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Rotationally Monotone Polygons∗
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Abstract

A generalization of monotonicity is introduced. An n-
vertex polygon P is rotationally monotone w.r.t. a point
r if there exists a partitioning of the boundary of P into
exactly two polygonal chains, s.t. one chain can be ro-
tated clockwise around r and the other chain can be
rotated counterclockwise around r with neither chain
intersecting the interior of the polygon. We present the
following two results: (1) Given P and a center of rota-
tion r in the plane, we determine in O(n) time whether
P is rotationally monotone w.r.t. r. (2) We can find
all the points in the plane from which P is rotation-
ally monotone in O(n) time for convex polygons and in
O(n2) time for simple polygons. Both algorithms are
worst-case optimal.

1 Introduction

Determining whether a polygon has certain properties,
such as convexity, monotonicity, or star-shapedness, is a
well-studied problem in computational geometry. This
problem is not only important from a theoretical point
of view, but also from a practical point of view. For
surveys and application areas of classes of polygons, the
reader is referred to the Handbook of Discrete and Com-
putational Geometry [6, Chapter 23].

A polygon P is monotone in direction !d if the in-
tersection of P and any line in direction !d is a convex
set. Preparata and Supowit [8] determine in O(n) time
whether an n-vertex polygon is monotone. Rosenbloom
and Rappaport [9] determine in O(n) time whether a
polygon P can be partitioned into exactly two mono-
tone chains, where the two chains are monotone with
different directions. Furthermore, they determine in
O(n log n) time whether P can be decomposed into
two monotone chains by cutting the boundary along a
straight line. Dean et al. [4] introduce pseudo-star-
shaped polygons. A polygon P is pseudo-star-shaped if
there exists a point r, such that the interior of P is visi-
ble from r if one can see through single edges. ElGindy
and Toussaint [5] consider radially monotone polygons.
A polygon P is radially monotone if there exists a point
r, such that every infinite half line emanating from r
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intersects P in a connected component. Note that the
definitions of radially monotone and pseudo-star-shaped
are equivalent.

Toussaint [10] introduces another generalization of
monotonicity. A polyhedron is weakly-monotonic if
there exists a direction !d s.t. the intersection of the
polyhedron and any plane with normal !d forms a simply-
connected set. Bose and van Kreveld [1] give an algo-
rithm to determine in O(n log n) time whether a simple
n-vertex polyhedron is weakly-monotonic.

We introduce a new generalization of monotone poly-
gons. A polygon P is rotationally monotone w.r.t. a
point r in the plane if the boundary of P can be decom-
posed into exactly two polygonal chains, s.t. one chain
can be rotated in clockwise orientation around r and
the other chain can be rotated in counterclockwise ori-
entation around r without either chain penetrating the
interior of P . Two problems are addressed. First, given
a center of rotation r in the plane, determine whether
P is rotationally monotone w.r.t. r. We present a linear
time algorithm to solve this problem. Second, an algo-
rithm is presented to find all the points r in the plane,
s.t. P is rotationally monotone w.r.t. r. The algorithm’s
running time for convex polygons is linear and for simple
polygons is quadratic. We show that both algorithms
are optimal in the worst case.

The notion of rotationally monotone polygons has a
direct application to clamshell casting. Assume that
we wish to manufacture an object modeled by a simple
polygon P with n vertices. Let the boundary of P be
the cast of P . The polygon P is castable from a center
of rotation r if the cast of P can be partitioned into ex-
actly two parts, s.t. one part can be rotated in clockwise
orientation around r and the other part can be rotated
in counterclockwise orientation around r without inter-
secting the interior of P [3]. Hence, P is castable iff P
is rotationally monotone. The algorithms presented in
this paper are used by Bose et al. [2] to solve the casting
problem in three dimensions. All proofs are available in
the full version of the paper [3].

2 Preliminaries

Let P be a simple polygon in the plane with n vertices
and let int(P ) and ∂P denote the interior and boundary
of P , respectively, so that P = int(P ) ∪ ∂P . The edges
of P are oriented in counterclockwise order s.t. int(P ) is
located to their left. The aim is to determine whether
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the boundary of P can be partitioned into two pieces
where each piece can be removed by a rotation.

For points r and p in the plane, we denote the circular
arc with center r and angle α starting at p winding in
clockwise (cw) or counterclockwise (ccw) direction by
cwarc(r, p,α) or ccwarc(r, p,α) respectively.

Definition 1 An edge e of P is removable in cw ori-
entation w.r.t. r if ∃ α > 0 such that ∀ p on e :
cwarc(r, p,α) ∩ int(P ) = ∅ and removable in ccw ori-
entation w.r.t. r if ∃ α > 0 such that ∀ p on e :
ccwarc(r, p,α) ∩ int(P ) = ∅.

Then, we call the cw or ccw orientation a valid re-
moval orientation for e w.r.t. r respectively, and we call
r a valid center of rotation for e. Figure 1 illustrates the
definition of removability for edges.

r

α

P

β

e2

e1

Figure 1: The edges e1 and e2 are removable in cw ori-
entation with angle α and ccw orientation with angle β
w.r.t. r respectively.

Definition 2 Let r be a point in the plane. A polygon
P is rotationally monotone w.r.t. r, if ∂P can be par-
titioned into exactly two connected chains, s.t. all edges
of one chain are removable in cw orientation w.r.t. r
and all edges of the other chain are removable in ccw
orientation w.r.t. r.

This implies that there exists an angle α, s.t. both
chains can be rotated in cw or ccw orientation w.r.t.
r, respectively, without colliding with each other. Note
that the partitioning of the chain is not necessarily at
vertices of P . We now outline a key property that char-
acterizes all locations from which an edge is removable.

For an edge e ∈ ∂P with incident vertices a and b, let
ne(a) denote the line perpendicular to e passing through
a. The line ne(a) divides the plane into two half planes
and the open half plane containing b is denoted by n+

e (a)
and the open half plane that does not contain b is de-
noted by n−e (a). The supporting line l(e) of e divides
the plane into two half planes. Denote the open half
plane located to the left of e when traversing P in ccw
orientation by l+(e) and the open half plane located to
the right of e when traversing P by l−(e), see Figure 2.
The closure of an open set S is denoted by cl(S).
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Figure 2: The half planes associated with an edge e.

Lemma 1 Let e be an edge of P and denote the two
vertices incident to e in ccw order by a and b.

1. The edge e is removable using a cw rotation around
r, iff r ∈ cl(n−e (a)).

2. The edge e is removable using a ccw rotation around
r, iff r ∈ cl(n−e (b)).

3. The point r ∈ n+
e (a) ∩ n+

e (b) ∩ cl(l−(e)) iff the or-
thogonal projection of r on e partitions e into two
parts, s.t. one part is removable using a cw rotation
around r and the other part is removable using a
ccw rotation around r.

4. The edge e is not removable, iff r ∈ n+
e (a)∩n+

e (b)∩
l+(e).

3 Decision Problem

In this section, we address the question of whether a
polygon P is rotationally monotone w.r.t. a given point
of rotation r and present an algorithm that solves the
problem in linear time. If P is rotationally monotone
w.r.t. r, the two points on ∂P , where the boundary of
P is partitioned, need to be found.

Definition 3 A point c ∈ ∂P is said to be a near point
c w.r.t. r if there exists a disk b centered at c with a pos-
itive radius, s.t. all points q ∈ (∂P ∩ b) \ {c} are outside
of the closed disk centered at r and passing through c.

Hence, if c is not a vertex, c is the orthogonal projec-
tion of r on an edge of P . Therefore, c locally minimizes
the distance between the boundary of P and the center
of rotation r.

Definition 4 A point f ∈ ∂P is said to be a far point
f w.r.t. r if there exists a disk b centered at f with a
positive radius, s.t. all points q ∈ ∂P ∩ b are completely
contained in the closed disk centered at r and passing
through f .

106                                       



CCCG 2006, Kingston, Ontario, August 14–16, 2006

A far point is always a vertex of P that locally maxi-
mizes the distance between the boundary of P and the
center of rotation r.

Definition 5 Let p ∈ ∂P . If p is located in the interior
of an edge, split the edge into two edges at p. The valid
removal orientation w.r.t. r is said to change at p if one
of the edges incident to p is removable in cw orientation
and the other edge incident to p is removable in ccw
orientation w.r.t. r.

Lemma 2 The valid removal orientation w.r.t. r
changes at a point p ∈ ∂P iff p is either a near point or
a far point w.r.t. r.

Theorem 3 Given a center of rotation r, a polygon P
is rotationally monotone w.r.t. r iff there exists exactly
one near point c w.r.t. r and exactly one far point f
w.r.t. r on ∂P .

Theorem 3 allows us to determine whether a polygon
is rotationally monotone given a center of rotation r
by testing how many points p ∈ ∂P are local extrema
w.r.t. the distance between p and r. The polygon is
rotationally monotone iff there is exactly one maximum
and one minimum.

Theorem 4 Given a polygon P with n vertices and a
center of rotation r, we can test in O(n) time whether
P is rotationally monotone w.r.t. r.

4 All valid regions of rotational monotonicity

In this section, the aim is to find all points r in the plane,
s.t. a given polygon is rotationally monotone w.r.t. r.

Definition 6 The union of all points r in the plane
with the property that P is rotationally monotone w.r.t.
r is the valid region of rotational monotonicity of P .
The complement of the valid region is the invalid region
for rotational monotonicity of P .

The aim is to determine all valid regions in the plane
for a given polygon P by partitioning the plane into
valid and invalid regions for rotational monotonicity.
Once a query point r is given, it is possible to deter-
mine whether r is a valid center of rotation for P by
determining whether r is contained in a valid or an in-
valid region of rotational monotonicity.

4.1 Rotational monotonicity of convex polygons

In this section, we consider convex polygons and show
that it is possible to find all valid regions of rotational
monotonicity in linear time. The plane is partitioned
into valid and invalid regions of rotational monotonicity
by constructing the envelope of an arrangement of half
lines.

Lemma 1 implies that every edge e with incident ver-
tices a and b given in ccw order on ∂P splits the plane
into regions of different valid removal orientations, see
Figure 2.

Definition 7 Let e be an edge of P and denote the two
vertices incident to e in ccw order by a and b. The open
strip n+

e (a) ∩ n+
e (b) ∩ l+(e) is the black region of e.

Note that the black region does not contain any
valid centers of rotation r for which e is removable (see
Lemma 1, case 4).

Lemma 5 A convex polygon P is rotationally mono-
tone w.r.t. a point r iff r is not in the union of all black
regions of edges of P .

Lemma 6 The valid region of rotational monotonicity
of a convex polygon P consists only of unbounded regions
in the plane.

Based on Lemma 5 and Lemma 6, we compute the
boundary of the union of all black regions of edges of P .
For this, the notion of an envelope of n lines is defined.

Definition 8 A set of n lines in the plane induces a
subdivision S of the plane. The envelope of the n lines
is the polygon formed by the bounded edges of all the
unbounded regions of S [7].

Similarly, a convex polygon P and the half lines
bounding the black regions of its edges induce a subdi-
vision S of the plane. Parallel half lines with the same
orientation intersect at infinity and are therefore con-
sidered to be bounded edges. The polygon formed by the
bounded edges of all the unbounded regions of S is called
the envelope of the arrangement induced by P .

Lemma 6 implies that all valid regions of rotational
monotonicity of P are contained in the complement of
the envelope of the arrangement induced by P . This can
be computed in linear time by modifying the algorithm
by Keil [7] for computing envelopes of arrangements of
lines.

Theorem 7 Given an n-vertex convex polygon P , a de-
scription of the valid regions of rotational monotonicity
of P has O(n) size and can be computed in O(n) time.

Corollary 8 A convex polygon P with n vertices can
be preprocessed in O(n) time, s.t. for any given point
r, we can decide in O(log n) time if P is rotationally
monotone w.r.t. r.

4.2 Rotational monotonicity of simple polygons

In this section, we consider simple (not necessarily con-
vex) polygons with n vertices and show that it is pos-
sible to find all valid regions of rotational monotonicity
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of P in O(n2) time. If the aim is to report all valid
regions, this time bound is worst case optimal.

Let r be a point in the plane. If the valid removal
orientation of a simple polygon P changes w.r.t. r at a
reflex vertex v ∈ ∂P , v penetrates int(P ) when rotated
infinitesimally around r with arbitrary orientation. This
yields the following observation:

Observation 1 A rotationally monotone polygon P
w.r.t. r cannot be divided at one of its reflex vertices
v unless the center of rotation r is v. Hence, v cannot
be a far point w.r.t. r and v can only be a near point
w.r.t. r if r = v.

Definition 9 Let v be a vertex of P and denote the two
edges adjacent to v by e1 and e2. The near cone of v is
defined as cl(n−e1

(v) ∩ n−e2
(v)) and denoted by NC(v).

The near cone of v is the set of all points X ∈ R2

with the property that v is a near point w.r.t. X, see
Figure 3.

Definition 10 Let v be a vertex of P and denote the
two edges adjacent to v by e1 and e2. The far cone of v
is defined as n+

e1
(v) ∩ n+

e2
(v) and denoted by FC(v).

The far cone of v is the set of all points X ∈ R2 with
the property that v is a far point w.r.t. X, see Figure 3.

near cone v

e2

e1

far cone

Figure 3: The near cone and the far cone of v.

Definition 11 The black region of a reflex vertex v is
(NC(v) ∪ FC(v)) \ {v}.

Note that Observation 1 ensures that the black region
of v does not contain any valid centers of rotation r that
allow the removal of v from ∂P .

Lemma 9 A polygon P is rotationally monotone w.r.t.
a point r iff r is not in the union of all black regions of
edges and reflex vertices of P .

Theorem 10 Given a simple polygon P with n ver-
tices, a description of the valid regions of rotational
monotonicity of P has O(n2) size and can be computed
in O(n2) time.

Corollary 11 A simple polygon P with n vertices can
be preprocessed in O(n2) time, s.t. for any given point
r, we can decide in O(log n) time if P is rotationally
monotone w.r.t. r.

In the full version [3], we construct a simple poly-
gon having a quadratic number of disjoint valid regions.
Therefore, Theorem 10 is worst-case optimal.

5 Future Work

The definition of rotational monotonicity w.r.t. a point
r only tests whether the boundary of the polygon P
can be decomposed into two chains, s.t. both chains can
be rotated around r by a small angle without colliding
with int(P ). An interesting extension is to determine
whether the two chains can be rotated by a given angle
α without colliding with the interior of the polygon.
Another related problem is to find the maximal angle α
the two chains can be rotated by without colliding with
the interior of the polygon for a rotationally monotone
polygon w.r.t. r.
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