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Polygons Flip Finitely: Flaws and a Fix
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Abstract

Every simple planar polygon can undergo only a finite num-

ber of pocket flips before becoming convex. Since Erdős

posed this as an open problem in 1935, several independent

purported proofs have been published. However, we uncover

a plethora of errors and gaps in these arguments, and remedy

these problems with a new (correct) proof.

1 Pocket Flips

Given a simple polygon in the plane, a pocket is a maximal

connected region interior to the convex hull and exterior to

the polygon. A (pocket) flip is the reflection of a pocket,

or more precisely the subchain of the polygon bounding the

pocket, across its line of support, the bounding edge of the

convex hull. In 1935, Paul Erdős [3] introduced the problem

of simultaneously flipping all pockets of a simple polygon,

and repeating this process until the polygon becomes con-

vex. He conjectured that this process terminates after a finite

number of steps. In 1939, Béla Nagy [2] pointed out that flip-

ping multiple pockets simultaneously may make the polygon

nonsimple. Modifying the problem slightly, he argued that

repeatedly flipping one pocket of the current polygon always

convexifies the polygon after a finite number of flips.

This result has come to be known as the Erdős-Nagy The-

orem. Over the years, the theorem has been rediscovered

many times, each discovery leading to a new proposed proof.

Among the arguments published in English, some are long

and technical, others use higher mathematics, some prove

a weaker result, some leave gaps for the reader to fill, and

still others are incorrect. In Section 2, we describe these ar-

guments and point out their weaknesses, gaps, and errors.

We view only one proof, by Kazarinoff and Bing [8, 1, 7],

as completely correct, though terse. Then, in Section 3, we

present our own proof which attempts to combine the most

elegant portions of the existing arguments, along with a few

new tricks, into a (correct) proof that we believe is both sim-

ple and thorough.

2 Existing Arguments

We begin by introducing some notation used in this paper.

Let d(x, y) denote the Euclidean distance between points x
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and y. Call a vertex of a simple polygon flat if its interior
angle is π. Let P = P 0 = 〈v0, v1, . . . , vn−1〉 denote the
initial polygon and its vertices. Let P k = 〈vk

0 , vk
1 , . . . , vk

n−1〉
denote the resulting “descendant” polygon after k arbitrary
pocket flips; ifP k is convex for some k, then we defineP k =
P k+1 = P k+2 = · · · . Let Ck denote the convex hull of P k.

When we talk about convergence, it is always with respect to

k → ∞. When the limit of P k exists, we denote it by P ∗,
its vertices by v∗i , etc.

2.1 Nagy

The very first claimed proof, published by Béla de Sz.-Nagy

in 1939 [2], is brilliant in overall design, but unfortunately

has a fatal flaw that may have gone undetected until now.1

Nagy’s argument consists of the following main steps:

1. The sequence P k converges.

2. The limit P ∗ is convex.

3. Nonflat vertices of P ∗ converge in finite time.

4. The sequence P k converges in finite time.

The flaw is in Step 2, where Nagy uses the claim that

P 0 ⊆ C0 ⊆ P 1 ⊆ C1 ⊆ . . . to show that P k and Ck con-

verge to the same (necessarily convex) limit. As illustrated

in Figure 1, this claim is incorrect. When there are multiple

pockets to choose from, Ck &⊆ P k+1.

⊆

⊆ ⊆

⊆

&⊆

P0 P1

C0 C1

Figure 1: Nagy’s error: P 0 ⊆ C0 "⊆ P 1 ⊆ C1.

Despite most later arguments being based on Nagy’s, this

flaw seems unique to Nagy’s argument. Many later argu-

ments use the other steps of Nagy’s argument, to which we

now turn.

In Step 1, Nagy observes that the perimeter of P k is

constant, and concludes that each vk
i has a point of ac-

cumulation. Then he observes that, for x inside P k and

m ≥ k, d(x, vm
i ) < d(x, vm+1

i ). Therefore, for n ≥ m,

1We should point out, though, that Grünbaum [4] states that Bing

and Kazarinoff [1] remark that Nagy’s proof [2] is invalid. However,

Grünbaum [4] goes on to say that there is no basis for this claim. We have

not yet seen the Russian paper [1] and thus cannot assess this point further.
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vi

vi−1 vi−1

Figure 2: For a nonflat vertex vk
i , once all the vertices are within

a small enough ball around their limit, there is a line which sepa-

rates the ball of vk
i from all the other balls. Thus vk

i subsequently

remains on the convex hull of P k and cannot be flipped again.

d(vm
i , vn

i ) < d(vm
i , vn+1

i ), which prevents the existence of
multiple points of accumulation, thus proving convergence.

To prove Step 3, Nagy uses an argument illustrated in Fig-

ure 2 to show that nonflat vertices of the limit polygon con-

verge in finite time. This argument is easy to draw, but re-

quires care to justify in detail, while Nagy’s presentation is

somewhat terse.

Finally, in Step 4, once all the nonflat vertices have con-

verged, no more flips are possible, because they would cause

the convex hull to increase beyond its limit.

2.2 Grünbaum

Branko Grünbaum [4] described some of the intricate his-

tory of this problem following the appearance of Nagy’s pa-

per [2], uncovering several rediscoveries of the theorem. He

also provided his own argument, similar to Nagy’s but more

terse. One main difference is that, at each step, he flips the

pocket that has maximum area (if there is more than one

pocket to choose from). Therefore Grünbaum [4] actually

proves a weaker theorem: there exists a (well-chosen) se-

quence of flips that convexifies after finitely many flips. An

extended version of [4] was published in 2001 by Grünbaum

and Zaks [5].

Grünbaum’s argument has a similar structure to Nagy’s:

1. A subsequence of the sequence P k converges to a con-

vex limit.

2. The whole sequence converges.

3. Nonflat vertices of the limit polygon converge in finite

time. (Same proof as Nagy.)

4. The sequence converges in finite time. (Same as Nagy.)

For Step 1, Grünbaum invokes Nagy’s “constant polygon

length” argument to show that a subsequence converges. He

then claims that “due to the selection of pockets that maxi-

mize the area, the limit polygon P ∗ is convex,” without fur-
ther explanation. We view this unjustified claim as a gap in

the proof, because the convexity of P ∗ has been a stumbling
block in most claimed proofs of the theorem.

In Step 2, Grünbaum invokes Nagy’s “distances from

points in the polygon increase” observation, without further

justification. As in Nagy’s proof, this argument seems insuf-

ficient by itself, requiring more detail.

2.3 Reshetnyak and Yusupov

In 1957, two papers in Russian by Reshetnyak [9] and

Yusupov [13] claimed proofs of the theorem. According to

Grünbaum [4], these arguments are similar to Nagy’s [2]. We

have not yet studied the differences in detail.

2.4 Kazarinoff and Bing

In 1959, Kazarinoff and Bing [8] announced the problem and

a solution. Two years later, a proof appeared in a paper by

Bing and Kazarinoff [1] and also in Kazarinoff’s book [7].

They also conjectured that every simple polygon becomes

convex after at most 2n flips. This conjecture has since been
shown to be false; see Section 2.5.

The proof described in Kazarinoff’s book [7] has no miss-

ing steps, and suffers only from being terse. Our proof distin-

guishes itself mainly by providing more detail. Their proof

proceeds as follows:

1. The sequence P k converges to a limit P ∗.

2. Nonflat vertices of the convex hull of P ∗ converge in
finite time.

3. All vertices of P k converge in finite time. (Same idea

as Nagy.)

For Step 1, Kazarinoff and Bing use the “constant poly-

gon length” and the “distances from points in the polygon

increase” arguments. They show that, for x interior to C0,

the sequence d(x, vk
i ) is bounded and monotonic, and thus

it converges. Applying this argument for three noncollinear

points x1, x2, and x3 shows that each vk
i converges to the

unique intersection of three circles.

In Step 2, they argue that, because P k converges, its in-

terior angles must also converge. Thus, any vertex that con-

verges to a nonflat vertex ofC∗ has an interior angle less than
π after a finite number of steps. Because a vertex moves only
when it is flipped, and a flip changes an interior angle α into
the angle 2π − α, the vertex can no longer move.

2.5 Joss and Shannon

In 1973, two students of Grünbaum at the University of

Washington, R. R. Joss and R. W. Shannon, worked on this

problem but did not publish their results. Grünbaum [4]

gives an account of the unfortunate circumstances surround-

ing this event. They found a counterexample to the conjec-

ture of Bing and Kazarinoff (but unaware of the conjecture).

Specifically, they showed that, given any positive integer k,
there exist simple polygons of constant size (indeed, quadri-

laterals suffice) that cannot be convexified with fewer than k
flips. See [4, 11].

2.6 Wegner

In 1981, Kaluza [6], apparently unaware of the previous

work, posed the problem again and asked whether the num-

ber of flips could be bounded as a function of the number
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of polygon vertices. In 1993, Bernd Wegner [12] took up

Kaluza’s challenge and solved both problems again. His

proof of convexification in a finite number of flips is quite

different from the others, but his example of unboundedness

is the same as that of Joss and Shannon.

Wegner’s proof is certainly the most intricate of the proofs

we have seen. His proof is very technical, for example, us-

ing convergence results from the theory of convex bodies,

and difficult to summarize. To his credit, Wegner carefully

details his reasoning, unlike many other authors.

Wegner’s approach contains a number of new ideas. He

notices that the undirected angles between consecutive poly-

gon edges are monotonically nondecreasing, as they only

change when a vertex is on the edge of the lid being flipped.

The use of undirected angles makes this property stand out,

but prevents the use of angles to show convergence in finite

time as in Kazarinoff’s proof [7].

Instead, Wegner introduces the area Ak of P k and tries

to show that, after a finite number of flips, performing an

additional flip would cause Ak to exceed the area A∗ of its
limit. He lower-bounds the increase in area during a flip that

moves vertex vk
i by considering the area a of the triangle

vk
i−1v

k
i vk

i+1. Wegner argues that, during such a flip, A
k will

increase by at least 2a, and uses this fact to force Ak beyond

its limit. However, as illustrated in Figure 3, the increase in

area by 2a occurs only for reflex vertices vk
i . Fortunately,

this flaw is easy to fix, because a convex vertex becomes

reflex after one flip, so the next time it moves, Wegner’s ar-

gument indeed applies.

a

a

a

a

Figure 3: Flipping a reflex vertex increases the polygon area by

twice the area a of the incident triangle (left), but this property is
not true of a convex vertex (right).

2.7 Toussaint

Motivated by the desire to present a simple, clear, elemen-

tary, and pedagogical proof of such a beautiful theorem, Tou-

ssaint [10] presented a more detailed and readable argument

at CCCG 1999. He combined Kazarinoff and Bing’s ap-

proach to proving the convergence of P k with Nagy’s ap-

proach of proving that convergence occurs in finite time.

The original argument that appeared in [10] uses one in-

stead of three noncollinear points x1, x2, and x3 to conclude

that the vertices vk
i converge. However, without further jus-

tification, it is plausible that vk
i circles around x and thus has

multiple accumulation points. Because Toussaint’s argument

is explicit in the details, this issue is clearly an error. (This is

unlike Grünbaum’s argument where the reader is left guess-

ing whether Grünbaum was in error or left some trick unre-

ported.) This led the first and third authors of this paper to

point out the problem, and propose the three-point solution.

This correction appeared in the journal version of Toussaint’s

argument [11].

Unfortunately, both arguments [10, 11] make an invalid

deduction for establishing the convexity of the limit poly-

gon P ∗: “we note that the limit polygon must be convex, for
otherwise, being a simple polygon, another flip would alter

its shape contradicting that it is the limit polygon.” For some

intuition on why this deduction is invalid, imagine that there

are two portions of the polygon that each inflate infinitely

often (hypothetically, of course). If we spend all of our time

flipping just one of those portions, the other portion never

gets flipped, so the limit is nonconvex.

3 Proof of the Erdős-Nagy Theorem

We now offer a short, elementary, and self-contained proof

of the Erdős-Nagy Theorem. After writing our proof, we

discovered that it uses essentially the same arguments as

Kazarinoff and Bing [8]. The main difference is that we en-

deavored to detail all important steps. As we shall see in

Section 3.1, this led to some small changes from [8] which

we feel enhance the clarity of the proof.

Theorem 1 A simple polygon P can undergo only a finite

number of pocket flips before being convexified.

Proof. Reasoning by contradiction, suppose that there were

an infinite sequence of polygons P k = 〈vk
0 , . . . , vk

n−1〉, in-
dexed by k, each P k derived from the previous P k−1 by

exactly one pocket flip (i.e., the sequence P k never becomes

constant), starting from P 0 = P . Let x be any point in-
side P . By definition of flipping, we have P 0 ⊂ P 1 ⊂ · · · ⊂
P k, so x is inside all descendants of P .
We first offer an outline of the proof:

1. The distance from each vertex vk
i to a fixed point x ∈ P

is a monotonically nondecreasing function of k.

2. The sequence P k approaches a limit polygon P ∗.

3. The angle θk
i at vertex vk

i converges.

4. Any vertex vk
i that moves infinitely many times con-

verges to a flat vertex v∗i .

5. The infinite sequence P k cannot exist.

Step 1. First we prove that the distance from x to any
particular vertex vi is monotonically nondecreasing with k.
Let d(x, vk

i ) be this distance at step k. If the (k + 1)st flip
does not move vi, then the distance remains the same. If vi

is flipped, then it flips over the pocket’s line of support, L,
which is the perpendicular bisector of vk

i vk+1
i ; see Figure 4.

Because L supports the hull of P k and x is inside P k, x is
on the same side of L as vk

i . Thus d(x, vk+1
i ) > d(x, vk

i ).
This establishes that the distance from x to each vertex is a
monotonically nondecreasing function of k.
Step 2. Next we argue that the sequence P k approaches a

limit polygon P ∗. The perimeter of P k is independent of k,
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x

Figure 4: The distance from x to vi increases by a flip.

for it is just the sum of the fixed edge lengths. The distance

from x to vi is bounded above by half the perimeter (because

the polygon has to wrap around both x and vi). Thus each

distance sequence d(x, vk
i ) has a limit. If we look at the dis-

tance sequences to vi from three noncollinear points x1, x2,

and x3 inside P , their limits determine three circles (centered
at x1, x2, and x3) whose unique intersection point yields a

limit position v∗i . Then P ∗ = 〈v∗0 , . . . , v∗n−1〉.
Step 3. Let θk

i ∈ [0, 2π) be the directed angle

∠vk
i−1v

k
i vk

i+1. We observe that θk
i ∈ [εi, 2π − εi], where

εi = min{θk
i , 2π − θk

i }. Indeed this relation holds for θ0
i ,

and for θk
i to get closer to 0 or 2π, d(vk

i−1, v
k
i+1) would have

to decrease, which is impossible by the distance argument

detailed in Step 1. Because θk
i stays away from 0 and 2π,

and the edge lengths of P k are fixed, and therefore cannot

approach zero, θk
i is a continuous function of the coordi-

nates of the three vertices in P k that define the angle. These

vertices converge, so θk
i must also converge, and its limit is

θ∗i = ∠v∗i−1v
∗
i v∗i+1.

Step 4. We now distinguish between flat and nonflat ver-

tices of P ∗. A flat vertex v∗i is one for which θ∗i = π. A
nonflat vertex has θ∗i &= π; it could be convex or reflex.
Consider a vertex for which vk

i moves an infinite number

of times. We show that this vertex converges to a flat vertex

v∗i of P
∗. Indeed, when vk

i moves as a result of a pocket flip,

θk+1
i = 2π − θk

i , as befalls any directed angle which is re-

flected. Consequently, there are infinitely many k for which
θk

i ≥ π, and infinitely many for which θk
i ≤ π. Thus the

limit θ∗i can only be π.
Step 5. All that remains is to force a contradiction by

showing that, once the nonflat vertices of P ∗ have been
reached, no further flips are possible. Here we use the convex

hull Ck of P k, and the hull C∗ of P ∗. Of course, P k ⊆ Ck

and P ∗ ⊆ C∗. We will obtain a contradiction to Fact A: for
any k, P k+1 &⊆ Ck. The reason this fact holds is that, at ev-

ery flip, the mirror image of the pocket area previously inside

Ck is outside Ck. (See, for example, Figure 1: P 1 &⊆ C0.)

Let k̄ be a value of k for which only flat vertices of P ∗

have yet to converge. P k̄ includes all nonflat vertices in their

final positions. Of course, P ∗ also includes all nonflat ver-
tices in their final positions. Now, because the flat vertices

of P ∗ cannot alter its hull beyond what the nonflat vertices
already contribute, we know that C∗ ⊆ C k̄. (C k̄ is conceiv-

ably a proper superset because of the vertices of P k that are

destined to be, but are not yet, flat vertices in P ∗.)

Now consider P k̄+1. It is contained in all subsequent

polygons and so in P ∗ ⊆ C∗. So we have reached Fact B:
P k̄+1 ⊆ C∗ ⊆ C k̄. Fact B contradicts Fact A, so there

cannot be an infinite sequence P k. "

3.1 Discussion

To close, we outline some of the main differences between

our proof and other arguments, particularly Kazarinoff and

Bing’s proof [8], which make exposition easier:

1. Whereas previous authors prove that P k becomes con-

stant after a finite number of steps, we prefer to reason

by contradiction, proving that an infinite number of flips

is impossible. This simplifies our reasoning. For exam-

ple, it allows us to conclude that P k+1 always contains

points not in Ck. Otherwise, this relation would only

hold until the polygon has convexified.

2. We use directed angles instead of interior angles. This

approach allows us to talk about limit angles without

worrying about whether the limit polygon is simple.

3. We show that nonflat vertices of P ∗ converge in finite
time. Kazarinoff and Bing [8] use vertices of C∗ in-
stead, and consider that all vertices of C∗ are nonflat.
Unfortunately, this view means that there can be fewer

vertices in C∗ than in P k, so we lose the correspon-

dence between vertices of C∗ and vertices of P k.
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