
Interpolated mappings for musical instruments 1

I n t e r p o l a t e d M a p p i n g s f o r M u s i c a l I n s t r u m e n t s

Camille Goudeseune
Beckman Institute, University of Illinois at Urbana-Champaign, 405 N Mathews, Urbana, IL 61801, USA
E-mail: cog@uiuc.edu

Software-based musical instruments have controls
for input, a sound synthesiser for output, and mappings
connecting the two. An effective layout of controls
considers how many degrees of freedom each has, as
well as the overhead of selecting each one while per-
forming. An isolated mapping from one control to one
synthesis parameter needs an appropriate choice of
proportional, integral, or derivative control (the con-
trol’s value, or that value’s rate of change, drives the
synthesis parameter’s value, or that value’s rate of
change). Beyond this, a compound mapping cross-
coupling several controls and synthesis parameters can
surprisingly increase the performer’s intuitive under-
standing of the instrument.

Whatever decisions are made about mappings in an in-
strument, they result in what performers call the feel of the
instrument, its responsiveness and controllability, its ‘con-
sistency, continuity, and coherence’ (Garnett and Goude-
seune 1999). Listeners perceive the result in the range,
accuracy, and speed of performed gestures.

Three questions can be asked about a mapping: from
what? to what? and by what means? Here we answer the
first two by considering a musical instrument as something
into which the performer puts gestures, and which then
outputs sounds. Since adjustable mappings require soft-
ware, we explore the world where software lies between
the gestures and the sounds. So a mapping is from an
instrument’s controls, to the inputs of a sound synthesiser
(‘synthesis parameters’). An expanded answer to these
first two questions considers the interactions between indi-
vidual controls and individual synthesis parameters.

Such a compound mapping is essentially a continu-
ous function from Rd to Re for arbitrary integers d and
e, where 1 ≤ d < e. Such a function is easily constructed
by associating several sets of d control values with cor-
responding sets of e parameter values (i.e., sounds).
This ‘pointwise’ mapping can then be extended through
a geometric technique called simplicial interpolation to
produce a continuous mapping, which can be adjusted
and refined by simply moving or adding new pairs of
‘points.’ Furthermore, given the initial sounds in Re,
the corresponding control settings in Rd can be found
automatically. An open-source C++ implementation of
this technique is available.

Software-based instruments can be motivated from
asking what sounds a given controller might produce, or
equally well from how one might perform a given family
of synthesised sounds. Ryan (1992) calls instrument de-
sign the putting of ‘physical handles on phantom models,’
discovering which controls (‘handles’) work well with
mappings into a synthesiser (abstract ‘models’ of sound).

One answer to the third question is explored at length
in this paper. Given an instrument’s controls, we must
construct a smooth mapping from their several degrees of
freedom (or dimensions, geometrically speaking), to a
possibly different number of scalar inputs accepted by the
instrument’s synthesiser. As a musically useful starting
point, such a mapping can be built up from a pointwise
map, an association of particular input values with output
values: when the performer does this, the instrument
should sound like this. An interpolator then produces
reasonable intermediate outputs for intermediate inputs.
Many techniques of interpolation can generate intermediate
data from discretely sampled data. Simplicial interpola-
tion, presented here, is well suited to the application do-
main of musical instruments.

1. Introduction
Since both an instrument and a composition written for

it may involve software, and since mappings are typically
realised with software, mapping properly belongs to the
disciplines of both instrument design and composition.
Here we focus on the real-time part, the instrument.

If the performer can comprehend the mappings em-
bedded in an instrument, obviously a more refined per-
formance can result. This argues for static mappings over
dynamic, and simple over complex (although we shall see
that overly simple mappings can be suboptimal). Explicit
construction of a mapping may or may not be better than
having an algorithm compute it as the solution to some set
of criteria.

Since it is often the case that a sound synthesiser has
many more real-time inputs than a human can attend to
simultaneously, we would like to reduce the complexity of
a large set of parameters. A high-dimensional interpolator

Interpolated mappings for musical instruments 2

(HDI) lets the performer control a large number of parame-
ters with a much smaller number.

A parameter which takes on a discrete set of values
can often be reduced to a continuous one. If the values can
be ordered from least to greatest, the parameter can directly
be treated as continuous though with coarse resolution. If
the values are not so orderable, as with the ad hoc timbres
offered by the stops of a pipe organ, they may be embed-
ded in a space of dimension greater than one by means of
perceptual discrimination, situating similar values close
together. (This is attempted in two dimensions by the
layout of both organ stops on a console and orchestral
musicians on a stage.) Some comparison (i.e., ordering) of
discrete values is necessary for any generalization or the-
ory, and such an ordering leads directly to speaking of
points in a continuous space.

2. Controls and driving graphs
By controller we mean the complete interface or set of

commands available to the instrumentalist. By control we
mean a single indivisible part of the controller. A control’s
value is its instantaneous state. We call a control scalar if
its value is a single continuous scalar. If its value is dis-
crete, the control is often called a switch.

A dimension is a linear continuum. Its value is a sca-
lar, the dimension’s realization at an instant of time. Often
a dimension is associated with a single scalar control, in
which case we identify the values of the dimension and the
control. Sometimes we speak interchangeably of parame-
ter, dimension and degree of freedom.

A continuous control drives a dimension if a change in
its value produces a corresponding change in the dimen-
sion’s value.

Since one control may drive several dimensions, and
again, several controls may drive the same dimension, we
can imagine a set of points corresponding to controls, a
second set of points corresponding to dimensions, and
arrows from points in the first set to points in the second.
We call this diagram the driving graph of the instrument
(figures 1 and 2). Hunt, Wanderley, and Kirk (2000) men-
tion three common mapping strategies, namely ‘one-to-
one,’ ‘one-to-many,’ and ‘many-to-one.’ The concept of
driving graph unifies and extends these, and also makes
available many results from the mathematical field of
graph theory.

The gain of a scalar control (with respect to some di-
mension that it drives) describes how strongly input affects
output. For the same range of input values, a high-gain
control has a wider range of output values while one with
low gain demands less accuracy and thus is easier to play.

The order of a scalar control (again, with respect to a
driven dimension) is an integer describing how direct the
mapping is from the value of the control to the value of the
dimension. If the mapping is direct, the control has order
zero. A control of order one has a direct relationship be-
tween the control’s value and the rate of change of the
dimension’s value. A control of order –1 has the opposite
behaviour: a direct relationship between rate of change of
the control’s value and the dimension’s value. To speak of
the order of a scalar control, we require only that the map-
ping is continuous; in particular, the mapping need not be
linear. (For reasons of extensibility, this separation of
discrete and scalar controls departs from the three-level
hierarchy of discrete (‘set-and-forget’ auxiliary) controls,
order-zero scalar controls, and order-one scalar controls
presented in (Vertegaal, Ungvary, and Kieslinger 1996:
310). A discrete control cannot be said to have an order
when it is not based on an underlying continuum.)

Control Dimension

 50 dB

 0 dB

 20 dB

Value of control

Mapping

Value of dimension

Figure 1. The simplest nontrivial driving graph of an instrument: one scalar control driving one dimension.

Interpolated mappings for musical instruments 3

FM synthesiser

 pitch
 amplitude
 index of modulation

Delay lines

relative amplitudesamplitude

violin azimuth

output
pitch

violin elevation

Octave switch

violin elevation
pitch

amplitude

violin azimuth

pitch

overall amplitude
index of modulation

amplitude of delay #1
amplitude of delay #2
amplitude of delay #3
amplitude of delay #4

Figure 2. Driving graph of an instrument based on an electric violin tracked in pitch, amplitude, and spatial orientation.

Rotating the violin upwards raises the output pitch by an octave; rotating about a vertical axis changes the relative amplitude
of several delay lines through which the sound passes.

A more general description of how input drives output
is given by a constant-coefficient linear differential equa-
tion (Sheridan and Ferrell 1981: 178–80). The coefficients
indicate how much gain is present at each order. But we
can practically restrict ourselves to equations with only one
nonzero order coefficient. In fact we prefer an alternative
notation for the order of a control, borrowed from the field
of proportional-integral-derivative or PID control (Dean
and Wellman 1991: 144). If x(t) is the control’s value at
time t and y(t) is its dimension’s value, then a propor-
tional control can be expressed as y(t) = η(x(t)) for some
mapping η : R → R; an integral control has the form

y(t) = η(); and a derivative control has form

y(t) = η(

∫
t

dttx
0

)(

dt
d x(t)). In other words, the value of a propor-

tional control depends purely on its input, that of an inte-
gral control on the input’s history, and that of a derivative
control on the input’s rate of change. Orders
–1, 0, and 1 correspond to derivative, proportional, and
integral controls respectively. (A mnemonic: –1, 0, and 1
correspond to a polynomial’s change of degree when dif-
ferentiated, unmodified, or integrated respectively.) Orders
greater than 1 or less than –1 play a relatively minor role in
both industrial processes and musical instruments, so the
terms proportional, integral, and derivative control often
suffice. However, sophisticated models of transient phe-

nomena such as the breakdown and reestablishment of
Helmholtz motion when bow velocity changes or reverses
(i.e., acceleration), may involve greater orders.

Three commonplace examples illustrate PID controls.
Fingertip placement on a fingerboard, driving pitch, is a
proportional control. Only where the finger is, not how
fast it moves or where it has been, determines pitch. Am-
plitude often uses a derivative control: the speed of a bow,
not its current or previous positions, determines the ampli-
tude of the string’s vibration. Laptop computers are now
often seen on stage in computer music concerts; a sound
synthesis parameter (perhaps volume, pitch, or a filter
parameter) driven by the laptop’s ‘trackpoint’ built-in
mouse exemplifies an integral control, because the parame-
ter’s value depends purely on the history of nudges applied
to the trackpoint.

Several results from PID control theory apply to musi-
cal instruments. Proportional controls are most common.
Derivative controls are more agile than proportional con-
trols but fare worse at holding a constant value, which suits
them well to controlling sound amplitude. Integral controls
are, not surprisingly, the opposite: they lack agility but
once they reach a desired output value they easily maintain
it (by zeroing their input: once x(t) is zero, as t continues
to increase then remains constant). Derivative and ∫

t
dttx

0
)(

Interpolated mappings for musical instruments 4

integral controls can also be characterised in terms of tran-
sient response, the ability to execute sudden changes in
value. Derivative controls have good transient response
while integral controls, especially ones with large gain,
tend to overshoot the desired output value. Finally, inte-
gral controls work better when the controlled system has
high hysteresis (Dean and Wellman 1991: 148–9).

3. Inputs to a mapping
If a controller has several controls, particular controls

can be selected, adjusted and deselected. Selection is the
allocation of performer resources to a particular control;
adjustment is the actual change of state of the control; and
deselection is the relinquishing of resources in preparation
for subsequent selections. Less abstractly, when a per-
former selects a control, he directs attention and possibly
executes some muscular motion. By resources we mean
the performer’s finite cognition, attention, and physique:
only this many limbs with this range of motion, this spatial
resolution, and this speed.

Selecting a control may be as simple as moving a limb
to it. But sometimes it may be unwieldy to have all the
controls directly accessible by mere positioning of a hand.
Then we need to replace ‘space multiplexing’ with ‘time
multiplexing’ (Buxton 1986); in other words, we need
secondary controls to change the behaviour of the primary
controls. Mutes are a common example of secondary con-
trols. Also, a single multi-way selector switch can associ-
ate a primary control with one of several sets of scalars, for
example keyboard couplers on an organ. It is difficult to
rigourously define when a control is secondary, but the
label applies well when several of the following hold: the
control modifies the behaviour of another control which is
manipulated more often; the control can be left unattended
for a while, physically or only attentionally; the control
causes a sound or behaviour which is in some way non-
standard.

Introducing secondary controls reduces the number of
primary controls, thereby simplifying the controller. Of
course this is a compromise: simultaneous adjustment of
multiple controls is reduced. Also, the interface is deep-
ened even while it is narrowed: the performer’s mental
model of the instrument is more elaborate and takes longer
to learn. A range of compromise in fact exists. At one
extreme there are k primary controls (strings on a stringed
instrument, keys on a multiply touch-sensitive clavier) and
no secondary controls, at the other extreme one primary
control with a single k-way selector switch (e.g., the Ondes
Martenot). Between these two extremes there may be m
primary controls with an n-way selector switch, where
mn ≥ k (bass guitar: m = 4 strings, n = 3-way pickup

switch). If only a few secondary controls extend the inter-
face of an orchestral instrument, they can often be operated
by the feet, for instance as a bank of toggle switches or a
three- or four-way ‘gas pedal.’

3.1 Continuous controls: sliders and
multisliders

We abbreviate ‘continuous control’ with the term
slider, distinguishing one-dimensional scalar sliders and
higher-dimensional multisliders. Scalar sliders include
linear sliders and rotary knobs in a physical control appara-
tus, sliders or scrollbars on a computer display, and non-
manually controlled sensors of pressure, proximity, and so
on. Joysticks, mice, virtual reality ‘wands,’ and motion-
tracking systems for dancers are examples of multisliders.
As a multislider concurrently drives several dimensions, it
is suitable when performance gestures are desired more in
the product space of these dimensions than in each individ-
ual dimension. (To draw freehand, one prefers a mouse;
to draw straight vertical and horizontal lines, the humble
Etch-a-Sketch is better (Buxton 1986).) Considering
which dimensions are coupled in performance gesture and
which are independent shows the instrument designer
where multisliders are appropriate.

A slider can be absolute or relative. An absolute
slider has a direct correspondence between the slider’s
position and the scalar’s value. A relative slider, in combi-
nation with a secondary control, can change the origin of
its coordinate system relative to that of the scalar. This
secondary control is usually a momentary switch (one
which remains engaged only as long as force is applied to
it). When the switch is engaged, the slider is active: mov-
ing the slider adjusts the scalar’s value. When the switch is
not held, the slider is inactive and can be moved without
adjusting the scalar’s value. Another way to think of this is
that the switch changes the slider’s behaviour between
changing the parameter value and changing the origin of
the coordinate system. A more sophisticated kind of rela-
tive slider varies its gain continuously, with yet another
slider.

A relative slider is useful if the effective range of the
slider needs to extend beyond its physical range (‘pawing’
a computer mouse—here the secondary control is lifting
the mouse from the desk). Three reasons explain the rarity
of relative sliders in musical instruments: the time required
to perform a change of coordinate system undesirably
constrains real-time performance; the secondary controls
introduce what human-computer interface specialists call
mode, undesirable state in the interface itself; relative
sliders do not offer direct proprioceptive feedback (a con-
sequence of this extra state).

Interpolated mappings for musical instruments 5

A bank of sliders with multiple selection typically re-
quires two-handed or multi-fingered operation. If all slid-
ers in a bank can be selected simultaneously, the bank
differs from a single multislider only in that it provides a
set of primary axes for the space in which gestures are
performed. ‘Rotated’ gestures are harder to perform with
an array of sliders than with a true multislider: try drawing
straight diagonal lines with an Etch-a-Sketch. If all con-
trols cannot be selected simultaneously, this may be due to
either physical or attentional limitations. Physical limita-
tions, as is the case with a pianist’s ten fingers and finite
hand span, impose hard rather than gradual constraints on
which gestures are performable. Attentional limitations
lead to gradually more constrained gestures as more con-
trols are selected. This is because of rehearsal: the violinist
can learn to play double and triple stops with more accu-
rate intonation and bowing, trading off accuracy and re-
hearsal time. But no amount of rehearsal gives a pianist
extra fingers.

The glove controller fared most poorly in this study.
This was attributed to its high latency, but subjects may
have also had difficulty cognizing three separate presenta-
tions of information: glove position; the visual display;
and the actual sound. In particular the pairwise structure of
the display and the sound was not reflected in the measured
parameters of the glove. The visual feedback may have
distracted rather than assisted the performer: even a simple
joystick suffers if its x–y position is rendered indirectly, for
instance as the size and hue of a coloured disc instead of as
the x–y position of a point in a square.

A more recent study found that a multislider some-
times fared better than a bank of sliders with multiple se-
lection, even when subjects could not verbalise how the
multislider worked. Hunt and Kirk (1999, 2000) con-
ducted several thousand trials where subjects used three
different controllers: a mouse controlling four sliders
displayed on a screen; four physical sliders; and a mouse
plus two physical sliders. With each controller the subject
had to duplicate a short sound which might vary in volume,
pitch, unidimensional timbre, or stereo position. In all
cases the mouse performed most poorly, as predicted by
our theory of selection overhead. In simple tasks where
only one parameter of the sound changed, the bank of
physical sliders showed the best performance though the
multislider (mouse plus two sliders) showed improvement
as trials progressed. For complex tasks the multislider was
best. This is remarkable since the four parameters were not
simply assigned to slider one, slider two, mouse x-position,
and mouse y-position. Rather, each parameter depended
on expressions like overall mouse speed plus average of
the slider positions, or mouse y-position plus the speed of
slider one. The experimenters concluded that the simplest
mapping of controls to synthesis parameters is not
necessarily optimal. (We hope for another study where the
four parameters are simply assigned to the four obvious
linear controls, for an even stronger conclusion.)

If only one control at a time can be selected, as with
sliders displayed on a computer screen and manipulated
with a mouse, then no gestures involving correlated pa-
rameters can be performed, a severe restriction. A bank of
sliders is better suited for ‘set-and-forget’ parameters than
for direct real-time control. At the other extreme, the Con-
tinuum controller is a sophisticated multislider with multi-
ple selection. It accurately tracks the pressure and
x–y position of up to ten fingers on a smooth surface as
large as a piano keyboard (Haken, Fitz, Tellman, Wolfe
and Christensen 1997). A bank of multiple-selection con-
trollers may have an additional implicit secondary control:
each member of the bank is enabled by depressing a mo-
mentary switch (touching the Continuum’s surface). This
is particularly natural for polyphonic controllers, where
selecting one more control produces one more sound.

3.2 Multisliders and cross-coupling We call a set of controls cross-coupled if they lie in
the same connected component of the driving graph (figure
2: violin elevation and pitch). In other words, the controls
cannot be considered individually. Rovan, Wanderley,
Dubnov, and Depalle (1997) elaborately cross-couple the
components of a midi wind controller to more realistically
drive an additive-synthesis clarinet sound model. They
suggest that simpler, less cross-coupled, mappings can help
novices learn to play; technically, cross-coupled controls
are harder to learn because part-task training on individual
controls transfers poorly to the whole task. But both Ro-
van’s instrument and Hunt and Kirk’s multislider indicate
that cross-coupling can produce a better controller, once
learned. If an instrument seems to demand cross-coupled
controls, grouping them together to drive an HDI (again
following Rovan) encourages the performer to think of the

Vertegaal, Eaglestone, and Clarke (1994) investigated
the use of several controllers for a four-dimensional timbre
space (overtone content, brightness, articulation of attack,
and speed of envelope). One controller was a single mul-
tislider, a glove tracked in three-dimensional position and
in one rotational dimension. The other controllers had a
single two-dimensional primary control (mouse, joystick);
secondary switches applied it to either the first or the last
pair of dimensions of the timbre space. This pairwise
division was reasonable: the first pair dealt with steady-
state spectral content, the second with attack. Visual feed-
back of the four dimensions was presented as two square
grids each containing a cursor, again emphasizing the
pairwise division.

Interpolated mappings for musical instruments 6

controls as a single entity. The converse holds, too: a set
of strongly non-coupled controls like a bank of sliders is
inappropriate for driving an HDI, because it incorrectly
suggests that each control has an inherent meaning.

Properties of these devices are summarized in figure 3.
Beyond what is shown in this figure, a control may be:

• primary / secondary;
• separate / an element of a bank / an element of a

multiply selectable bank;
• absolute / relative; 3.3 Input devices
• bounded / unbounded in its motion;

Rotary knobs and linear sliders provide inexpensive
control of continuous parameters. Bounded sliders typi-
cally work absolutely while unbounded sliders are natu-
rally relative.

• with / without visual feedback (at the control it-
self, or separately in a computer display).

Figure 3 shows that selection overhead generally cor-
relates with number of degrees of freedom. Efficient con-
trols, those with a high ratio of degrees of freedom to se-
lection overhead, are: touchpads, trackball; spaceball;
motion-tracking glove. Other considerations being equal,
these are therefore especially recommended as manual
controls for musical instruments. Those with low ratios
may have other advantages like high resolution or small
size.

The simple joystick is like a pair of rotary knobs cross-
coupled. Force-feedback joysticks offer variable resistance
to motion or haptic display of impulses and vibrations.
SensAble Technologies’ Phantom is a desktop-sized ar-
ticulated arm which senses position, and applies force in,
three dimensions; it has been extended to measure orienta-
tion and apply torque, for an impressive total of six dimen-
sions each of input and output (Chen 1999).

This terminology concisely summarises the findings of
Vertegaal, Ungvary, and Kieslinger (1996), supported by
experimental results (Wanderley, Viollet, Isart, and Rodet
2000). An effective isometric (scalar) control is integral
with respect to applied force, while an effective isotonic
control is proportional with respect to position. Isometric
controls rely particularly on tactile feedback, how hard the
control is pushed, rather than visual feedback. A discrete
control works best when its different states correspond to
different spatial positions, not different speeds or forces;
visual feedback can play a greater role here.

Pressure sensors such as force-sensing resistors offer
continuous control in one dimension. They can be com-
bined into an isometric joystick (two or three degrees of
freedom) or a spaceball (six degrees of freedom, strongly
cross-coupled).

The ribbon controller and touchpad track the position
(and pressure) of one or more fingertips along a line and on
a surface respectively. A touchpad may be divided into
smaller touchpads, sliders, and switches on a single physi-
cal surface. This is the input-side analogue to a window
manager for graphical output. Tactile feedback can be
provided for such multiple devices by laying a cardboard
template on the physical device (Buxton, Hill, and Rowley
1985).

Finally, common orchestral instruments can be them-
selves used as controls. The instrument’s sound can be
analysed into parameter streams which then drive a sound
synthesiser. Examples of such parameters are pitch, ampli-
tude, and timbral information such as spectral centroid and
amount of unpitched noise. The literature speaks of ampli-
tude following (envelope following) and pitch tracking.
Secondary parameters like depth of vibrato can also be
derived from the tracking data. We can also add other
devices to the instrument such as motion tracking and
pedals.

Light pens and tablets with styli are more accurate
than touchpads but require the hand to hold a stylus, so
they work poorly when the hand also has other tasks to
perform. Buttons mounted on the stylus may offer a
greater repertoire of gestures than a touchpad. Motion
tracking systems measure the position and/or orientation of
sensors freely moving in space, typically attached to a
glove. Each sensor is like a tablet plus stylus, extended to
three (or six) dimensions: the working area is now a vol-
ume instead of a surface.

Interpolated mappings for musical instruments 7

Selection overhead →
Property sensed

 ↓

low medium high

Discrete state momentary switch,
toggle switch, hat switch

multi-way switch numerical keypad

Fingertip location (and
unidirectional force)

ribbon (1–2),
touchpad (2–3)

multi-touch pad (15) Continuum (30)

Unidirectional force
applied by hand

force-sensing resistor (1) torque sensor (1),
isometric joystick (2–3),

spaceball (6)

Location (and orientation) of
manipulandum

large knob (1),
slider (1),

trackball (2)

small knob (1),
mouse (2),

joystick (2–3)

tablet+stylus (2–4),
wand (3–6),

motion tracking glove (15–30)

Location (and orientation)
of, and force applied by,

manipulandum

 pressure-sensitive
tablet+stylus (3–5),

force-sensing mouse (4),
Phantom (6)

Figure 3. Elementary manual controls. Parenthesised numbers indicate how many degrees of freedom a control has.

4. Interpolation

4.1 Classical interpolation
In the most general sense, interpolation is ‘the per-

formance of a numerical procedure that generates an esti-
mate of functional dependence at a particular location,
based upon knowledge of the functional dependence at
some surrounding locations’ (Watson 1992: 101). Interpo-
lation is a convenient starting point for constructing a map-
ping between two Euclidean spaces, from a space of di-
mension equal to the number of degrees of freedom of the
instrument’s continuous controls, to the space of parame-
ters fed to the synthesiser. (This can be taken even farther,
to the space of perceptual parameters of the synthesiser’s
sound output; this perception can also be automated
(Goudeseune 2001: 151–6). Here we simply identify
‘sound’ with ‘synthesiser parameters.’)

It is easy to specify several pairs of points in the input
and output spaces, in effect specifying ‘when the controls
have these values, make this sound;’ interpolation then
defines intermediate sounds for intermediate values of the
controls. Having tried out the instrument resulting from
this map, one can then refine the map by moving input
points (make that sound over here instead), moving output
points (no, that sound needs to be more like this one), or

introducing new pairs of points (adjust the sounds which
the interpolator happened to produce in this little region).
With an appropriate choice of interpolator we need assume
little else about the system, not even linearity of the syn-
thesiser or of human perception. In short, constructing
continuous maps by extending pointwise maps through
interpolation has the advantages of low effort, generality,
scalability and local adjustment. We do require that the
interpolator accept arbitrary spatial arrangements of points,
not only rectilinear grids; otherwise these advantages
vanish.

The result of all this is that given such points, an inter-
polator can be used as a controller which, moment by mo-
ment, takes as input a point in Rd and outputs a point in Re.
This output point moves through an unbounded nonlinear
e-dimensional region containing the given fixed output
points. In a real-time musical application the controller
takes as input d real-valued data streams from physical
controls and outputs e data streams to a sound synthesiser.
Typically d is 2 or 3 while e lies between 5 and 50, but the
mathematics holds for any 0 < d < e.

In this context, we define the unidimensional inter-
polation problem thus: given a finite pointwise map
S = {(xi, yi)} ⊂ R×R, construct a function f : R→R such
that yi = f(xi) for all i, and such that f has nice properties.

Interpolated mappings for musical instruments 8

Among these properties continuity is usually most desir-
able; others are differentiability, having bounded higher
derivatives, being C∞ and having adjustable smoothness
and tension. More generally: given sets A and B and a
function g : A→B, construct f : A→B such that f ⊃ g
and f is nice. Our niceness is not treated directly in classi-
cal interpolation theory, because we have no ideal function
approximated by the interpolation; there is no error meas-
urement to speak of.

Finally, multiquadrics (Hardy 1990) and polynomial
interpolation with basis functions are two examples of
function-fitting methods. These are less commonly used,
perhaps because they generalise poorly to nongridded data
points (Sárközy 1998).

4.2 High-dimensional interpolators
‘How can I control e parameters with only d scalar

controls (d < e)?’ We can restate this question as ‘how can
I make a desirable collection of gestures in Re using only d
degrees of freedom?’ Here Re is a family of sounds, per-
haps a family of steady-state timbres; we leave desirability
undefined in this general context. At any rate, by ruling
out undesirable and redundant gestures we hope to find an
interesting d-dimensional space inside Re. It is in fact
possible to reduce the number of dimensions from e to d,
practically because a high-dimensional space is simply too
large to be exhausted by one instrument. More technically,
the size of the space grows exponentially with the number
of dimensions (e is an exponent, after all). Exhaustive
exploration of such a space risks producing an incompre-
hensible instrument. So we expect that fewer dimensions
suffice to describe the subset of the whole space which we
call interesting or desirable.

Certain implicit assumptions of interpolation theory
may not hold for musical instruments. For interpolation to
make sense, the input and output spaces must themselves
be continuous. For the mapping to be repeatable, the input
and output spaces should not change with time; in particu-
lar, large hysteresis in the sound synthesiser (when its
output is influenced by past as well as current inputs) is
incompatible with this method of constructing mappings.

The property that the extended map f agrees with the
pointwise map S characterizes the restricted class of inter-
polators called exact. We assume exactness from now on
(and thereby disregard neural network interpolation; neu-
ral networks are better at classifying than interpolating).
Classical exact interpolators include proximal interpolators,
B-splines and kriging (Collins and Bolstad 1996). Though
simple, proximal interpolation and its generalizations are
inappropriate for most musical uses since they produce
many discontinuities in f. B-splining does better, con-
structing f from patches of polynomials so it is not only
continuous but C2. It tends to produce artifacts such as
overshoots beyond the input values when these input val-
ues are not monotonically distributed, because it prefers
minimum curvature to avoiding such artifacts. It is not
recommended for points not spaced on a grid (Eckstein
1989; Hutchinson and Gessler 1994). As musical applica-
tions need not in general be smooth (breaks in woodwind
register, for example), B-splining seems ill-suited for gen-
eral musical use. The more sophisticated regularised spline
with tension avoids overshoots and constructs f to be C∞.
Mitasova, Mitas, Brown, Gerdes, Kosinovsky, and Baker
(1995) describe its implementation in a geographical in-
formation system; Mitas and Mitasova (1999) sketch a
generalization to more than three dimensions.

One way to find an interesting d-dimensional space in-
side Re is to first specify several desirable points pi in Re
(chosen to correspond to a priori interesting sounds), then
construct a d-space enveloping them, and finally define a
mapping from Rd into this d-space. Since this d-space is in
Re, this defines a mapping all the way from Rd to Re. (At
least d+1 points are needed; otherwise a smaller value of d
could have been chosen.) If we build up such a mapping
from a pointwise map by choosing corresponding preimage
points qi in Rd, we call the new mapping a high-
dimensional interpolator or HDI. Beyond the mere exis-
tence of this mapping, there are desiderata to balance:
continuity, differentiability, linearity, including all impor-
tant parts of the range space, exactness, extensibility to
larger spaces, ease of editing the map locally and globally.
For now we require only continuity.

Kriging considers how quickly the variance between
input points changes in different parts of the space (Krige
1981; Oliver and Webster 1990). It becomes cumbersome
in higher dimensions. Sárközy (1998) warns that the data
should satisfy several stationarity conditions; these may
not hold in musical situations. Kriging also performs
poorly on sparse data, which can well be the case with
timbre spaces. Hardy (1990) demonstrates that kriging is
relatively poor at handling smoothness, an important factor
for musical instruments.

4.2.1 Automatic generation of preimage points
We divide an interpolator into an initialization phase

and a running phase. The first phase is self-explanatory;
in the second phase the interpolator actually performs the
mapping from a query point q to an image point p.

As part of the initialization phase, an interpolator can
automatically find good preimages qi in Rd. Taking the unit
d-cube as the domain from which to choose the qi, we find

Interpolated mappings for musical instruments 9

a set of qi such that (i) their normalised pairwise Euclidean
distances approximate those of the pi, and (ii) they ade-
quately fill the d-cube. By filling we mean that their con-
vex hull has nonzero volume (to take advantage of all d
dimensions at our disposal), and that the projection of this
hull onto some principal axis of Rd yields the unit interval
(to take advantage of all the distance at our disposal).

4.2.2 Simplicial interpolation
Recall a few definitions from algebraic topology and

computational geometry. The triangle in R2 and the tetra-
hedron in R3 generalise to a d-simplex in Rd. A triangular
mesh similarly generalises to a simplicial d-complex. A
Delaunay triangulation of a set of points is a simplicial
complex based on those points, with certain nice proper-
ties. A simplicial map is a kind of mapping between De-
launay triangulations. A point q lies in the convex hull of a
set of points {qi} if it lies ‘between’ the qi: q = ∑ wiqi for
some positive weights wi which sum to 1. Given a
d-simplex σ with vertices {Vi}, any point q in Rd is ex-
pressible in terms of barycentric coordinates with respect
to σ as q = ∑biVi where ∑bi = 1. This is a weighted sum
of the Vi. The point q lies in σ if and only if all 0 ≤ bi ≤ 1.
For more rigour and background, see textbooks such as
(Alexandroff 1961; de Berg, van Kreveld, Overmars and
Schwarzkopf 1997) or look up individual terms in the
online reference, (Weisstein 1999).

I have implemented two methods of choosing the qi, a
genetic algorithm (GA) and Sammon’s mapping; both are
random incremental algorithms. The population members
of the GA are sets of qi, and the fitness function minimised
is RMS error between corresponding distance pairs of the
pi and a given set of qi. Sammon’s mapping iteratively
refines a set of qi in the manner of simulated annealling.
Kohonen (1997: 31–2) suggests that Sammon’s mapping
requires 104·k to 105·k steps to arrive at an adequate solu-
tion, where k is the number of points qi, but in fact certain
choices of temperature gradient yield a good solution in
merely 10·k to 100·k steps—if a good result is forthcoming
at all. Since most of the improvement happens in the first
few iterations, these two incremental algorithms are run
with only a few iterations but many times, keeping the best
result found. Sammon’s mapping uses 700 runs of 70·k
iterations each; the GA uses 10 runs averaging around
1,000 iterations each. Both take about 100 msec on current
desktop computers to find an adequate solution for moder-
ate values of k. (Recall that k ≥ d+1; k has no upper
bound, though.) The GA better avoids suboptimal local
minima, but Sammon’s mapping uses less memory and is
slightly faster. One cannot be universally recommended
over the other.

Simplicial interpolation consists of an initialization
phase and a running phase. At initialization, a Delaunay
triangulation of the preimage points qi in Rd is constructed
and used to extend the pointwise map qi → pi to a sim-
plicial map defined on the convex hull of the points in Rd.
The simplicial map is then extended beyond the hull to all
of Rd, to allow arbitrarily input values. In the running
phase, the algorithm determines which simplex contains a
given query point q in Rd, computes q’s barycentric coor-
dinates with respect to that simplex, and then finds the
corresponding point p in the simplicial d-complex in Re
(figure 4). Two points in Rd and Re correspond if they lie
in corresponding simplices, and have the same barycentric
coordinates with respect to those simplices.

Re p1, ..., pk

 p

Rd q1, ..., qk q

Figure 4. Pointwise map extended to a simplicial map, used to map an arbitrary query point q in Rd to an image point p in Re.

Interpolated mappings for musical instruments 10

The running phase first induces a d-triangulation of
the pi in Re from the d-triangulation of the qi. Given a
query point q in Rd, it computes which d-simplex σ con-
tains q with a constant-time bucket-search point location
algorithm derived from a FORTRAN code by Edahiro, Ko-
kubo, and Asano (1984). It then computes the barycentric
coordinates of q with respect to σ. The image p of q is
then the point in the simplex in the triangulation in Re
corresponding to σ, with the same barycentric coordinates
as those of q (see figure 4 again). In other words, q is
characterized as a weighted sum of the qi; p is the same
weighted sum of the corresponding pi. (Recall that bary-
centric coordinates can be interpreted as weights in a
weighted sum.) This approach is due to a refinement by H.
Edelsbrunner of my earlier algorithm (Choi, Bargar, and
Goudeseune 1995).

The special case where q lies outside the convex hull
of the qi is handled by partitioning Rd with a set of ray-
simplices. Instead of one of the already described sim-
plices we choose the unique ray-simplex which contains q,
and then compute barycentric coordinates as usual with
respect to that ray-simplex (figure 5). First we place a
central point C in Rd, at the centroid of the smallest axially-
aligned hyperrectangle containing the hull (the hull’s
‘bounding box’). Since the hull is convex, C is in fact
contained in the hull. Consider a face of the hull, i.e., a
(d−1)-simplex on the boundary of the hull. Together with
C, its vertices define a d-simplex. The set of all such sim-
plices partitions the hull; but if we extend each simplex
away from C (imagine rays extending outwards from C
through all the vertices of the hull), the resultant ray-
simplices in fact partition all of Rd. (We ignore overlap-

ping faces of adjacent ray-simplices, since their barycentric
coordinates agree there). Formally, we define the ray-
simplex ρ(σ, V) of a simplex σ and a vertex V of σ as
those points whose barycentric coordinates with respect to
σ are all nonnegative, with the possible exception of the
coordinate corresponding to V. There are many ways to
choose the point in Re corresponding to C and thereby
induce corresponding ray-simplices which partition Re; the
particular way does not affect the continuity and piecewise
linearity of this extension to the mapping. The point in Re
corresponding to C we conveniently define one dimension
at a time: its ith coordinate is the median of the ith coordi-
nates of each point on the boundary of the hull in Re.

We now analyse the complexity of the algorithm. Ini-
tialization consists of running the genetic algorithm or
Sammon’s mapping (both use O(k) time and space); com-
puting a Delaunay triangulation (also O(k), based on an
efficient implementation by Clarkson, Mehlhorn, and Dei-
del (1993)); and initializing the bucket-search algorithm.
The bucket search works only for the case d = 2, and ini-
tialises in O(k) time and space; in short, initialization is
entirely O(k). For larger d a generalised bucket search
takes O(k3d3) time and O(k2) space, not linear but still emi-
nently practical (Goudeseune 2001: 145). During the run-
ning phase, the total time complexity for mapping a point
from Rd to Re is O(d3+de) (Goudeseune 2001: 145). This
is well behaved for large e, and does not increase at all as
points are added (as k increases).

Re p1 ,..., pk

 p p

 q
 C

Rd q1, ..., qk q

Figure 5. The centroid C and the four edges of the hull of the qi induce four ray-simplices, one of which is shaded. If q lies
outside the hull, its mapping to p is defined in terms of corresponding ray-simplices instead of corresponding simplices.

Interpolated mappings for musical instruments 11

Since the domain of the simplicial interpolator is the
unbounded totality of Rd, its range may also be unbounded.
This may not be compatible with the synthesiser’s inputs,
where bounds such as nonnegative amplitudes and stable
filter coefficients may apply. Three methods can ensure
bounded output from a simplicial interpolator (or any gen-
erator of unbounded data, for that matter). (i) If a real-
valued component of Re must remain within the closed
interval [a, b], it can simply be clamped: if out of range,
instead use a or b as appropriate. (ii) If the endpoints must
be excluded, a sigmoid-shaped function like an arctangent
monotonically maps R to (a, b). (iii) In some cases valid
input cannot be broken down into individual dimensions of
Re, because of interdimensional constraints (stable filter
coefficients, for example). If the valid subset V of Re can
still be computed a priori, dilate a maximal convex subset
of V (ideally V itself) to cover an e-rectangle. This re-
duces the problem to one solvable by (i) or (ii): the output
of the simplicial interpolator is some point p in Re. Apply-
ing a clamp or sigmoid to each coordinate of p moves p
into this e-rectangle. Inverting the dilation then carries p
into V, thereby making p a valid input for the synthesiser.

Source code for simplicial interpolation, including
automatic generation of preimage points, is available at
<http://zx81.isl.uiuc.edu/interpolation/>.

4.2.3 Other interpolators
Bowler, Manning, Purvis and Bailey (1990) present a

way to define continuous piecewise linear mappings from
Rd to Re. The technique takes as input a d-lattice whose
vertices are analogous to the qi of simplicial interpolation.
At each point of this lattice is stored the value of the corre-
sponding point pi. This defines a pointwise map from Rd
to Re. A naive extension from this pointwise map to a
continuous map would first find which cell of the lattice
contains a given point q in Rd, and then construct the im-
age p of q by interpolating among the pi-values associated
with each of the cell’s 2d vertices. By dividing each lattice
cell canonically into d-simplices they reduce the number of
points to interpolate among from 2d to d+1. In fact this
turns out to be a special case of simplicial interpolation,
with the qi arranged in a lattice and using a fixed (not nec-
essarily Delaunay) triangulation.

A lower bound for computing the image of q has been
shown to be O(d3+de), the same as the exact cost using
simplicial interpolation (Goudeseune 2001: 147–8). So
Bowler’s interpolator is no faster than simplicial interpola-
tion. It differs in that it constrains the qi to be a regular d-
lattice. Simplicial interpolation needs far fewer points than
this lattice. If a particular application already has this d-
lattice constraint and can afford its high O(2d) memory

usage, Bowler’s simpler algorithm may be indicated. Oth-
erwise simplicial interpolation is preferred for its greater
generality and flexibility.

Bilinear (trilinear, multilinear) interpolation (Watson
1992: 139) differs from simplicial interpolation in that the
number of control parameters is not constant but rather
increases as log2 of the number of data points (which value
must be a power of 2). Bilinear interpolation may there-
fore be preferred when the number of data points is fixed
to be 4 or 8, or if like Bowler’s interpolator the qi are con-
strained to a lattice (in which case interpolation is done cell
by cell, as in Rovan et al. (1997)). It is even simpler than
Bowler’s algorithm, but becomes intractably slow for large
d since each cell has 2d points among which to interpolate.

Neither of these interpolations deeply uses the struc-
ture of Re. Since the actual operation of interpolating is
computing p as a weighted sum of pi, the only operations
required on Re are scalar multiplication and (vector) addi-
tion. Since the real line itself has these operations, map-
ping to R and mapping to Re are structurally equivalent
here.

5. Conclusion
Stated colloquially, reducing how many dimensions of

control an instrument has makes it less frightening to its
performer. More formally, such a reduction concentrates
the set of all possible inputs into a more interesting set by
avoiding the redundancy inherent in the exponential
growth of increasing dimensionality. Even more formally,
it reduces the dimensionality of the set of synthesis pa-
rameters to the dimensionality of the set of perceptual
parameters: it rejects all that the performer cannot actually
understand and hear, while performing. Designing an
instrument around the performer’s cognition/perception
instead of the engineer’s convenience is echoed by Jacob,
Sibert, McFarlane, and Mullen (1994) in the context of
visual tasks: they conclude that ‘choosing an input device
for a task requires looking at the deeper perceptual struc-
ture of the task, the device, and the interrelationship be-
tween task and device.’

The value of any dimension-reducing controller is
found exactly in how well it loses information. A control-
ler based on a custom pointwise mapping extended to a
continuous mapping by simplicial interpolation precisely
defines what information is lost; a controller which tries to
preserve all information (such as a complete set of linear
sliders) effectively still loses information because it is
difficult to use. A synthesiser with many degrees of free-
dom can be played ad hoc by a finitely attentive human
performer, exploring first this and then that region of its
parameter space. But richer music is more likely if the

Interpolated mappings for musical instruments 12

Dean, T., and Wellman, M. 1991. Planning and control.
San Mateo, CA: Morgan Kaufmann.

instrument’s rate of information consumption is systemati-
cally matched to its performer’s rate of production. Put
another way, controlled loss of information is about dis-
covering what the performer can and cannot do, about
matching that dividing line with the one between expres-
sive and inexpressive.

Eckstein, B. 1989. Evaluation of spline and weighted
average interpolation algorithms. Computers and Geo-
sciences 15(1): 79–94.

Edahiro, M., I. Kokubo, and T. Asano. 1984. A new
point-location algorithm and its practical efficiency—
comparison with existing algorithms. ACM Transac-
tions on Graphics 3(2): 86–109.

6. References
Alexandroff, P. 1961. Elementary concepts of topology.

Trans. A. Farley. New York: Dover.
Garnett, G., and C. Goudeseune. 1999. Performance fac-

tors in control of high-dimensional spaces. Proc. of
the Int. Computer Music Conf.: 268–71.

de Berg, M., M. van Kreveld, M. Overmars, and O.
Schwarzkopf. 1997. Computational geometry: algo-
rithms and applications. Berlin: Springer.

Goudeseune, C. 2001. Composing with parameters for
synthetic instruments. DMA thesis, Urbana-
Champaign, IL: University of Illinois.
<http://zx81.isl.uiuc.edu/camilleg/dissertation>.

Bowler, I., P. Manning, A. Purvis, and N. Bailey. 1990.
On mapping n articulation onto m synthesiser-control
parameters. Proc. of the Int. Computer Music Conf.:
181–4.

Haken, L, K. Fitz, E. Tellman, P. Wolfe, and P. Christen-
sen. 1997. A continuous music keyboard controlling
polyphonic morphing using bandwidth-enhanced os-
cillators. Proc. of the Int. Computer Music Conf.:
375–8.

Buxton, W. 1986. There’s more to interaction than meets
the eye: some issues in manual input. In Norman and
Draper (eds.) User Centered System Design: New
Perspectives on Human-Computer Interaction, 319–
337. Hillsdale, NJ: Erlbaum.

Hardy, R. 1990. Theory and applications of the multi-
quadric-biharmonic method. Computers and Mathe-
matics with Applications 19: 163–208.

Buxton, W., R. Hill, and P. Rowley. 1985. Issues and
techniques in touch-sensitive tablet input. Proc. of
SIGGRAPH: 215–24.

Hunt, A., and R. Kirk. 1999. Radical user interfaces for
real-time control. Proc. Euromicro 1999, 2: 6–12.
Los Alamitos, CA: IEEE Computer Society.

Chen, E. 1999. Six degree-of-freedom haptic system for
desktop virtual prototyping applications. Proc. of the
First Int. Workshop on Virtual Reality and Prototyp-
ing: 97–106. Laval, France. ———. 2000. Mapping strategies for musical perform-

ance. In Wanderley and Battier (eds.) Trends in Ges-
tural Control of Music. Paris: IRCAM, Centre Pom-
pidou.

Choi, I., R. Bargar, and C. Goudeseune. 1995. A manifold
interface for a high dimensional control space. Proc.
of the Int. Computer Music Conf.: 385–92.

Hunt, A., M. Wanderley, and R. Kirk. 2000. Towards a
model for instrumental mapping in expert musical in-
teraction. Proc. of the Int. Computer Music Conf.:
209–12.

Clarkson, K., K. Mehlhorn, and R. Deidel. 1993. Four
results on randomised incremental constructions.
Computational Geometry: Theory and Applications,
185–221.
<http://cm.bell-labs.com/netlib/voronoi/hull.html>. Hutchinson, M., and P. Gessler. 1994. Splines—more

than just a smooth interpolator. Geoderma 62:45–67.
Collins, F., Jr., and P. Bolstad. 1996. A comparison of

spatial interpolation techniques in temperature estima-
tion. Proc. of the Third Int. Conference/Workshop on
Integrating GIS and Environmental Modelling. Santa
Barbara: National Center for Geographic Information
and Analysis.
<http://www.ncgia.ucsb.edu/conf/SANTA_FE_CD-R
OM/sf_papers/collins_fred/collins.html>.

Jacob, R., L. Sibert, D. McFarlane, and M. Mullen, Jr.
1994. Integrality and separability of input devices.
ACM Transactions on Computer-Human Interaction
1(1):3–26.

Kohonen, T. 1997. Self-organizing maps, second edition.
Berlin: Springer.

Interpolated mappings for musical instruments 13

Krige, D. 1981. Lognormal-de Wijsian geostatistics for
ore evaluation. South African Institute of Mining and
Metallurgy Monograph Series: Geostatistics I. Jo-
hannesburg: South Africa Institute of Mining and
Metallurgy.

Mitas, L., and H. Mitasova. 1999. Spatial interpolation.
In P. Longley, M. Goodchild, D. Maguire, and D.
Rhind (eds.) Geographical Information Systems:
Principles, Techniques, Management and Applica-
tions, 481–92. Cambridge: GeoInformation Interna-
tional.

Mitasova, H., L. Mitas, W. Brown, D. Gerdes, I. Kosi-
novsky, and T. Baker. 1995. Modelling spatially and
temporally distributed phenomena: new methods and
tools for GRASS GIS. Int. Journal of Geographical
Information Systems 9(4):433–46.

Oliver, M., and R. Webster. 1990. Kriging: a method of
interpolation for geographical information systems. In-
ternational Journal of Geographical Information Sys-
tems 4(3): 313–32.

Rovan, J., M. Wanderley, S. Dubnov, and P. Depalle.
1997. Instrumental gestural mapping strategies as ex-
pressivity determinants in computer music perform-
ance. Kansei, the Technology of Emotion. Proc. of
the Associazione di Informatica Musicale Italiana Int.
Workshop: 68–73.

Ryan, J. 1992. Effort and expression. Proc. of the Int.
Computer Music Conf.: 414–16.

Sárközy, F. 1998. GIS functions—interpolation.
<http://www.agt.bme.hu/public_e/funcint/funcint.html>.

Shepard, D. 1968. A two-dimensional interpolation func-
tion for irregularly spaced data. Proc. of the National
Conf. of the Association for Computing Machinery 23:
517–24.

Sheridan, T., and W. Ferrell. 1981. Man-machine sys-
tems: information control and decision models of hu-
man performance. Cambridge, MA: MIT Press.

Vertegaal, R., B. Eaglestone, and M. Clarke. 1994. An
evaluation of input devices for use in the ISEE human-
synthesiser interface. Proc. of the Int. Computer Music
Conf.: 159–62.

Vertegaal, R., T. Ungvary, and M. Kieslinger. 1996. To-
wards a musician’s cockpit: transducers, feedback and
musical function. Proc. of the Int. Computer Music
Conf.: 308–11.

Wanderley, M., J.-P. Viollet, F. Isart, and X. Rodet. 2000.
On the choice of transducer technologies for specific
musical functions. Proc. of the Int. Computer Music
Conf.: 244–7.

Watson, D. 1992. Contouring: a guide to the analysis
and display of spatial data. New York: Pergamon
Press.

Weisstein, E. 1999. Eric Weisstein’s world of mathemat-
ics. <http://mathworld.wolfram.com>.

	Introduction
	Controls and driving graphs
	Inputs to a mapping
	Continuous controls: sliders and�multisliders
	Multisliders and cross-coupling
	Input devices

	Interpolation
	Classical interpolation
	High-dimensional interpolators
	Automatic generation of preimage points
	Simplicial interpolation
	Other interpolators

	Conclusion
	References

