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An Optimal Solution to Room Search Problem
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Abstract

A room is a simple polygon with a prespecified point,
called the door, on its boundary. A search starts at
the door and must detect any intruder in the room and
guarantee that no intruder escapes through the door.
Depending on where the door is placed, such a room
may or may not be searchable. We consider the two-
guard search model, where the two guards are required
to move on the boundary of a room and be always mu-
tually visible during a search. By making extensive use
of the so-called visibility diagram, we present a simple
characterization of searchable rooms by two guards and
propose a linear algorithm to check it.

1 Introduction

The room search problem is one variation of the poly-
gon search problem [7]. Let P(d) denote a room, which
is a simple polygon P with a designated point d on its
boundary, called a door. We consider two guards in our
work, which are required to move on a room’s boundary
and be always mutually visible. Park et al. [6] investi-
gated a similar problem.

Our characterization of a searchable room is essen-
tially the same as the one in [6]. However, the correct-
ness proof of the characterization in [6] is not easy to
follow and the corresponding searchability checking re-
quires O(nlogn) time. In contrast, our characterization
is much simpler in terms of its correctness proof, repre-
sentation and interpretability. In addition, we propose
a linear-time algorithm for checking a room’s searcha-
bility. We attribute all these to the visibility diagram [4]
that grasps the visibility information in a given room.

The rest of the paper is organized as follows. In Sec-
tion 2, we discuss the notation and the visibility dia-
grams. We apply them to the room search problem in
Section 3. We present our linear algorithm for checking
the searchability of a room in Section 4. Finally, we
summarize our work in Section 5.

2 Preliminaries

A (simple) polygon P consists of n wertices (n > 3)
and n edges connecting adjacent vertices. The bound-
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Figure 1: Illustration for some terms.

ary of P, denoted 0P, consists of all its edges and ver-
tices. We designate that P C P. The vertices imme-
diately preceding and succeeding vertex v clockwise are
denoted by Pred(v) and Succ(v), respectively. For any
two points a,b € OP, the open (closed, resp.) polygonal
chain OP from a to b clockwise is denoted by 0P, (a,b)
(0Peyla,b], resp.). Given a prespecified point d € 9P
(called door), for two points a,b € OP, if moving clock-
wise from d, a is encountered before b, we write a <4 b.
For all a € OP with a # d, we write d <4 a.

A vertex whose interior angle between its two inci-
dent edges is more than 180° is called a reflex ver-
tex. Consider reflex vertex r in Fig. 1. Extend the
edge (Succ(r),r) towards the interior of P, and let
B(r) € 0P denote the backward extension point, where
this extension leaves P for the first time. We call the
polygonal area formed by 0P, [r, B(r)] and the chord
rB(r) the clockwise component associated with r, de-
noted as C.(r). Similarly, the extension of (Pred(r),
r) determines forward extension point, F(r), and the
counter-clockwise component associated with r, denoted
as Ceey(r), is bounded by OP,,[F(r),r] and the chord
rF(r). A clockwise (counter-clockwise, resp.) compo-
nent is redundant if it is a superset of another clockwise
(counter-clockwise, resp.) component.

Two points u and v are said to be mutually visible if
the line segment v is completely contained inside P!.

We pick a point on OP as the origin, and measure all
distances along P clockwise from it. Let |0P| denote
the length of OP. For x € R,? z represents the point
on OP which is at distance & — k|OP| from the origin,
where k is an integer such that 0 < z — k|OP| < |OP|.

Let 2,y € R. The visibility space (V-space for short),
denoted by V, consists of the infinite area between and
including the lines y = x (the start line S) and y = = —
|OP)| (the goal line G), as shown in Fig. 2 [4]. Therefore,

I The definition of mutual visibility in [5] is different from ours
adopted here.
2R denotes the set of all real numbers.
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we have (z,y) € V if and only if z — |0P| <y < z.

y (ba )\ ‘ y=x y=x-D

Figure 2: Visibility space (D = [0P)).
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Figure 3: A section of the V-diagram for the polygon in
Fig. 1 (= = |0P|).

The wvisibility diagram (V-diagram for short) for a
given polygon is drawn in the V-space by making some
areas in it gray as follows: point (z,y) € V is gray if
points z and y are mutually invisible. Our V-diagram
contains essentially the same information as the X-
diagram [5], which grasps the visibility information be-
tween any two boundary points for a given polygon,
but has the advantage of not wrapping around when
we make a complete circle around the boundary. For
example, Fig. 3 is the V-diagram for the polygon in
Fig. 1. In another example shown in Fig. 4, we high-
light the parts of the boundaries of gray regions, which
are the maximal line segments touching either line S or
G, as shown in Fig. 5 (a). We call the set of these line
segments the skeleton of the V-diagram. It is known
that the V-diagram and its skeleton are topologically
equivalent [4]. Therefore, we will focus on the skeletal
V-diagram (SV-diagram, for short) in the sequel.

3 Searching a Room by Two Guards

Given a room P(d), two guards start their search from
d and move on the boundary in the opposite direction.
During the search, the two guards are always mutually
visible and the intruders cannot escape from the room
through d. If the two guards eventually meet at some
same point on the boundary, we say that the room is
searchable.

We use a coordinate point (x,y) in the V-space to
represent the current positions of the two guards on
OP, with x for the left guard and y for the right guard,
viewed from d. Since no guard can go across the door
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Figure 5: (a) SV-diagram corresponding to Fig. 4 (b);
(b) Relevant part for room search.

at any time, this coordinate point is within the area
bounded by z > d and y < d. For example, for the
polygon in Fig. 4 (a), if d = 0, we need only consider the
triangular part of the corresponding SV-diagram that
lies below the dashed line, as shown in Fig. 5 (b).

The initial positions of two guards (d, d) are called the
door point in the SV-diagram. Our analysis is based on
the following important fact [4].

Proposition 1 A room is searchable by two guards if
and only if there exists a path from (d,d) to line G with-
out crossing any skeletal segments in its SV-diagram
bounded by x > d and y < d. [

Call a maximum white area in the SV-diagram a cell.
It is clear that if a cell in the SV-diagram does not
touch both lines S and G then no search path can go
through the cell. We call such a cell a trap cell. In the
following figures, we will draw a room as a circle and
mark only the relevant reflex vertices on its boundary.
We list in Fig. 6 some obvious patterns of reflex vertices
that put the door point on the boundary of a trap cell
in the SV-diagram. Note that Fig. 6 does not exhaust
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Figure 6: The reflex vertex patterns that cause trap
cells touching the door point. (The two arrows in (d)
need not intersect.)

Figure 7: The reflex vertex patterns that cause trap
cells bordered by G.

all possible cases where P(d) is not searchable. It is
easier to think of the remaining cases in terms of the
trap cells that are bordered by line G. If a point on
line G is on the border of a trap cell, we say that it
is unreachable. The corresponding point on 0P is said
to be unreachable from d. For example, every point
between points 2 and 4 on G in the SV-diagram shown
in Fig. 5(b) is unreachable. In Fig. 7 we list all the reflex
vertex patterns that cause unreachable sections on G,
in addition to those in Fig. 6.

Theorem 2 [8] A room P(d) is searchable by two
guards if and only if the door is not on the boundary of
a trap cell and there is some point on G that is reachable
within the SV-diagram of the room. ®

4 A linear searchability checking algorithm

We say that a polygon P is LR-visible if we can find two
points s and ¢ on OP such that d.,(s,t) and 0., (t, s) are
weakly mutually visible [3]. We can find in a LR-visible
polygon, in linear time, a set of pairs (A;, B;) such that
for any s € A; and t € B;, P is LR-visible with respect
to (s,t) [3]. We can also compute the non-redundant
clockwise and counter-clockwise components in linear
time. We first give the following lemma.

Lemma 3 [8] If a room P(d) is searchable by two
guards, then P is LR-visible with respect to d and a
point on OP. 1

Thus if P is not LR-visible (which can be checked in
linear time [3]), then room P(d) is not searchable by

two guards. In addition, we assume that d is on Ao,
after possible relabeling.

We first consider the patterns in Fig. 6. The patterns
in Fig. 6 (a), (b) and (c) are not possible, since they
imply that the corresponding By must be simultane-
ously present in two disjoint components. The pattern
in Fig. 6 (d) is exactly a deadlock, which can be precom-
puted in linear time [2].

We then consider the patterns in Fig. 7. The pattern
in Fig. 7 (a) involves a deadlock. As for the pattern in
Fig. 7 (b), with the shortest path tree precomputed from
d, we can, starting clockwise from d, find the farthest
Cw(r) that does not contain d in linear time by checking
each clockwise component [3, 1]. OP.(d,r) is marked
as unreachable. The pattern in Fig. 7 (c) is similarly
dealt with.

As for the pattern in Fig. 7 (d), we notice that the
corresponding Bg should lie inside Cy(r1). The re-
lationship between r; and ro can be described by the
three conditions. (1) d € Ceyw(r2) and d ¢ Ceyw(r1);
(2) B(re2) <q r1; and (3) B(r1) <4 r2. We look for
the farthest Cey(r1) clockwise from d and the farthest
Cw(r2) counter-clockwise from d that satisfy the above
three conditions.

We preprocess the polygon with respect to Ay and
By by computing the shortest path tree from d and the
shortest path tree from a point ¢ € By to any other
vertices in linear time [1]. Note that P is LR-visible
with respect to d and t.

We first consider the clockwise components on
OP.y(d,t). We immediately know that we only need
to consider the non-redundant ones since if there is
any redundant component that satisfies the above three
conditions, we can always find a non-redundant one
that is even farther away from d. We move along
0Py (d,t) from d and check the non-redundant com-
ponents. We only consider those that do not contain
d, which can be checked in O(1) time for each of them.
These components have the property that if C.,, (r') and
Cew(r'") are two such components and 7' <4 r"', then
B(r') <4 B(r'"), and for any r whose clockwise compo-
nent is such a component, B(r) € dP,,(t,d). For these
components, we denote their originating reflex vertices
in a set called L.,,. We maintain a pointer P for travers-
ing them, which starts at the first vertex in L., and
moves clockwise from d to t.

We next consider the clockwise components on
OP.y(t,d). It is obvious that this time we need to con-
sider all the clockwise components since each of them
could be possibly the farthest. We check each clockwise
component as whether ¢ is outside in O(1) time using
the shortest path trees from d and ¢ [1]. For these com-
ponents, we put their originating reflex vertices in a set
called R.,,. We also maintain a pointer P, for moving
over them, which starts at B(P;) and moves clockwise
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d

Figure 8: Tllustration for the algorithm for detecting the
pattern in Fig. 7 (d).

towards d.

The algorithm is described as follows, using Fig. 8
as a reference. P, moves to the next reflex vertex = in
R..,. Note that if P, goes across any backward extension
point from a reflex vertex in L., we update P; to it.

We know that the backward extension from z can
intersect neither 9P, (t,z) nor 0P, (xz,d). We only
need to test whether the backward extension intersects
OP,.,(d, P) or OP,,(P,t). If the latter is true, we give
up z since C,,,(x) contains F;, and continue to the next
element in R.,. If the former is true, P, moves to the
next element in L, .

In order to find whether the backward extension from
x intersects 0P, (d, P)) or OP.,(F,,t), we first check
whether P, and x are mutually visible. By preprocessing
the polygon with respect to (d,t) in O(n) time [2], this
checking can be done in O(1). If they are mutually
visible, we only need to check whether the extension is
to the right or left of the segment zP,.

Suppose that P, and z are not mutually visible. In
this case 0P, (B(F;), ) cannot block the visibility be-
tween P, and z. If it is so, there exists a reflex vertex
on 0P, (B(P,),z) whose clockwise component contains
d and does not contain P,. This violates the condition
that z is the first candidate reflex vertex after B(P)
that P, is exploring. Therefore, the mutual visibility
between P, and z is blocked by 0P, (d, P;). We main-
tain another pointer P, which starts from P, and moves
in the counter-clockwise direction towards d. P, goes
through each vertex and checks its visibility with z in
constant time. Like before, this visibility cannot be
blocked by OP.,(B(F;),z). Therefore, P, will even-
tually reach a reflex vertex y, since otherwise d is not
contained in C.,(z). Clearly y is a reflex vertex. We
associate y with P,. We then check the backward ex-
tension from x with the segment Ty, from which we can
easily check whether the extension intersects 0P, (P, t)
or P, (d, P). If x satisfies the three conditions, men-
tioned above, we save the pair P, and x, which indicates
that P, (d, P;) and 0P, (z,d) are unreachable.
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We move P, to the next reflex vertex in L., and P, to
the corresponding extension point, and the whole pro-
cess repeats. Note that z is in Cyy (B))-

One important fact is when we repeat the above
process with new P, and P,, we might need to move
counter-clockwise P, again. However, any previously
checked polygonal chains will not be checked again.
Any vertex on 9P,,(d,t) will be checked at most once.
In addition, P, always advances towards d. Thus we
can detect the pattern in Fig. 7 (d) in O(n) time. The
pattern in Fig. 7 (e) can be dealt with symmetrically.

After the unreachable parts on the boundary of P
have been marked, checking whether there is any part
unmarked can be done in linear time.

Theorem 4 For a room P(d) with n vertices, we can
check its searchability by two guards in O(n) time. W

5 Conclusion

The main contribution of this paper is to present a sim-
ple characterization of searchable rooms by two guards
and propose a linear algorithm to check the characteri-
zation. In designing the algorithm, we have made use of
visibility diagrams and some previous results. Qur al-
gorithm can be easily adapted to tackle the room search
by one searcher with a flashlight.
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