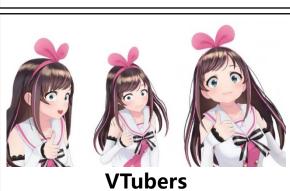
动作捕捉与动作生成的相遇还有多远? Towards the Union of Motion Capture and Motion Generation

Zhongang Cai 蔡中昂

Ph.D. Student S-Lab, Nanyang Technological University

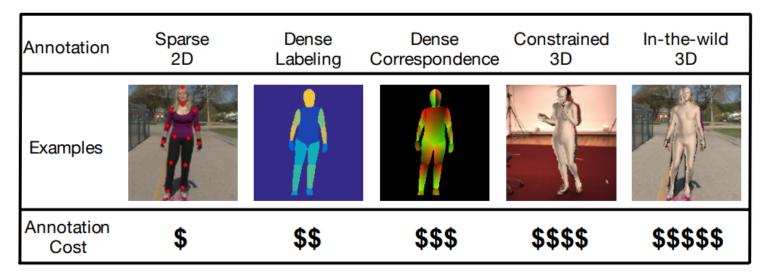
19 Apr 2024


Background

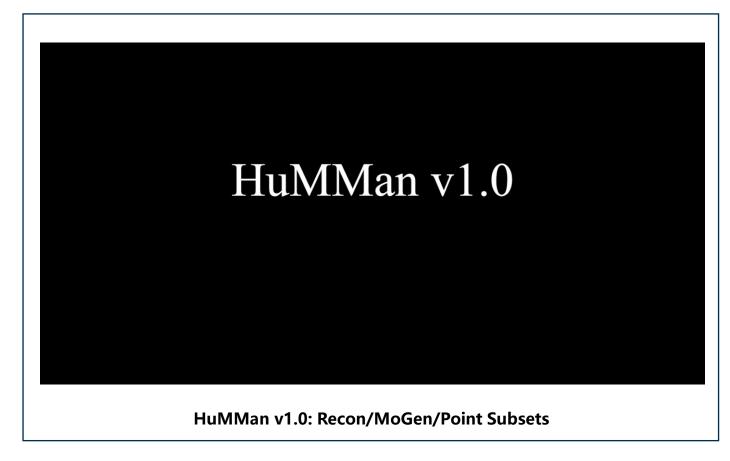
Vision-based (Markerless) MoCap

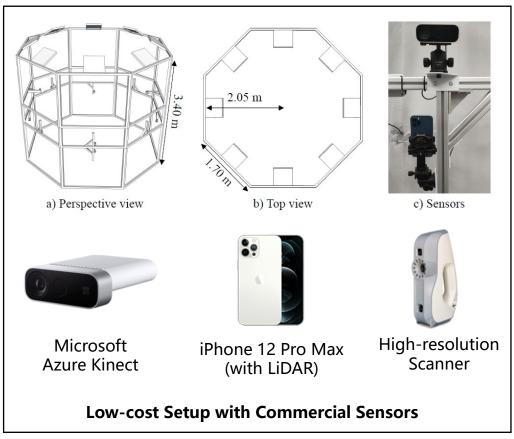
Overview

* Equal Contributions, + Corresponding Author

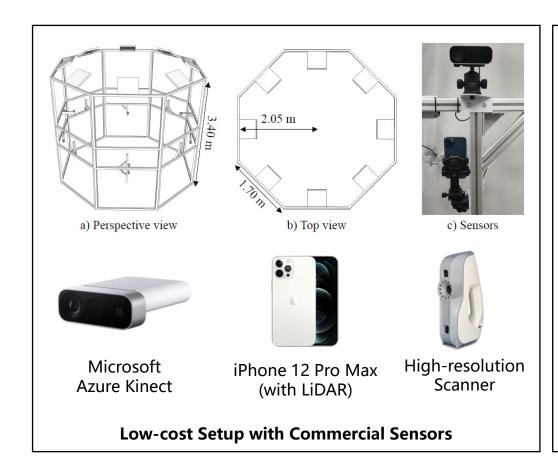


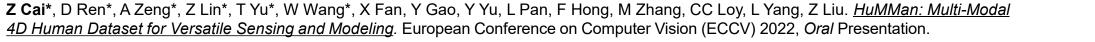
Data | 3D Human Data is Expensive

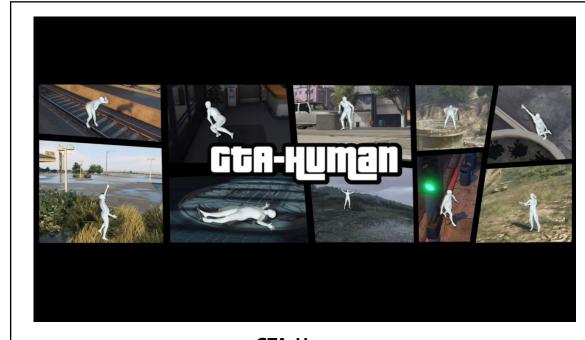

In-the-Wild 3D Human Data is Expensive [1]



Data | Reduce Setup Cost!




Data | Reduce Setup Cost!


Dataset	#Subj	#Act	#Seq	#Frame	Video Mobile	Modalities								
						niobiio.		D/PC	Act	K2D	K3D	Param	Mesh	Txtr
UCF101 [85]	-	101	13k	-	✓	-	✓	-	✓	-	-	-	-	-
AVA [20]	-	80	437	-	\checkmark	-	\checkmark	-	\checkmark	-	-	-	-	-
FineGym [82]	-	530	32k	-	\checkmark	-	\checkmark	-	\checkmark	-	-	-	-	-
HAA500 [14]	-	500	10k	591k	√	-	\checkmark	-	✓	-	-	-	-	-
SYSU 3DHOI [26]	40	12	480	-	√	-	\checkmark	✓_	✓_	-	\checkmark	-	-	-
NTU RGB+D [81]	40	60	56k	-	✓.	-	✓	✓.	✓	-	✓	-	-	-
NTU RGB+D 120 [54]	106	120	114k	-	√	-	\checkmark	√	✓.	-	√		-	-
NTU RGB+D X [91]	106	120	113k	-	✓	-	✓	√	√	-	✓	✓	-	-
MPII [3]	-	410	-	24k	_	-	✓	-	✓	✓	-	-	-	-
COCO [52]	-	-	-	104k	-	-	\checkmark	-	-	\checkmark	-	-	-	-
PoseTrack [2]	-	-	>1.35 k	>46 k	✓	-	\checkmark	-	-	\checkmark	-	-	-	-
Human3.6M [28]	11	17	839	3.6M	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-
CMU Panoptic [34]	8	5	65	154M	\checkmark	-	\checkmark	\checkmark	-	\checkmark	\checkmark	-	-	-
MPI-INF-3DHP [63]	8	8	16	1.3M	\checkmark	-	\checkmark	-	-	\checkmark	\checkmark	-	-	-
3DPW [61]	7	-	60	51k	\checkmark	\checkmark	\checkmark	-	-	-	-	\checkmark	-	-
AMASS [60]	344	-	>11k	>16.88M	\checkmark	-	-	-	-	-	\checkmark	\checkmark	-	-
AIST++ [48]	30	-	1.40k	10.1M	√	-	\checkmark	-	-	\checkmark	\checkmark	\checkmark	-	-
CAPE [59]	15	-	>600	>140k	✓	-	-	-	√	-	✓	✓	✓	-
BUFF [105]	6	3	> 30	> 13.6 k	✓	-	\checkmark	✓	✓	-	\checkmark	\checkmark	\checkmark	\checkmark
DFAUST [6]	10	> 10	> 100	>40k	✓	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark
HUMBI [101]	772	-	-	$\sim 26 \mathrm{M}$	\checkmark	-	\checkmark	-	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
ZJU LightStage [76]	6	6	9	>1k	✓	-	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
THuman2.0 [99]	200	-	-	> 500	-	-	-	-	-	-	-	\checkmark	\checkmark	\checkmark
HuMMan (ours)	1000	500	400k	60M	✓	√	✓	✓	✓	✓	✓	✓	✓	✓


Data | Synthetic Data is Nearly Free!

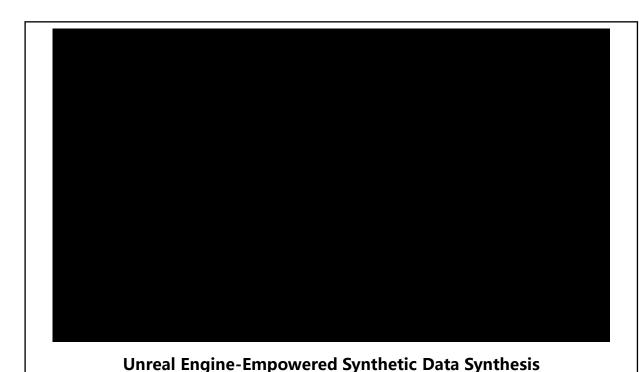
GTA-Human

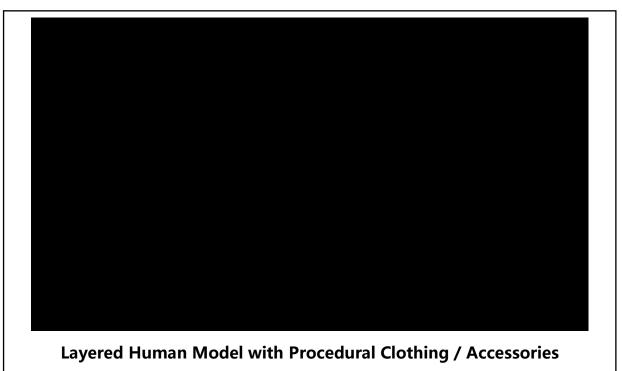
Diverse Data (Subjects, Locations, Weathers, and Light Conditions)

Data | Synthetic Data is Nearly Free!

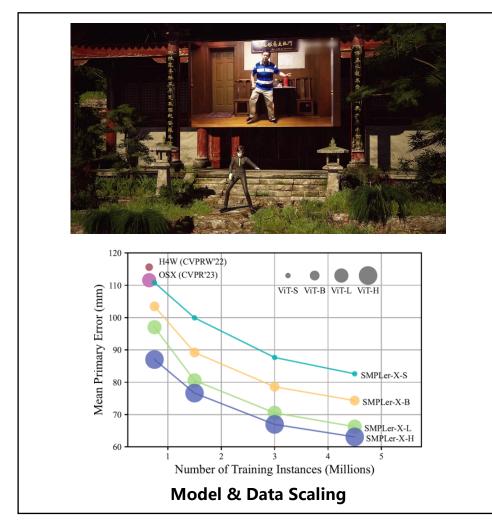
Diverse Data (Subjects, Location	s, Weathers, and Light Conditions)
---	------------------------------------

Dataset	Year	Туре	In-the-Wild	Video	#SMPL	#Sequence	#Subject	#Action
HumanEva [5]	2009	Real	-	✓	NA	7	4	6
Human3.6M [8]	2013	Real	-	\checkmark	312K	839	11	15
MPI-INF-3DHP [21]	2017	Mixed	✓	\checkmark	96K	16	8	8
3DPW [6]	2018	Real	\checkmark	\checkmark	32K	60	18	*
Panoptic Studio [9]	2019	Real	-	✓	736K	480	~ 100	*
EFT [20]	2020	Real	\checkmark	-	129K	NA	Many	NA
SMPLy [7]	2020	Real	✓	✓	24K	567	742	NA
AGORA [22]	2021	Synthetic	\checkmark	-	173K	NA	>350	NA
GTA-Human	2022	Synthetic	✓	\checkmark	1.4M	20K	>600	20K


Large-scale Game-playing Synthetic Data



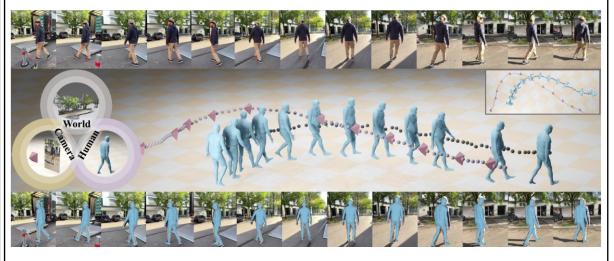
Data | Fully Controllable Synthesis



Algorithm | Faster – Higher – Stronger

Animation & Film Making

Algorithm | Faster – Higher – Stronger



All-in-One-Stage: Detection + Motion Capture

Q Sun*, Y Wang*, A Zeng, W Yin, C Wei, W Wang, H Mei, CS Leung, Z Liu, L Yang, **Z** Cai[†]. *AiOS: All-in-One-Stage Expressive Human Pose and Shape Estimation*. Conference on Computer Vision and Pattern Recognition (CVPR) 2024.

World-space Motion Capture

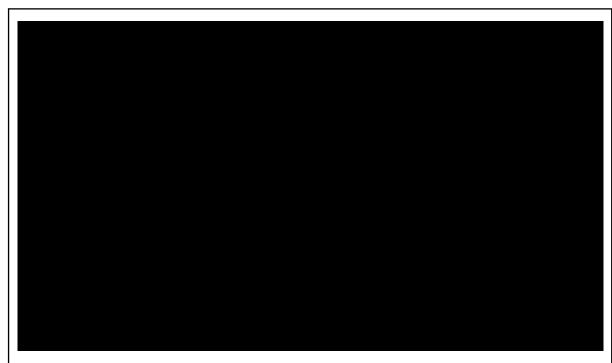
W Yin*, **Z Cai***, R Wang, F Wang, C Wei, H Mei, W Xiao, Z Yang, Q Sun, A Yamashita, Z Liu, L Yang. *WHAC: World-grounded Humans and Cameras*. ArXiv, 2024.

Applications | Autonomous Characters

MotionDiffuse: Text-Driven Controllable Human Motion Generation with Diffusion Model

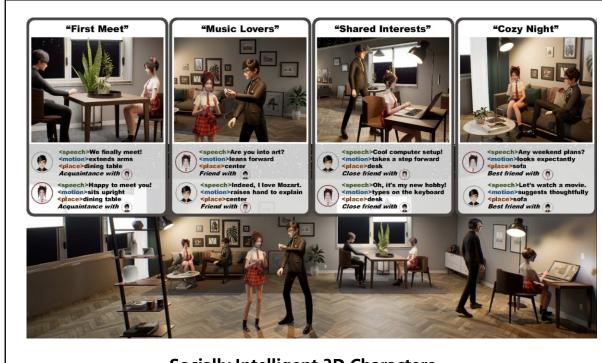
Mingyuan Zhang *1 Zhongang Cai *1,2 Liang Pan 1 Fangzhou Hong 1 Xinying Guo 1 Lei Yang 2 Ziwei Liu $^{+1}$

¹ S-Lab, Nanyang Technological University ² Sensetime Research

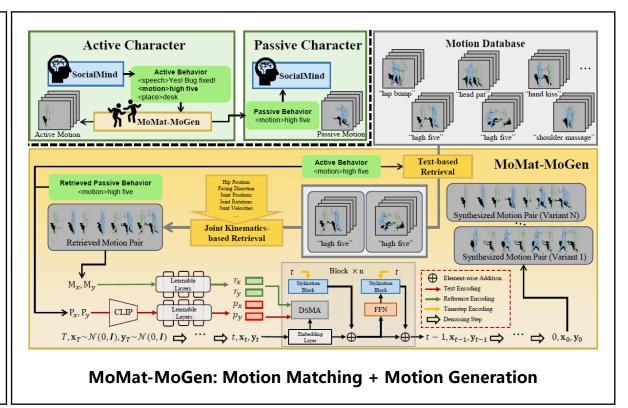

* Both authors contributed equally to this research + corresponding author

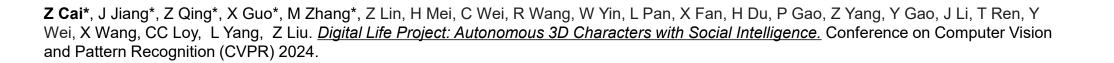
Text-to-Motion

M Zhang*, **Z Cai***, L Pan, F Hong, X Guo, L Yang, Z Liu. <u>MotionDiffuse: Text-Driven Human Motion Generation with Diffusion Model.</u> IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI).


Story-to-Motion

Z Qing, **Z Cai**, Z Yang, L Yang. <u>Story-to-Motion: Human Motion Synthesis using Trajectories and Semantic Descriptions</u>. SIGGRAPH Asia (Technical Communications) 2023


Applications | Autonomous Characters



Socially Intelligent 3D Characters

What's Next?

Motion Capture

Better Quality
Massive Collection

Motion Generation

Better Noise Tolerance Emergent Capabilities

Thank you!

