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The Complexity of a Pop-up Book

Ryuhei Uehara∗ Sachio Teramoto†

Abstract

Origami is the centuries-old art of folding paper, and
recently, it is investigated as science. In this paper, an-
other hundreds-old art of folding paper, a pop-up book,
is studied. A model for the pop-up book design prob-
lem is given, and its complexity is investigated. We
show that both of the opening book problem and the
closing book problem are NP-hard.
Keywords: Computational Complexity, Origami, Paper
folding, Pop-up books.

1 Introduction

Origami is the centuries-old art of folding paper. Re-
cently, some mathematicians and computer scientists
have started to study origami. For example, a geometric
approach to origami design has taken, and one of use-
ful techniques is known as TreeMaker program by Lang
[7]. On the other hand, “global flat foldability” of an
origami is considered. The problem to find appropriate
overlap order to fold a given origami flat is NP-hard [1].
The paper folding problem can be generalized. For ex-
ample, folding a map seems to be similar to the problem
of origami. The reader can find a comprehensive sur-
vey of the complexity of folding an origami and related
results due to Demaine & Demaine [2] and Demaine &
O’Rourke [3].

Another hundreds-old art of folding paper is a pop-up
book. Contemporary pop-up book artists invent many
sculpture of great beauty and intricacy (see, e.g., [8]).
A pop-up book has two major differences comparing to
origami. First, it has two surface covers with a hinge,
and the essential movement depends on them. Hence
the movement is strongly restricted (see, e.g., [6] for
possible movements). Second, a book is not only closed
(or folded) but also opened (or unfolded). For a pop-up
book designer, the problem is to design sculptures by a
paper between two covers, and make the book be able
to be opened and closed. Moreover, to see a page of the
book, we usually open or close the page once. That is,
we do not repeat the movements open and close to see a
page in the book. From the viewpoint of the “computa-
tion” of the movement, this point also strongly restricts
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ourselves.
In this paper, we first give a model for the pop-up

book design problem. Next, we show that both of the
opening book problem and the closing book problem are
NP-hard. We note that our results do not use the over-
lap order technique used in [1] to show the NP-hardness
of the foldability problem of an origami.

2 Definitions

An input of the problems is a paper sculpture between
a book structure. That is, a book consists of two (sur-
face) covers which are joined by a hinge, and some paper
objects are fixed between the covers. A paper object be-
tween the covers has some faces and creases. In our
model, creases are given as a part of input, and we are
not allowed to make a new crease. A crease can be
folded in both ways, and it is allowed to not be folded
(unless making a new crease). Given input is the (pos-
sible) design of a pop-up book. That consists of two
surface covers with a fixed degree, say θ0, and our ob-
jective is “opening” or “closing” the book. More pre-
cisely, for given degree θ1, we aim to make the degree
of the book from θ0 to θ1 without making a new crease.
Now, we denote by POP(θ0, θ1) the problem to decide
if a given pop-up book with two covers of degree θ0

can be opened or closed to degree θ1 without making
a new crease. The size of an input (or a pop-up book)
is defined by the summation of the number of lines (or
edges of papers), the number of (predefined) creases,
and the number of corners. In this paper, all borders
(and creases) of a paper consist of straight lines. That
is, we do not deal with the case that the border of a
paper makes a curve.

3 Closing a pop-up book

In this section, we show NP-hardness of the closing a
pop-up book. More precisely, main theorem in this sec-
tion is the following:

Theorem 1 The problem POP(θ0, θ1) is NP-hard for
any θ0 > θ1 ≥ 0.

We reduce from a well known NP-complete problem,
NAE3SAT defined as follows [4, LO3].

Input: A formula F consists of m clauses c1, c2, . . . , cm

of 3 literals with n variables x1, x2, . . . , xn.
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Figure 2: CLAUSE gadget
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Figure 3: VARIABLE gadget

Output: “Yes” if there is a truth assignment such that
each clause has at least one true literal and at least
one false literal.

To reduce the problem, we make three kinds of gad-
gets called REVSTOP, CLAUSE, and VARIABLE by pa-
per. The REVSTOP is described in Figure 1; for the
face A, the face B can be flipped from degree 0 to de-
gree 180 centered at the line pivot. The CLAUSE is de-
scribed in Figure 2. A CLAUSE consists of three parts
(Figure 2(1)). On the papers A and B, the right upper
parts form REVSTOP. To see easily, they are omitted
in Figure 2(2) and (3). Figure 2 (3) is the final form
of the CLAUSE (with REVSTOP). The VARIABLE is de-

scribed in Figure 3; two bottom lines will be glued to
two surface covers, respectively. The neutral position
is depicted in Figure 3(0). Since the bottom lines have
the same height, we have four possible cases to fold the
VARIABLE flat shown in Figure 3(1)-(4). Among them,
the cases (3) and (4) will be inhibited by other gadgets.
Hence we will represent the true and false assignments
by the forms (1) and (2), respectively. We call two lines
labeled by “a” and “c” in the gadget ridges. When two
foldings (1) and (2) are exchanged, the heights of two
ridges (ex)change 2w.

Now, we construct a paper sculpture, or a design of
a pop-up book, from a formula F (Figure 4). For each
i = 1, 2, . . . , n, the VARIABLE Xi for xi are glued to two
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Figure 5: Foldable and unfoldable cases

covers at the bottom lines. Initially, each VARIABLE
is in a neutral position; two ridges are at the same
height. For a clause cj = ("i1 , "i2 , "i3) with "i = xi

or "i = x̄i, the CLAUSE Cj is connected to VARIABLE
Xi1 , Xi2 , and Xi3 as follows: If "i1 = xi1 , the bottom
line of A in Figure 2 is connected to the right ridge of
the VARIABLE Xi1 . If "i2 = x̄i2 , the bottom line of C in
Figure 2 is connected to the left ridge of the VARIABLE
Xi2 . The bottom line of B in Figure 2 is connected to
the ridge of the VARIABLE Xi3 similarly. The connec-
tions are done in a natural way; see Figure 4 for the
clause cj = (x1, x2, x̄n). In Figure 4, the ridges imply
x1 is true, x2 is false, and xn is true. We note that each
VARIABLE is in a neutral position, and all ridges have
the same height. Thus, each CLAUSE is also in a neutral
position as Figure 2(3). We do not glue the gadgets to
the covers except the bottom lines of VARIABLEs. After
connecting CLAUSEs and VARIABLEs, each VARIABLE
cannot be folded in the form in Figure 3(3) and (4)
without making a new crease. The reduction can be
done in a polynomial time of the size of F .

Now we are ready to show the key lemma:

Lemma 2 The pop-up book constructed above can be
closed completely if and only if there is a truth assign-
ment of F such that each clause has at least one true
literal and at least one false literal.

Proof. Each ridge of a VARIABLE can be high when it
is on the top of the mountain, and low when it is on the
bottom of the valley. To fold each VARIABLE flat, one
of two ridges is high and the other ridge is low. Hence
the parts A, C, B of a CLAUSE can take only two states,
say, high and low.

We first show feasible cases for a CLAUSE. When B
and C correspond to the same height, and A corresponds
to the different height, C is let come near to B, and then
A can be moved up or down 2w height to fold them
flat (Figure 5(1)). On the other hand, when A and B
correspond to the same height and C takes the different

height, A and B are let go farther to both sides, and then
C can be moved up or down 2w height to fold them flat
(Figure 5(2)). Using the symmetric way, a CLAUSE can
be fold flat when one of A, B, and C is high and one of
them is low.

The other ways to fold them flat can be classified
in two cases. The first case is three different heights;
from the form in Figure 5(2), we can fold A, C, and
B flat with three different heights in this order or vice
versa. However, this case is impossible since three parts
can take either high or low from the restriction by the
VARIABLEs. The last case is the case that A, B, and
C have the same height. This folding can be done if A
and B are folded symmetrically as shown in Figure 5(3)
where the face A, which forms a symmetric shape of B, is
omitted to see the case easier. However, this case is also
impossible. In the case, two symmetric faces, marked by
R in Figure 5(3), of A and B have to make 360 degree.
However, the “reverse” movement is inhibited by the
REVSTOP in Figure 2(1).

Therefore, the CLAUSE Cj can be folded flat if and
only if one variable takes the different value from the
other two variables. Hence the pop-up book can be
closed if and only if F is a yes instance of NAE3SAT. !

Now we prove the main theorem in this section. In
Lemma 2, making the gadgets small enough, we can
prove the theorem if θ0 is small enough and θ1 = 0.
When θ1 > 0 and θ0 is close enough to θ1, we make the
gadgets between two inner covers, and put some stable
stands between the inner covers and surface covers. On
the other hand, when θ1 is large, we join the inner cov-
ers and surface covers by a long paper ribbon with one
crease. It is easy to adjust the length of them to fit for
given θ1 and θ0. This completes the proof of Theorem
1. !
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Figure 6: Cheat covers

4 Opening a pop-up book

In this section, we show NP-hardness of the opening
a pop-up book. More precisely, main theorem in this
section is the following:

Theorem 3 The problem POP(θ0, θ1) is NP-hard for
any 0 < θ0 < θ1.

We note that θ0 is greater than 0.

Proof. Between two surface covers, we add two inner
covers and two paper springs shown in Figure 6 (two
paper springs join one surface cover and one inner cover
symmetrically). Then, opening the surface covers close
the inner covers. Hence we can use the gadgets in The-
orem 1 again, and we have the theorem. !

5 Concluding remarks

The gadget in Figure 6 is a kind of cheat. Hence the
problem POP(0, θ1) for θ1 > 0 is still open. The problem
to open a completely closed book seems to be interest-
ing since our gadgets do not work at all. We did not
show that the problems are in NP. In fact, our prob-
lem might be PSPACE-hard in some model; our problem
(and some problems for origami) seems to be similar
to the movement problems for 2-dimensional linkages,
which is PSPACE-hard due to Hopcroft, Joseph, and
Whitesides [5]. However, as noted in Introduction, we
usually open or close a page of a pop-up book once, and
hence the movement does not “repeat,” which seems
to be a key point. Therefore, realizing a computation
with repeating by one close/open movement of a pop-
up book is also interesting problem. All gadgets in this
paper consist of straight lines, and every angle is or-
thogonal. It may cause different aspect if we admit any
delicate/complex curve as an edge of a paper; in the
model, some functions can be compared by chafing one
curve against the other one. But the model seems to be
not so natural; we make them by a paper anyway.
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