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Simple Characterization of Polygons Searchable by 1-Searcher
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Abstract

Suppose intruders are in a dark polygonal room and
they can move arbitrarily fast, trying to avoid detec-
tion. A boundary 1-searcher can move along the poly-
gon boundary, equipped with a flash light that she can
direct in any direction. A polygon is searchable if there
is a schedule for the searcher in order to detect the in-
truders no matter how they move. We identify three
simple forbidden patterns such that a given polygon is
searchable by a boundary 1-searcher if and only if it has
none of them. The concept of sweeping the visibility di-
agram greatly facilitates the proof.

1 Introduction

Suzuki and Yamashita defined a k-searcher equipped
with k flashlights who tries to detect intruders who can
move faster than the scanning speed of flashlights by
eventually illuminating them [7]. For recent results on
this topic, the reader is referred to [1, 2]. Two types of
visibility, grazing and non-grazing visibility, have been
defined in the literature [3, 7]. Two points a, b in a
simple polygon P are said to be mutually visible under
grazing (resp. non-grazing) visibility, if ab ⊆ P (resp.
ab ⊆ P \ ∂P ), where ∂P denotes the boundary or P .
With grazing visibility a 1-searcher need not stay on
the boundary all the time. In [4] and [8], respectively,
Park et al. and Tan worked on the characterization
of polygons that are searchable by a general 1-searcher
with grazing visibility. Tan tried to characterize the
polygons that are searchable by a boundary 1-searcher
[9]. Unfortunately, the proofs of correctness in these
papers are several pages long and difficult to follow, and
the main results in [8] and [9] contain errors.

The aim of this paper is to characterize the simple
polygons that are searchable by a boundary 1-searcher
with grazing visibility, in terms of a new set of three sim-
ple forbidden patterns. One of them is a special case of
the pattern given in [7]. The other two resemble those
in [9], but the errors have been corrected. Most impor-
tantly, we use a high-level tool, called the V-diagram
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developed in [2], to make the proof of correctness short
(less than 3/4 of a page, in contrast to more than 7
pages in [9]). Only minor modifications are necessary
to deal with non-grazing visibility.

2 Preliminaries

2.1 Notation

A (simple) polygon P consists of n (≥ 3) vertices and n
edges connecting adjacent vertices. The vertices preced-
ing and succeeding v in the clockwise order are denoted
by Pred(v) and Succ(v), respectively. A reflex vertex is
one whose interior angle is larger than 180o. For a re-
flex vertex v, let F (v) (resp. B(v)) denote the point on
∂P where the extension of the edge (Pred(v), v) (resp.
(Succ(v), v)) towards the interior of P exits P . Let
a, b ∈ ∂P . The clockwise section of ∂P from point a to
point b is denoted by ∂P [a, b]. If c ∈ ∂P [a, b] \ {a, b},
we write a ≺ c ≺ b. For a reflex vertex v, the section
∂P [v, B(v)] (resp. ∂P [F (v), v]) is called the clockwise
(cw) (resp. counterclockwise (ccw)) component associ-
ated with v.

We fix an arbitrary point on ∂P as the origin, and
measure all distances along ∂P clockwise from the ori-
gin. Let |∂P | denote the length of ∂P . For x ∈ IR (the
set of all real numbers), x represents the point on ∂P
that is at distance x − k|∂P | from the origin, where k
is an integer such that 0 ≤ x − k|∂P | < |∂P |. We thus
can consider x also as a point on ∂P . Note that there
are infinitely many real numbers x ∈ IR that represent
a single point on ∂P .

2.2 Visibility diagram and search path

Let x, y ∈ IR. The visibility space, denoted by V, con-
sists of the infinite area between and including the lines
y = x (start line S) and y = x − |∂P | (goal line G), as
shown in Fig. 1 [2].

The visibility diagram (V-diagram for short) for a
given polygon is drawn in V by shading some areas in it
gray as follows: point (x, y) ∈ V is gray if points x and
y are not mutually visible. We use x (y) to represent
the searcher (beam head) position. Note that in Fig. 1
point p is gray if and only if points p′ and p′′ are also
gray. Each reflex vertex r gives rise to two shaded ar-
eas in each section of length |∂P | in the V-diagram, as
shown in an idealized form in Fig. 2.
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Figure 1: Visibility space (π = |∂P |).
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Figure 2: SE and NW barriers due to reflex vertex r.

We call each such shape a barrier and a barrier whose
corner is touching line S or G is called a southeast (SE)
or northwest (NW) barrier, respectively [2]. See Fig. 3
for an example of a polygon and its V-diagram. (Imag-
ine that the blackened area is gray.) In a skeleton V-
diagram to be used in Sec. 4, each barrier is shrunk to a
horizontal and vertical line segments without losing the
topological information [2].
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Figure 3: An example polygon and its V-diagram.

A search path is a path from S to G that stays within
white areas, except that it may cross gray areas from
right to left, e.g., the curve from Start to Finish in Fig. 3.
Crossing a gray area from right to left reflects the move-

ment of the beam head from the current position to a
nearer reflex vertex as the beam is moved to the left
[2, 3].

Theorem 1 [2] A given polygon is searchable by a
boundary 1-searcher if and only if there is a search path
in its V-diagram. !

3 Searchability test by sweeping D-diagram

It is known that a polygon is searchable by a boundary
one-way ∞-searcher (who has 360o vision) if and only if
it is searchable by a boundary 1-searcher [6]. In terms of
Fig. 3, let us see how an∞-searcher can clear a polygon.
Suppose she is initially placed at an arbitrary position
c0 ∈ ∂P , where c0 ∈ IR. In the V-diagram, let H denote
the intersection of line y = c0 and the gray region. Then
H corresponds to the parts of ∂P that the ∞-searcher
cannot see from point c0.

The counter-clockwise movement of the ∞-searcher
can be simulated by the downward movement of the
line y = c, as c is decreased from c0. Let X be a maxi-
mal contiguous segment of H. Such an X may grow or
shrink as c is decreased. If X shrinks to the empty set,
it implies that part of the boundary has been cleared
by the ∞-searcher. Suppose a new section is added to
H as c is decreased. This is due to the fact that a
previously clear section has become invisible because it
became hidden behind some reflex corner. Therefore,
this new section is still clear, although it is currently
invisible.

Sweeping Rule: Draw a horizontal line y = c0 across
the V-diagram at an arbitrary position. If it doesn’t
cross the gray region, stop. Otherwise, let H denote
the intersection between y = c0 and the gray region.
Paint each point p in the gray region black, if p can be
reached from a point in H by a path that moves left,
right or downward without leaving the gray region. !

To visualize the sweeping operation, imagine that H
emits black fluid that flows downward using the gray
region of the V-diagram as a conduit. The fluid flows
left, right or downwards (but not upwards) constrained
by the conduit, making the parts of the conduit it comes
in contact black.

Suppose that the painting by the sweeping operation
terminates as in Fig. 3. We show later that whether it
terminates or not is independent of the choice of c0. A
search path can be constructed by following the bound-
ary of the painted areas, starting just below line y = c0

at the start line S. See the path from Start to Finish
shown in Fig. 3. The line y = c0 is considered black. It
follows from results in Sec. 5 of [6] that

Theorem 2 Polygon P is searchable by a boundary 1-
searcher if and only if the area of its V-diagram that is
painted black by the sweeping operation is finite. !
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4 Characterization

We first identify some patterns to be used to define our
three forbidden patterns. Two reflex vertices u and v
such that neither of them is in the cw component of the
other (i.e., B(u) ≺ v ≺ B(v) ≺ u holds) form a cw non-
dominating pair (NDPcw, for short). For example, see
u and v in Fig. 4(a). Similarly, two reflex vertices u and
v such that neither of them is in the ccw component
of the other (i.e., u ≺ F (v) ≺ v ≺ F (u) holds) form
a ccw non-dominating pair (NDPccw, for short). For
example, see u and v in Fig. 4(b). Finally, two reflex
vertices u and v such that u (v) is not in the ccw (cw)
component of v (u) (i.e., u ≺ {B(u), F (v)} ≺ v holds)
form a symmetric NDP.1 For example, see u and v in
Fig. 4(c). Vertices u and v need not be mutually visible
in Fig. 4.

Note that the barriers of an NDP intersect, as seen
in the skeleton V-diagrams in Fig. 5.

An NDPcw couple (2NDPcw for short) consists of
three reflex vertices, u, v, and w such that both {u, v}
and {u,w} form NDPcws. For example, see Fig. 4(a).
An NDPccw couple (2NDPccw for short) is shown in
Fig. 4(b). Pattern τ is obtained by combining an
NDPcw or NDPccw with a symmetric NDP that share
reflex vertex u. For example, see Fig. 4(c) & (d).
Their V-diagrams are shown in Fig. 5. We can see
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Figure 4: (a) 2NDPcw; (b) 2NDPccw; (c)(d) Pattern τ .
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Figure 5: Skeleton V-diagrams for: (a) 2NDPcw; (b)
2NDPccw; (c) Pattern τ in Fig. 4(c).

from Fig. 5(c) that any polygon that contains the τ
pattern is not searchable [7], since sweeping does not
terminate.2 In other words, pattern τ is forbidden.
Each edge in ∂P [v, w] in Fig. 4 (a) (resp. (b)) is said

1Also called a BF-pair [9].
2The V-diagram for Fig. 4(d) is “symmetric” to Fig. 5(c).

to be covered by the 2NDPcw (resp. 2NDPccw). If
u ≺ {B(u), F (v)} ≺ v (i.e., {u, v} form a symmetric
NDP), each edge in ∂P [v, u] is said to be covered by trap
(or deadlock) {u, v}. Refer to Fig. 5(c) to see where trap
{u, v} is located in the V-diagram.

We now introduce three conditions for a given poly-
gon P to be not searchable by a boundary 1-searcher.

• FP1: P contains pattern τ .
• FP2: Each edge of P is covered by a trap or

2NDPcw.
• FP3: Each edge of P is covered by a trap or

2NDPccw.

Note that pattern τ is a special case of the forbidden
pattern that was identified in [7] and cited in [9] as con-
dition C1. FP2 and FP3 are the corrected versions of
C2 and C3 in [9], respectively.3

Theorem 3 A given polygon P is searchable by a
boundary 1-searcher if and only if it satisfies none of
the three conditions FP1, FP2 or FP3.

Proof. Necessity: Let us apply the sweeping operation
to the V-diagram of polygon P satisfying any of these
conditions. If P contains the τ pattern, the black fluid
keeps flowing, i.e., the area that gets blackened will be
infinite. See Fig. 5(c). Similarly, if FP2 or FP3 holds,
then black fluid keeps flowing and is never blocked. The
necessity thus follows from Theorem 2.

Sufficiency: Assume that the given polygon P sat-
isfies none of the conditions, FP1, FP2, or FP3. We
want to show that the parts of the gray region that are
painted black are finite regardless of where we draw the
initial sweep line y = c0.

Let e be an edge of P that is covered by neither a
trap nor a 2NDPccw, and let d be an edge of P that is
covered by neither a trap nor a 2NDPcw. Such e and d
always exist by our assumption. In the V-diagram, both
e and d appear infinitely many times. We pay attention
to one of their instances such that d + |∂P | < e in the
V-diagram. We want to show that painting due to the
sweeping operation eventually stops, i.e., the blackened
sections of line y = c vanish as c is decreased. Consider
any SE barrier S′ that y = c encounters after sweeping
past e. We claim that the intersection of y = c and S′

does not get black when S′ is first encountered by the
line y = c as it moves down, and moreover, there is no
SE barrier S′′ lying below S′ that gets black when it is
first encountered. The reason is as follows: (i) If black
fluid is passed to S′ via an SE barrier that touches the

3The second condition for defining C2, for example, is v2 <
Forw(v1) < v3 in the original notation of [9], which resembles
v3 ≺ B(v1) ≺ v2 in our notation, but Forw() does not reflect
grazing visibility. It should be replaced by the condition that
v1 and v2 form an NDPcw, or v1 ≺ B(v1) ≺ v2. Similarly for
condition C3.
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start line S above S′, it implies e is covered by a trap,
a contradiction. (See Fig. 6(a).) (ii) Assume that black
fluid is passed to S′ via an NW barrier N which in-
tersects S′. Such an N cannot intersect a blackened SE
barrier above e, since e is not covered by any 2NDPccw.
(See Fig. 6(b).) (iii) So, suppose such an N intersects a
blackened NW barrier. If S′ intersects another SE bar-
rier S′′, as shown in Fig. 6 (c) and (d), it implies the
existence of the τ pattern, a contradiction.
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Figure 6: Illustration for the proof of Theorem 3.

It follows that there is no SE barrier lying below edge
e that becomes black at the point where it touches the
start line S. (A part of such an SE barrier may still
be blackened, as we see below.) Therefore, black fluid is
propagated from an NW barrier to another NW barrier.

Assume now that NW barrier N that touches line G
at a point below edge d is still blackened. There are
two possibilities. (a) Black fluid was passed to N from
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Figure 7: More illustration for the proof of Theorem 3.

an NW barrier lying above d, as in Fig. 7(a). This is
impossible, since this implies that d is covered by a trap.
(b) Black fluid was passed to N from an SE barrier,
which in turn was blackened via an NW barrier lying
above d. This is also impossible, since this implies that
d is covered by a 2NDPcw as in Fig. 7(b). It follows
that black fluid flow stops after edge d. !

5 Conclusion and Discussion

We identified three forbidden patterns and proved that
the polygon is searchable by a boundary 1-searcher if

and only if none of them is present. The proof of cor-
rectness has been shortened drastically, compared with
past work on similar topics, thanks to high-level con-
cepts of the V-diagram and the sweeping operation. In
[4], [5], [8], and [9], for example, sufficiency is proved by
showing that a particular searching algorithm is correct,
which is a tedious and error-prone process, as evidenced
by the length of their proofs and errors in [8] and [9].
Since our objective is a characterization, we could use
a higher-level, less problem-specific and more general
approach. The time complexity of the test implied by
Theorem 3 is O(n log n). We can deal with the general
(non-boundary) 1-searcher with grazing visibility [4], by
disallowing the movement of black fluid to the right in
the sweeping operation.4
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