) and

Australian Department of Industry, Innovation, Science

and Research (DIISR). We thank Srikumar Venugopal,

Mukaddim Pathan, Alexandre di Costanzo, James

Andrew Broberg and Michael Kirley for their

comments on improving the quality of the paper.

References
[1] Apache. Hadoop. http://lucene.apache.org/hadoop/.

[2] A. W. McNabb, C. K. Monson, and K. D. Seppi,

Parallel PSO Using MapReduce, Proc. of the Congress on

Evolutionary Computation, Singapore, 2007.

[3] A. Weiss. Computing in the Clouds. netWorker,

11(4):16-25, Dec. 2007.

[4] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, C.

Kozyrakis, Evaluating MapReduce for Multi-core and

Multiprocessor Systems, Proc. of the 13th Intl. Symposium on

High-Performance Computer Architecture, USA, 2007.

[5] D. A. Patterson, Technical perspective: the data center

is the computer, Communications of the ACM, 51-1, 105,

January 2008.

[6] D. Lim, Y.S. Ong, Y. Jin, B. Sendhoff, and B.S. Lee,

Efficient Hierarchical Parallel Genetic Algorithms using

Grid computing, Future Generation Computer Systems, Vol.

23, No. 4, pp 658-670 , Elsevier Science Publishers, 2007.

[7] E. Alba, C. Cotta, The on-line tutorial on evolutionary

computation, http://www.lcc.uma.es/~ccottap/semEC/.

[8] E. Alba and J. M. Troya, A Survey of Parallel

Distributed Genetic Algorithms, Complexity 4(1999), 31-52.

[9] H. K. Ng, D. Lim, Y. S. Ong, B. S. Lee, L. Freund, S.

Parvez and B. Sendhoff, A Multi-cluster Grid Enabled

Evolution Framework for Aerodynamic Airfoil Design

Optimization, Lecture Notes in Computer Science, Springer

Berlin / Heidelberg, Vol. 3611, 2005.

[10] J. Dean and S. Ghemawat, MapReduce: Simplified Data

Processing on Large Clusters, Proc. of the 6th Symposium on

Operating System Design and Implementation, USA, 2004.

[11] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler,

Scalable multiobjective optimization test problems. Proc. of

Congress on Evolutionary Computation, 2002.

[12] M. Kirley, R. Stewart, An analysis of the effects of

population structure on scalable multiobjective optimization

problems, Proc. of SIGEVO Genetic and Evolutionary

Computation Conference, UK, 2007.

[13] R. Buyya, C. S. Yeo, and S. Venugopal, Market-

Oriented Cloud Computing: Vision, Hype, and Reality for

Delivering IT Services as Computing Utilities, Proc. of the

10th IEEE International Conference on High Performance

Computing and Communications, China, 2008.

[14] S. C. Lin, W. F. Punch, and E. D. Goodman, Coarse-

grain parallel genetic algorithms: Categorization and new

approach, Proc. of the 6th IEEE Symposium on Parallel and

Distributed Processing, 1994.

[15] S. Luke, Genetic programming produced competitive

soccer softbot teams for robocup97, Proc. of the 3rd Annual

Genetic Programming Conference, USA, 1998.

[16] T. Back, Evolutionary Algorithms in Theory and

Practice: Evolution Strategies, Evolutionary Programming,

Genetic Algorithms, Oxford Univ. Press, New York, 1996.

[17] T. Maruyama, T. Hirose, and A. Konagaya, A Fine-

grained Parallel Genetic Algorithm for Distributed Parallel

Systems, Proc. of the 5th International Conference on Genetic

Algorithms, USA, 1993.

[18] X. Chu, K. Nadiminti, J. Chao, S. Venugopal, and R.

Buyya, Aneka: Next-Generation Enterprise Grid Platform

for e-Science and e-Business Applications, Proc. of the 3rd

IEEE International Conference and Grid Computing, India,

2007.

[19] Z. Michalewicz, Genetic Algorithms + Data Structures

= Evolution Programs, Springer, Germany, 1996.

