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Hamiltonian Cycles in Triangular Grids
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Abstract

We study the Hamiltonian Cycle problem in graphs in-
duced by subsets of the vertices of the tiling of the plane
with equilateral triangles. By analogy with grid graphs
we call such graphs triangular grid graphs. Following
the analogy, we define the class of solid triangular grid
graphs.

We prove that the Hamiltonian Cycle problem is NP-
complete for triangular grid graphs. We show that with
the exception of the “Star of David”, a solid triangular
grid graph without cut vertices is always Hamiltonian.

1 Introduction

Grids have proved to be extremely useful in all areas
of computer science. Their main usage is as the dis-
crete approximation to a continuous domain or surface.
Numerous algorithms in computer graphics, numerical
analysis, computational geometry, robotics and other
fields are based on grid computations.

Formally, a square grid, or square grid graph G is in-
duced by a finite subset G of the infinite integer grid Z2:
the vertices of G are the points in G, the edges of G con-
nect the points of G that are at unit distance from each
other. We will identify a grid graph G with the subset
G that induces the graph.

The infinite grid Z2 may be viewed as the set of ver-
tices of a tiling of the plane with unit squares. Another
plane tiling with regular polygons, the tiling with equi-
lateral triangles, defines an infinite “grid” in the same
way; we call this grid infinite triangular. A triangular
grid graph is a graph induced by a finite subset of the
infinite triangular grid. We will use the terms trian-
gular (square) grid graph and triangular (square) grid
interchangeably.

As an important special case, the class of “solid” (or,
“simple”) square grid graphs was introduced [1, 15]. A
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Grid Square Triangular
General NPC [14] NPC, Thm. 1
Degree deg≤ 3: deg≤ 4:
bounded NPC [14] NPC, Thm. 2
Solid P [15] P, Thm. 3

Table 1: The hardness of the HCP in grids. NPC stands
for NP-complete, P stands for polynomial-time solvable.

square grid graph is called solid if all of its bounded
faces are unit squares.

Related Work

The Hamiltonian Cycle problem (HCP) is one of the
basic six NP-complete problems [11]; see also the sur-
vey [4]. A lot of effort has been devoted to establishing
the boundary between the classes of graphs for which
the problem remains NP-complete, and the classes for
which it is polynomially solvable. In particular, Dillen-
court [7] showed that the problem is NP-complete even
if restricted to Delaunay triangulations. Arkin et al.
[2] considered Hamiltonian cycles in the duals of trian-
gulations. Cimikowski [5, 6] studied the HCP in inner-
triangulations graphs; Dogrusoz and Krishnamoorthy in
an unpublished manuscript [8] proved that the HCP for
such graphs is NP-complete.

The HCP in square grid graphs has been the subject
of extensive research [12, 14, 13, 10, 9, 15, 1]. In general,
the problem is NP-complete [12, 14, 13]. It was proved
that in solid square grids the HCP is polynomial [15]. It
was shown [1] that in a solid square grid on N vertices
there exists a tour of length at most 6N/5 visiting all
grid vertices; such a tour can be computed in linear
time. Table 1 summarizes known results on the HCP in
grid graphs.

Our Contributions

To the best of our knowledge, the HCP in triangular
grids has not been considered previously. In this paper
we provide an algorithmic study of the problem and
give some related results. We prove that the HCP in
triangular grid graphs is NP-complete; further, we show
that the problem remains NP-complete even if restricted
to grids with maximum degree 4. We extend the notions
of “solid” to triangular grids; we show that, except for
one counterexample, any solid triangular grid without
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Figure 1: G′ and the embedding.
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Figure 2: The gadgets.

cut vertices is Hamiltonian and that the Hamiltonian
cycle in it can be found in linear time. This result has a
couple of straightforward implications, which we discuss
in Section 3.

2 Triangular Grid Graphs

Itai et al. [12] and Johnson and Papadimitriou [13]
proved that the HCP in square grid graphs is NP-
complete by a reduction from HCP in undirected planar
bipartite graphs with maximum degree 3. We follow the
idea of [14] to show that the HCP in triangular grids is
NP-complete.

Let G′ be an undirected planar bipartite graph with
maximum degree 3; the nodes are 2-colored “black” and
“white”. We say that G′ has nodes and arcs saving the
terms vertices and edges for the triangular grid graph G
that we build from G′ as follows. First, G′ is embedded
in the plane, with the arcs drawn by paths going at 0,
60 or 120 degrees to the x-axis, so that the turn angles
are 120o at each corner along an embedded polygonal
arc (Fig. 1). The embedding is then represented by a
triangular grid graph G with nodes and arcs simulated
by the gadgets shown in Figure 2.

In detail, the nodes are represented by the unit tri-
angles; the arcs are simulated by “tentacles”. The tri-
angles corresponding to the black (resp., white) nodes
of G′ are called black (resp., white). A tentacle-arc is
connected to the black triangle with a “pin” connection
(Fig. 3, left) and to the white triangle with an “arm”
connection (Fig. 3, right).

The only means of traversing a tentacle is either by a
return path (Fig. 4, left) or by a (kind of a) cross path
(Fig. 4, right). Of course, there may be many differ-
ent cross paths, but the essential difference between the
return and the cross paths is that the former connects
the tentacle vertices aligned along a line, while the lat-
ter “jumps back and forth” between the two lines that
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Figure 3: A “pin” connection (left) and an “arm” con-
nection (right). The node gadgets are shown with hol-
low circles.
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Figure 4: The paths.

bound the tentacle. The idea of the difference is that
a cross path connects the two node gadgets at its ends,
while a return path just traverses the vertices in the ten-
tacle, returning to the same end from which it started.

Theorem 1 The HCP for triangular grid graphs is
NP-complete.

Proof. (Sketch) If G′ has a Hamiltonian cycle, then G
has one, which traverses the black and white triangles
of G in the order of the corresponding nodes of G′ in
the cycle. It traverses by cross paths the tentacles that
correspond to arcs in the cycle. The remaining tentacles
are picked up by return paths from the adjacent white
triangles.

Conversely, any Hamiltonian cycle C of G comes from
a Hamiltonian cycle of G′ in this way. Indeed, it is
not hard to see, by inspection of Fig. 3, that in C any
triangle is attached to exactly two cross paths. !

Triangular Grids of Maximum Degree 4

Papadimitriou and Vazirani [14] also proved that the
HCP in square grid graphs is NP-complete even when
restricted to graphs of maximum degree 3; Buro [3] gave
an alternative proof. In this section we prove that the
HCP in triangular grids is NP-complete even when re-
stricted to grids of maximum degree 4.

The graph G constructed in the proof of Theorem 1
has certain vertices of degree 5, namely, the vertices of
the white triangles and the inner points of the angles of
the tentacles. Figure 5 shows how the construction may
be modified so that the resulting graph has vertices of
degree 4 or less.

Theorem 2 The HCP for triangular grid graphs with
maximum degree 4 is NP-complete.

Hamiltonicity of Solid Triangular Grids

As in the case of square grids, we say that a triangular
grid is solid if every bounded face of it is a unit equilat-
eral triangle. In [1], a linear-time algorithm is proposed
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Figure 5: Left: Modified white triangle. Right: Modi-
fied turn of a tentacle.

Figure 6: The only non-Hamiltonian solid triangular
grid graph: the Star of David.

to find a cycle of length at most 6N/5 through any solid
square grid graph on N vertices. The algorithm takes
the cycle around the boundary of (the unbounded face
of) the graph and attaches to it all of the internal ver-
tices at a low cost. In this section we show that the
algorithm can be extended to the case of solid triangu-
lar grids. Following [1], we only consider graphs without
cut vertices (a cut vertex is a vertex whose removal dis-
connects the graph). It appears that the connectivity of
a triangular grid is so high that, with the exception of
one particular graph (which we call the “Star of David”,
Fig. 6), all solid triangular grids without cut vertices are
Hamiltonian; in fact, our algorithm will constructively
find a Hamiltonian cycle in any solid triangular grid in
time linear in the size of the description of the grid.

Let G = (V, E) be a solid triangular grid graph with-
out cut vertices; let C be the cycle going through the
vertices of G that are on the boundary of its unbounded
face; since there is no cut vertex in G, C is simple. We
argue that C can be modified, through a sequence of
local modifications, into a cycle that visits all vertices
of G. Let C ′ denote the tour at any particular stage of
the modification; we maintain the invariant that C ′ is a
simple cycle within G such that all of the vertices of G
that have not been visited by C ′, V \C ′, are inside C ′.
Our modifications are “monotone” in that each modifi-
cation will result in C ′ visiting a superset of the vertices
that it previously visited.

Before stating our algorithm, we argue that without
loss of generality it suffices to consider only the grids
without “bottlenecks.” Following [1], we say that two
edges {ac, bd} of C form a bottleneck if (1) they are
the opposite sides of a unit rhombus, contained within
C; and (2) neither of the other two sides of the rhom-
bus (we call each of these sides a cork) is an edge of C
(Fig. 7, left). (Note that an edge of C can participate
in two bottlenecks.) To justify the “bottlenecklessness”
assumption, we observe that whenever G has a bottle-
neck, the graph can be cut through the bottleneck(s)

a b

c d
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c d
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g
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k j
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Figure 7: Left: {ac, bd}, {ac, bg}, {hk, ij} are examples
of bottlenecks; {ab, cd}, {ag, bc}, {hi, kj} are the corre-
sponding cork pairs. Right: G is cut by the bottlenecks
{ac, bg}, {hk, ij}; C1, C2 and Cb use the corks ag, ij,
and bc and kj, respectively. As can be seen from Figs. 8
and 9, the modifications Welcome-1 and Welcome-2 are
“conservative” in that the Hamiltonian cycles through
G1 and G2, obtained by modifying C1 and C2, will still
use the corks; it enables splicing the three cycles into a
Hamiltonian cycle through G.

into three subgraphs, G1, G2 and Gb (with Gb possi-
bly empty), such that (1) neither of G1, G2, Gb is a
Star of David; (2) each of G1, G2 has fewer bottlenecks
than G; (3) the cycle Cb around the boundary of Gb is
a Hamiltonian cycle through Gb; (4) the cycles C1, C2,
Cb around the boundaries of G1, G2, Gb use the corks of
the bottlenecks through which G was cut; and, (5) the
modifications Welcome-1 and Welcome-2 (see below),
applied to each of C1 and C2 to obtain the Hamiltonian
cycles C ′

1 and C ′
2 through G1 and G2, do not touch the

corks (i.e., C ′
1 and C ′

2 still use the corks). See Fig. 7,
right. This means that the cycles C ′

1, C ′
2, Cb can be

spliced into a Hamiltonian cycle through G. Thus, by
induction on the number of the bottlenecks, it suffices
to consider only the case when G is “bottleneckless.”

Theorem 3 Let G be a connected solid triangular grid
graph without cut vertices. Then, unless G is the Star
of David, it is Hamiltonian.

Proof. We consider two types of modifications to C,
which we call Welcome-1 and Welcome-2. As men-
tioned before, we let C ′ denote the cycle at any partic-
ular stage of the modification. For i = 1, 2, Welcome-i
adds i new vertices to C ′. Welcome-2 is applied only
when Welcome-1 cannot be applied.

Welcome-1 is applied as long as there exists an edge
ab of C such that the unit equilateral triangle abc has
c ∈ V \ C ′; the modification consists of adding c to C ′

(Fig. 8). Observe that Welcome-1 does not create a
bottleneck in C ′.

Suppose that at some stage Welcome-1 cannot be
applied. Then either C ′ is already a Hamiltonian cycle
in G, in which case we are done, or there exists a vertex
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Figure 8: Welcome-1 : C ′ ← C ′ \ ab ∪ ac ∪ bc.
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Figure 9: Left: vr ∈ V \ C ′, s, t ∈ C ′. None of the
crossed edges may be in C ′. Center: the edges of C ′

that are adjacent to t may be deduced. An edge of
C ′ that is adjacent to s may also be inferred. Right:
Welcome-2 welcomes v and r to C ′.

in V \ C ′. Since G is connected, there exists a vertex
v ∈ V \ C ′ such that at least one of the neighbors of v
is a vertex of C ′. Consider two cases.
All six neighbors of v are in C ′. Then, since Wel-
come-1 cannot be applied and there is no bottleneck in
C ′, G is a Star of David (see Fig. 6).
At least one of the neighbors of v is in V \C ′. Let
w ∈ C ′ be a neighbor of v that is in the cycle C ′. At
least one of the two vertices, adjacent to both v and w,
must be a vertex of C ′; otherwise, one of them could
have been picked up, by an edge of C ′ going through w,
using Welcome-1. Let x ∈ C ′ be this neighbor of v and
w (obviously, C ′ does not pass through wx). It is easy to
see that then there must exist a unit rhombus vrst such
that vr ∈ V \C ′, s, t ∈ C ′ (possibly, {s, t}∩{w, x} )= ∅).
Since Welcome-1 cannot be applied, none of the edges of
the grid that “surround” v is in C ′ (Fig. 9, left). This
uniquely defines which of the edges adjacent to t are
used by C ′ (Fig. 9, center). Since C ′ has no bottleneck
(indeed, C did not have bottlenecks, and no bottleneck
was created by Welcome-1 ’s), it can be deduced that
the distance from s to t along C ′ is 2 (see Fig. 9, cen-
ter). Finally, a local modification, Welcome-2, may be
applied to C ′ in order to add v and r to the cycle (Fig. 9,
right).

Observe that, as with Welcome-1, Welcome-2 does
not create bottlenecks in C ′. This justifies applying the
modifications consistently until C ′ passes through all
vertices of G. !

3 Discussion

The proof of Theorem 3 can be turned into a linear-time
algorithm for finding a Hamiltonian cycle. To do this
it suffices to apply Welcome-1 to a whole “row” or a

“doublerow” of vertices at once.
A simple corollary from Theorem 3 is that the Travel-

ing Salesperson Problem in solid triangular grid graphs
is polynomially solvable.

We left open the HCP in triangular grids of degree at
most 3 and finding a short covering tour in any trian-
gular grid. Another exciting open problem is the HCP
in hexagonal grids.
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