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Abstract 
 

The MapReduce programming model allows users 

to easily develop distributed applications in data 

centers. However, many applications cannot be exactly 

expressed with MapReduce due to their specific 

characteristics. For instance, Genetic Algorithms (GAs) 

naturally fit into an iterative style. That does not follow 

the two phase pattern of MapReduce. This paper 

presents an extension to the MapReduce model 

featuring a hierarchical reduction phase. This model is 

called MRPGA (MapReduce for Parallel GAs), which 

can automatically parallelize GAs. We describe the 

design and implementation of the extended MapReduce 

model on a .NET-based enterprise Grid system in 

detail. The evaluation of this model with its runtime 

system is presented using example applications. 

 

1. Introduction 
Genetic Algorithms (GAs) are a class of 

evolutionary algorithms [16], which are widely used in 

many domains, such as CAD/CAM, scheduling, 

chemistry, and biology [7]. In particular, GAs are used 

to search for an nearly optimal solution in complex 

spaces with a computationally intensive solution [19]. 

Normally, GAs abstract the problem space as a 

population of individuals and deploy a randomized 

optimization method to generate offspring for 

searching near-optimal individuals. Generally, this 

process takes a long time for large problem sizes. To 

improve efficiency, Parallel Genetic Algorithms (PGAs) 

have been adopted. PGAs [8] normally split a problem 

space into a number of smaller sub-spaces, then 

explore sub-optimal solutions for each sub-space, and 

finally find out a set of optimal solutions based on the 

sub-optimal solutions. PGAs can not only reduce the 

execution time, but also can tackle more complex 

problems by taking advantage of distributed computing 

systems. Furthermore, PGAs are more versatile than 

their corresponding sequential version as they have a 

less possibility of getting stuck in local optima. 

However, parallelized GAs still face the common 

development difficulties in distributed environments, 

such as communication and synchronization between 

distributed components. Furthermore, due to the 

increase of cloud computing [3][13], PGAs have to 

solve more challenging problems common in data 

centers, such as heterogeneity and frequent failures. 

Many existing models for PGAs are based on message 

passing interface (MPI), which is not designed for 

cloud computing. Thus, it is important to explore a 

more suitable solution for performing distributed GAs 

in data centers. 

The MapReduce model [10] provides a parallel 

design pattern for simplifying application 

developments in distributed environments. This model 

can split a large problem space into small pieces and 

automatically parallelize the execution of small tasks 

on the smaller space. It was proposed by Google for 

easily harnessing a large number of resources in data 

centers to process data-intensive applications and has 

been proposed to form the basis of a “data center 

computer” [5]. This model allows users to benefit from 

advanced features of distributed computing without 

worrying about the difficulty of coordinating the 

execution of parallel tasks in distributed environments.  

This paper explores how to extend MapReduce to 

support PGAs. The iteration style of GAs cannot be 

expressed directly with MapReduce. We extend 

MapReduce by adding a phase for global selection at 

the end of every iteration of PGAs. Furthermore, we 

expose a coordinator client for coordinating the 

execution of PGAs iterations. The contribution of this 

paper includes: 
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1. An extension to MapReduce for automatically 

parallelizing GAs with sequential 

programming through 3 components: Map, 

Reduce, and Reduce, called MRPGA. 

2. A runtime system on the .NET platform for 

MRPGA to coordinate the parallel execution 

of GA applications within a distributed 

environment. 

3. Evaluation on the runtime system and 

programming model through real world 

experiments over an enterprise Grid. 

The remainder of the paper is organized as follows. 

Section 2 reviews the MapReduce programming model. 

Section 3 presents the extension to MapRedce through 

a distributed model of PGAs. Section 4 presents the 

architecture of MRPGA. Section 5 describes the 

implementation. Section 6 discusses the experimental 

evaluation of the system. Section 7 concludes the paper 

with pointers to future work. 

 

2. MapReduce Overview 
MapReduce is triggered by map and reduce 

operations in functional languages, such as Lisp. This 

model abstracts computation problems through two 

functions: map and reduce. All problems formulated in 

this way can be parallelized automatically. 

Essentially, the MapReduce model allows users to 

write Map/Reduce components with functional-style 

code. These components are then composed as a 

dataflow graph with fixed dependency relationship to 

explicitly specify its parallelism.  Finally, the 

MapReduce runtime system can transparently explore 

the parallelism and schedule these components to 

distributed resources for execution. 

All data processed by MapReduce are in the form of 

key/value pairs. The execution happens in two phases. 

In the first phase, a map function is invoked once for 

each input key/value pair and it can generate output 

key/value pairs as intermediate results. In the second 

one, all the intermediate results are merged and 

grouped by keys. The reduce function is called once for 

each key with associated values and produces output 

values as final results. 

 

2.1. MapReduce Model 
A map function takes a key/value pair as input and 

produces a list of key/value pairs as output. The type of 

output key and value can be different from input key 

and value: 

),(),(:: 2211 valuekeylistvaluekeymap ⇒  

A reduce function takes a key and an associated 

value list as input and generates a list of new values as 

output: 

)())(,(:: 322 valuelistvaluelistkeyreduce ⇒  

 

2.2. MapReduce Execution 
A MapReduce application is executed in a parallel 

manner through two phases. In the first phase, all map 

operations can be executed independently with each 

other. In the second phase, each reduce operation may 

depend on the outputs generated by any number of map 

operations. However, similar to map operations, all 

reduce operations can be executed independently. 

From the perspective of dataflow, MapReduce 

execution consists of m independent map tasks and r 

independent reduce tasks, each of which may be 

dependent on m map tasks. Generally the intermediate 

results are partitioned into r pieces for r reduce tasks. 

The MapReduce runtime system schedules map and 

reduce tasks to distributed resources, which handles 

many tough problems, including parallelization, 

concurrency control, network communication and fault 

tolerance. Furthermore, it performs several 

optimizations to decrease overhead involved in the 

scheduling, network communication and intermediate 

grouping of results. 

As MapReduce can be easily understood, its 

abstraction considerably improves the productivity of 

parallel/distributed development, especially for novice 

programmers.  

 

3. MapReduce
 
for PGA 

The MapReduce model cannot be used to express 

PGAs directly. This section describes an extension to 

MapReduce through adding an additional reduce phase 

for population selection after analyzing the general 

requirements of PGAs. 

 

3.1. Overview of PGA 
Genetic algorithms abstract the problem space as a 

population of individuals, and explore the optimum 

individual through a loop of operations. Usually the 

individual is represented by a string of symbols, and 

each step of the loop produces a new generation with 

reproduction, mutation, evaluation and selection 

operations. Given a generation of individuals as 

ancestors, the reproduction operation generates their 

offspring by combining several ancestors and the 

mutation operation performs simple stochastic 

variations on each offspring to generate a new version 

of it. The evaluation operation evaluates the offspring 

according to an objective function and the selection 

operation chooses the best one from the population for 

next generation. This process repeats until the optimum 

individual is found.  
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Among these operations, the evaluation and 

selection operation consumes most of the time and has 

been estimated to take more than 1 CPU year for the 

problems in complex domains [15]. 

 

 
There are several models for PGAs. We choose the 

distributed model as a general presentation of the 

principle of PGA. With this model, there exist many 

elementary worker GA working on separate 

populations. Each worker performs same computations 

as the rest. Fig. 1 illustrates the principle of PGAs with 

a distributed model. Essentially, after mutation and 

crossover operations, there exists a communication 

phase, where each worker communicates with 

neighbors for exchanging a set of individuals or 

statistics. After this communication phase, the offspring 

will be selected as the starting point to evolve next 

generation. 

Each individual, P, consists of u elements, a1,…,au. 

T is the function that determines whether the optimum 

value has been generated. 

 

)...1(, uiaaPP yixiyx ∈>⇔>  

)...1(, uiaaPP yixiyx ∈<⇔<
 

)...1(,),,(),( ujiaajaai yjxjyixi ∈<∃∧>∃  

⇔= yx PP       OR 

)...1(, uiaa yixi ∈==  

Fig. 2 Comparison Rule of Individuals. 

 

To perform the selection operation, the individual 

with the best value of evaluation are chosen. Each 

individual after evaluation still consists of an array of u 

elements: a1,…,au. Given any two individuals, Px and 

Py, Px is bigger than Py only if every element of Px is 

bigger than the corresponding element of Py, as 

illustrated in Fig. 2. 

3.2. MRPGA: MapReduce
  
for PGA 

We deploy MapReduce to parallelize those parts of 

a PGA that are the most time-consuming. Essentially, a 

map operation can be used to express the phase of local 

evaluation. The communication phase can be achieved 

by collecting dependent inputs for the reduce operation 

through the runtime system. However, the execution of 

selection cannot be achieved by one reduce operation, 

because after the local selection, a global selection is 

required. Therefore, we have to express the selection 

phase through two phases of reduce operations. Thus 

the whole execution model consists of three phases: 

map, reduce and reduce. 

 

3.2.1. Key/Value Pairs for MRPGA. The types for 

input key/value pairs of MRPGA are illustrated as 

follows: 

Key1     : Integer 

Value1  : Individual 

Key2      : Integer 

Value2   : Set of Individuals  

Key3      : Individual 

Vaue3    : Integer 

 

At first, each individual is identified by a numerical 

key. After being evaluated in the map phase, each 

individual will be associated with a common key as the 

result. This intermediate result is kept on the local 

machine. In the standard MapReduce, with this 

common key, all mutated individuals will be associated 

together without any partition. However, MRPGA 

deploys a different policy. Essentially, the set of 

individuals associated with the common key is 

partitioned according to their locations. 

Each reduce function will be called for each 

partition, which is actually taken as the input list of 

value. As a result, a set of sub-optimal individuals is 

produced with the selection algorithm implemented by 

users in the 1
st
 phase of reduce operation. 

In the final reduce phase, all sets of sub-optimal 

individuals are collected and then merged and sorted. 

Only the best individuals are selected by the system as 

the input of final reduce function. 

 

3.2.2. Map Phase. The map operation is for every 

individual and is called once for each of the individuals 

in each of the steps of the loop. As an input fed into the 

map function, key is the index of the individual, while 

value is the individual. The map operation extracts the 

individual from value, performs evaluation, and then 

submits the result as an intermediate output, as shown 

in Fig 3. In the figure, Emit is used to submit results. 

function Distributed_GA() 

t = 0                          /* index of generation */ 

P[0] = a1[0], …, au[0]     /* initialization */ 

Evaluation(a1[0],…,an[0])   

while not ΤΤΤΤ(P[t]) do 

P’[t] = Mutation(Crossover(P[t])) 

Evaluation(a
’
1[0],…,a

’
n[0]) 

<Communication>  

P[t+1] = Selection(P’[t]) 

t = t + 1 

endwhile 

return Optimum(P[t]) 

Fig. 1 Parallel Genetic Algorithm.  
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The results generated by the map phase are kept in a 

persistent database on the local machine. All the results 

are associated with same key, default_key. We adopt a 

partition policy different from the standard 

implementation of MapReduce. The intermediate 

results generated by Map functions are not partitioned 

by key. However, they are automatically split into 

pieces according to their locations. This partition 

policy allows each of the reduce tasks to collect 

dependent input just from the local machine without 

fetching data from a remote machine.  

Intermediate results produced by map operations on 

the same node will be merged by key as the input for 

the 1st phase of reduce operation. 

 

 
3.2.3. The 1

st
 Phase of Reduce. The 1

st
 phase of 

reduce operation is for each of the partition groups 

generated by the map phase. As illustrated in Fig.4, the 

reduce operation extracts populations from value_list, 

and performs selection operation on those populations 

to choose local optimum individuals. Finally, it submits 

the selection result as input for final_reducer. 

The key of intermediate result is individual and the 

value is just a number. All the intermediate results 

generated by the 1
st
 phase of reduce operations are 

collected as the input for the 2
nd

 phase of reduce 

operation. 

 

3.2.4. The 2
nd

 Phase of Reduce. The 2
nd

 phase of 

reduce operation is for the global selection, called once 

at the end of each iteration of the loop. Essentially, 

there is only one operation in the 2
nd

 reduce phase. The 

final reducer takes the intermediate result generated by 

the reducer in the first phase and produces the final 

selection results for the current generation. This result 

will be taken as the input for the next round of MRPGA 

operations. 

 

 
Local optimum individuals selected by the operation 

in the 1
st
 phase of reduce are merged and sorted to 

select the global optimum individuals. The merging 

and sorting are performed by the runtime system. 

Through a special optimization [described in Section 4], 

only the best individuals are fed to the final reducer as 

input. Therefore, the final reducer just extracts each 

optimum individual from key and submits it as the final 

results, as illustrated in Fig. 5. 

 

 
To achieve the iterations for the population 

evolution, a coordinator is adopted. As illustrated in 

Fig. 6, the coordinator works on the reproduction, 

mutation, and submission of offspring to the scheduler 

of MRPGA and on the collection optimum individuals 

for each of the rounds of the evolution. Users do not 

have to face the difficulties of distributed computing. 

Instead, they only need to work on sequential 

programming for all the components, including one 

map function, two reduce functions and one 

coordinator. The runtime system coordinates the 

parallel execution of map and reduce tasks. 

 

procedure MapReduce_GA() 

t = 0                          /* index of generation */ 

P[0] = a1[0], …, au[0]     /* initialization */ 

Evaluation (a1[0],…,an[0])    

while not ΤΤΤΤ(P[t]) do 

      P’[t] = Mutation(Crossover(P[t])) 

      SendToScheduler(P’[t]) 

      P[t+1] = ReceiveFromScheduler(t) 

      t = t + 1 

endwhile 

return P[t] 

Fig. 6 Coordinator.  

function reducer(key, value_list) 

    i = 0           /* index variable */ 

foreach value in value_list 

P[i]= a1[i], …, au[i]= Individual(value) 

    i++ 

    /* perform local selection */ 

    P
’
 = Selection(P) 

/* submit local optimum individuals*/ 

   foreach individual in P
’
 

         Emit(individual, 1) 

Fig. 4  The First Phase of Reduce Operation.  

function mapper(key, value) 

     /* translation */ 

    P= a1[0], …, au[0]= Individual(value)   

/* perform evaluation */ 

   P’=Evaluation(a
’
1[0],…,a

’
n[0])    

/* Submit intermediate results */ 

    Emit(default_key, P’) 

Fig. 3 Map Operation for Parallel GA.  
function final_reducer(key, value) 

    /* translation */ 

P= a1[0], …, au[0]= Individual(key) 

/* submit global optimum individuals*/ 

Emit(P, 1) 

Fig. 5 The Second Phase of Reduce Operation.  
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Fig. 7 Architecture of MRPGA. 

4. Architecture 
The architecture of the runtime system that supports 

MRPGA is shown in Fig. 7. The runtime system 

consists of one master, and multiple mapper and 

reducer workers. Mapper workers are responsible for 

executing the map function defined by users and 

reducer workers execute the reduce function, while the 

master schedules the execution of parallel tasks. 

The control flow of execution consists of the 

following stages: 

1) The coordinator generates offspring and performs 

mutation. Then, it sends the offspring to the master for 

evaluation and selection. 

2) The master splits the offspring into m pieces 

respectively for m map tasks. The value of m is chosen 

so as to maximize parallelism for map tasks. Generally 

this value is larger than the number of machines. 

3) Each piece of offspring is sent to a machine with 

a mapper worker. The mapper worker iterates over the 

individuals in the piece of input to execute the map 

function for each individual. Intermediate results 

generated by the map function are kept locally. 

4) Each reducer worker is assigned with reduce 

tasks for the 1
st
 phase of reduce operations. Normally 

the input is taken from the local machine. In case of 

heterogeneity, to make uniformly distribute loads over 

all workers, some reduce workers fetch intermediate 

results from neighboring machines. 

5) The reduce function is invoked to select local 

optimum individuals that are then stored on the local 

machine. 

6) A reducer worker is assigned to execute the final 

reduce function. This worker collects all the results 

generated in the 1
st
 phase of reduce operation. 

7) The final reduce function is invoked to produce 

the global optimum individuals as final results. 

8) The final results are sent to the client for the next 

round of the evolutionary algorithm. 

The above stages are repeated until the optimum 

individuals meet the specified requirements. 

Different from the standard implementation of the 

MapReduce runtime system, an additional support is 

added for the 2
nd

 reduce phase, including a special 

optimization for selecting the global optimum 

individuals. Since there is only one reduce task in the 

final phase, normally the master selects the most 

powerful machine from all the available resources to 

execute the final_reduce function.  

Usually in the reduce phase, all inputs are collected, 

merged through sorting before feeding to the reduce 

function. MRPGA adds a policy support in the merging 

phase. That allows users to specify the order for the 

sorting and the number for the top elements which 

users want to process. For instance, to meet the 

requirements of the final reducer, users specify an 

ascending order, just to process the individuals with the 

biggest ranking value. From Fig.2, we can know that 

the best offspring means a set of individuals, not just 

one individual. For those individuals with biggest rank 

value, they will be fed to the final reducer at any order. 

To simplify handling faults during execution, the 

master replicates the optimum individuals selected by 

MRPGA for each round of evolvement. If some 

machines become un-available during the execution, 

we just restart the execution from the last round. This 

fault tolerance mechanism is different from standard 

MapReduce implementation and therefore we do not 

need a complex distributed file system for reliability 

purpose. 
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5. Implementation 
We have implemented MRPGA on the .NET 

platform using the C# language. The deployment of 

MRPGA is simplified by using Aneka [18]. Aneka is 

a .NET-based enterprise Grid software platform. It 

allows the creation of enterprise Grid environments. 

Each Aneka node consists of a configurable container 

hosting mandatory and optional services. The 

mandatory services provide the basic capabilities 

required in a distributed system, such as 

communications between Aneka nodes, security, and 

membership. Optional services can be installed to 

support the implementation of different programming 

models in Grid environments. The master, mapper 

worker and reducer worker of MRPGA are all 

implemented as optional services and can be loaded 

into the Aneka container according to their 

configurations. Fig. 8 illustrates a configuration of 

deployment scenario of MRPGA within Aneka. 

Representatively, one machine is configured with a 

master service, while other machines are equipped with 

worker services. 

 
The master service utilizes the membership service 

supported in Aneka to monitor the status of each 

worker. In case of failures, the master adopts policy 

described in Section 4 to continue the execution. The 

message dispatcher service is adopted by master and 

worker services to perform the transfer of intermediate 

results between machines. 

Users can define map and reduce functions with any 

language supported by .NET, such as C++, C# and 

Visual Basic. To start execution, the client should 

submit map and reduce functions, and initial 

populations to the master service. The map and reduce 

functions are serialized into binary format through the 

object reflection supported by .NET. The master 

service first selects available workers by querying the 

membership service and splits the initial offspring 

according to the settings of worker services. Then, the 

master service sends the serialized map function with 

pieces of initial population to each worker service. 

After one worker completes the execution of the map 

function, the master sends the serialized reduce 

function to the worker. When all reduce workers finish 

the execution for the 1
st
 phase of reduce operation, one 

worker is assigned to execute the final reduce operation. 

Finally, the optimum individuals generated by the final 

reducer are collected by the master service and then 

forwarded to the client, which produces a new 

generation for next round of evolution. 

 

6. Performance Evaluation 
We have developed the MRPGA runtime system 

and deployed it with Aneka in several student 

laboratories at the University of Melbourne. The 

experiments were performed in an enterprise Grid 

consisting of 33 nodes drawn from three student 

laboratories. Each machine has a single Pentium 4 

processor, 1GB of memory, 160GB IDE disk, 1 Gbps 

Ethernet and runs Windows XP operating system. 

We conducted 2 experiments to evaluate the 

overhead and performance of our approach. This 

section first evaluates the overhead of MRPGA for 

typical GA applications, and then illustrates the 

scalability of the system with one example application. 

 

6.1. Overhead of MRPGA 
The MapReduce model trades performance for 

simplicity of programming. For instance, applications 

have to follow the interface of key/value pairs. 

However, its overhead cannot be overwhelming. 

Otherwise, its performance might not be acceptable. 

We use multiobjective evolutionary algorithms (MOEA) 

[12], a solution of multiple objective optimizations as 

the benchmark for evaluating the overhead of MRPGA 

by sequential execution. MOEA are an effective tool 

for solving search and optimization problems 

containing several incommensurable and possibly 

conflicting objectives. MOEA is reported to be used as 

a framework to support various applications in the real 

word [12]. 
We have integrated MOEA with MRPGA. This 

section presents the overhead introduced by MRPGA 

to MOEA. Two benchmark multiobjective problems 

were adopted in the experiments: DLTZ4 and DLTZ5. 

A more comprehensive description of these two 

problems can be found in [11]. In the following, we list 

the actual implementation for the evaluation operation: 
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Fig. 8 Implementation of MRPGA over Aneka. 
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In the experiments, we executed the application in a 

sequential manner. We chose to produce 300 

individuals for every iteration of the evolutionary 

algorithm and repeated for 100 generations. The result 

is illustrated in Table 1. We executed the sequential 

MOAE with MRPGA and without MRPGA. Then the 

difference between the two execution times is the 

overhead of the sequential MRPGA. Actually, this 

overhead is comparably small, less than 1% of the 

whole execution time for both DLTZ4 and DLTZ5. In 

the next section, it is shown that the overhead is 

amortized by the benefits of parallel execution. 

 

Table 1 Overhead of Sequential MRPGA. 

 Overhead(s) % Execution Time 

DLTZ4 56 <1% 

DLTZ5 53 <1% 

 

6.2. Scalability 
For the scalability experiments, we used the 

framework of MOEA to simulate a real application:  

aerodynamic airfoil design [9]. The evaluation costs for 

aerodynamic airfoil design are extracted from what 

they claim in their respective research paper. The costs 

were scaled according to different machine 

configurations. We choose this example because its 

evaluation phase is one of the most time-consuming 

applications as we know. 

A cost simulation function is used in the scalability 

experiment for realizing the execution time for 

evaluation in the application. The simulated cost 

follows a normal distribution. The average evaluation 

cost for aerodynamic airfoil design it is 10 seconds. 

The standard deviation, σ
2
, is configured to be 0.2.  

The experiments generated 500 individuals for each 

generation and repeated 10 times. We compare the time 

consumed by the parallel execution of MRPGA with 

that by its sequential version. The parallel execution 

was performed on various numbers of machines, from 

4 to 32. The scalability results are illustrated in Fig. 9. 

 

 
Fig. 9 Scalability Experiments. 

 

From the results, we can see that MRPGA supports 

scalable performance for embarrassingly parallel tasks, 

including the map and reduce phases. The reason is that 

the parallel tasks are time-consuming and network 

overhead is comparably small. However, the time 

consumed by the sequential part of coordinator cannot 

be neglected. The reason is MOEA utilizes a complex 

algorithm to choose individuals for crossover with the 

complexity of O(n
2
). It is our future research to 

parallelize the crossover and reproduction operations. 

 

7. Related Work 
Parallelizing genetic algorithms have received much 

attention from researchers. Many models have been 

proposed to meet the challenges of implementing PGAs. 

These include the distributed [6], coarse grained [14] 

and fine grained models [17]. Many of the existing 

approaches try to achieve their targets using MPI. 

However, MPI is not flexible enough for handling 

heterogeneity and failures, which are common features 

of data centers, the increasing popular computation 

platform. 

MapReduce is a simple programming model for 

developing distributed data intensive applications in 

data centers. Since it was proposed by Google for 

cluster of commodity machines, there have been many 

following projects. For instance, Phoenix [4] is a 

MapReduce model designed for the shared memory 

architecture, while Hadoop [1] is an open source 

implementation of MapReduce designed as a general 
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distributed computing platform. MRPSO [2] utilizes 

the MapReduce model to parallelize a computing-

intensive application, Particle Swarm Optimization. 

Compared with the above work, we are not aiming 

to invent new parallel genetic algorithms. Instead, we 

try to simplify the difficulties of developing distributed 

genetic algorithms. To the best of our knowledge, 

MRPGA is the first work on using MapReduce to 

parallelize GAs. Similar to MRPSO, MRPGA is also 

targeting computationally intensive problems. However, 

GA applications cannot be directly expressed by 

MapReduce. Therefore, MRPGA makes an extension 

to the MapReduce model, which can naturally express 

GA applications and automatically parallelize the 

execution. 

 

8. Conclusions 
This paper mainly addresses the challenge of using 

the MapReduce model to parallelize GAs. As a 

stateless programming model, MapReduce cannot 

directly express GAs. To achieve our target, we have 

extended MapReduce by adding a second reduce phase 

and a special optimization on the merge phase for the 

added reduce operation. This extension makes PGAs 

can benefit from the MapReduce model on handling 

heterogeneity and failures. The evaluation on the 

runtime system was conducted and the benefits are 

presented. Based on our successful start of 

MapReduce-based PGAs, in the future, we endeavor to 

explore ways of easily parallelizing other population-

based solutions. 
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