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A Study of Conway’s Thrackle Conjecture

Wei Li ∗ Karen Daniels † Konstantin Rybnikov ‡

Abstract

A thrackle is a drawing of a simple graph on the plane,
where each edge is drawn as a smooth arc with distinct
end-points, and every two arcs have exactly one common
point, at which they have distinct tangents. Conway,
who coined the term thrackle, conjectured that there is
no thrackle with more edges than vertices – a question
which is still unsolved. A full thrackle is one with n
vertices and n edges, and it is called non-extensible, if
it cannot be a subthrackle of a counterexample to Con-
way’s conjecture on n vertices. We define the notion
of incidence type for a thrackle, which is the sequence
of degrees of all vertices in increasing order. We in-
troduce three reduction operations that can be applied
to full subthrackles of thrackles. These reductions en-
able us to rule out the extensibility of many infinite
series of incidence types of full thrackles. After defining
the 1-2-3 group, we reduce Conway’s conjecture to the
problem of proving that thrackles from the 1-2-3 group
are not extensible. Our result proves the hypothesis of
Wehner, who predicted that a potential counterexam-
ple to Conway’s conjecture would have certain graph-
theoretic properties, which he described in [4].

1 Introduction

A thrackle is a plane drawing of an undirected simple
graph (no loops and multiple edges) on n vertices by
edges which are smooth curves (called lines) between
vertices, with the condition that every two lines inter-
sect at exactly one point, and have distinct tangents
there [1]. More formally, we study the property of
a graph to have a thrackle drawing. For the sake of
brevity we do not make a notational distinction between
a graph with the thrackle property and a thrackle draw-
ing of this graph, referring to both of them as thrackle.

In the late 1960’s, John H. Conway conjectured that
the number of lines of a thrackle on n vertices cannot
exceed n, which is known as the Thrackle Conjec-
ture. After nearly forty years, despite many efforts by
researchers, Conway’s conjecture remains open. In [2],
Lovasz, Pach, and Szegedy showed that every thrackle
on n vertices has at most 2n− 3 lines. Five years later,
Cairns and Nikolayevsky proved that the upper bound
can be further lowered to 3

2 (n−1) [3]. Wehner predicted
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that a minimal counterexample to Conway’s thrackle
conjecture, if it exists, would contain two cycles of one
of the following types: Figure-8 (two cycles share a ver-
tex), Theta (two cycles share a path), Dumb-bell (two
cycles connected by a path) [4]. We prove that Wehner’s
prediction is correct.

2 Reduction Theory for Thrackles

2.1 Full thrackle and its incidence type

Definition 1 n-Cycle Thrackle: A thrackle that is
an n-cycle.

Note that the 4-cycle cannot be a thrackle, nor a sub-
graph of a thrackle, since any drawing of a 4-cycle has
two lines that do not intersect or intersect more than
once.

Definition 2 Full Thrackle: A thrackle with n ver-
tices and n lines.

It immediately follows that all the n-cycle thrackles
are full thrackles.

Lemma 1 For a full thrackle on n vertices, the sum-
mation of the degrees of all vertices is 2n.
Proof : It has n lines and each line starts and ends at
a vertex. !

Lemma 2 If a full thrackle is not a cycle thrackle, then
it has at least one vertex of degree 1.
Proof : By contradiction. Suppose there is no vertex of
degree 1. Then by Lemma 1, every vertex must be of
degree 2. This means we have a cycle thrackle, which is
a contradiction. !

Definition 3 Incidence Type of a Thrackle: The
incidence type of a thrackle on n vertices is a list of n
integers sorted in increasing order, where each integer
is the degree of a vertex.

For example, in Figure 1, the incidence type of the
3-Vertex thrackle and that of the 4-Vertex thrackle are
(2, 2, 2) and (1, 2, 2, 3), respectively.

2.2 Reductions of thrackles

Definition 4 α-Reduction: The removal of a vertex
of degree 1 from a thrackle. The line associated with
it is also removed. As a consequence, the degree of the
vertex affected is decreased by 1.
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Figure 1: Sample full thrackles and vertex degrees

Lemma 3 The α-reduction of a full thrackle on n ver-
tices is a full thrackle on n− 1 vertices.
Proof : This follows from Definition 4 immediately. !

Wehner introduced a replacement of a 3-path by a 5-
path method [4]. A 3-path or a 5-path refers to a graph
fragment in a cycle, e.g. any three consecutive lines in
a cycle will form a 3-path. We use Wehner’s method
reversely to remove two vertices in a cycle thrackle at
a time. Because of the nature of the cycle thrackles, a
graph fragment as in Figure 2 can always be found in a
cycle thrackle on five or more vertices.
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Figure 2: A cycle thrackle (..., 2, 2, 2, 2, ...) is β-reduced
to a cycle thrackle (..., 2, 2, ...) [4]. Solid lines represent
the five consecutive edges involved in the reduction, and
dashed lines are the rest of the cycle thrackle’s edges.

Definition 5 β-Reduction: The removal of two adja-
cent vertices and three lines associated with them from a
five-consecutive-edge subgraph in a cycle thrackle (ex-
cept the 6-cycle thrackle). In addition, the ‘dangling’
two vertices are connected with a new line (Figure 2).

Lemma 4 A β-reduction of an n-cycle thrackle (n ≥ 5
and n #= 6) is an (n− 2)-cycle thrackle.
Proof : This follows from Definition 5 immediately. !

Note that for an n-cycle thrackle on n ≥ 5 ver-
tices, there are n ways to perform β-reduction. Also,
β-reduction cannot be applied to the 6-cycle thrackle,
because the 4-cycle is not a thrackle. To reduce the
6-cycle thrackle, we need a different reduction method.
Before we show it, let us characterize the 6-cycle thrack-
les first. Wehner introduced notions called zero-, plus-
and minus-configurations [4], which are used to spec-
ify how the lines in a directed 4-path (1 → 2 → 3 →
4 → 5) intersect each other according to the order and

the orientation with which the fourth line crosses the
first and second line [4]. By using a computer pro-
gram, he showed that the 6-cycle thrackles have no
zero-configurations, but only plus-configurations. This
means that all 6-cycle thrackles are identical in terms
of the order and the orientation with which the six lines
intersect each other.

Wehner demonstrated how to transform the 3-cycle
thrackle into the 6-cycle thrackle [4]. Again, this can be
used reversely to transform the 6-cycle thrackle back to
the 3-cycle thrackle, as shown in Figure 3. This reduc-
tion proceeds as described below in Definition 6.
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Figure 3: The 6-cycle thrackle (2, 2, 2, 2, 2, 2) is γ-
reduced to the 3-cycle thrackle (2, 2, 2) [4].

Definition 6 γ-Reduction: The operation to reduce
the 6-cycle thrackle to the 3-cycle thrackle, which in-
volves the merge of three pairs of vertices and three pairs
of lines. The operation proceeds as follows. Firstly, pick
a vertex in the 6-cycle thrackle as the starting vertex,
and travel along the lines continuously in one direction
to visit each of the other vertices exactly once. Even-
tually, we will return to the vertex where we started.
While visiting, number each vertex in ascending order.
Secondly, for each vertex, identify its in-line and out-
line, where an in-line is the line we use to ‘enter’ the
vertex and an out-line is the one we use to ‘leave’ the
vertex. Thirdly, merge vertices #1 with #4, #2 with
#5, and #3 with #6. In addition, merge the two in-
lines and the two out-lines of each pair of vertices.

Lemma 5 The γ-reduction of the 6-cycle thrackle is
the 3-cycle thrackle.
Proof : As shown above, all 6-cycle thrackles are equiv-
alent in terms of the order and the orientation with
which the six lines intersect each other. Therefore, the
reduction can be applied to all 6-cycle thrackles. Fol-
lowing the operations in Definition 6, the result is the
3-cycle thrackle. !

Next, we analyze the relationship between full
thrackle incidence types.

2.3 Equivalence classes of full thrackles

Given a full thrackle on n vertices, there are only 2n
degrees (Lemma 1) which have to be distributed over
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n vertices with 1 ≤ degree(vi) ≤ n − 1 for each vertex
vi; this limits the possible incidence types. We divide
full thrackles into equivalence classes based solely on the
number of vertices (see Figure 1).

Theorem 1 A full thrackle incidence type can be re-
duced to at least one full thrackle incidence type in a
lower class, except for the incidence type (2, 2, 2).
Proof : By induction on number of vertices.
Induction basis: The 3-Vertex class. This class only
contains one full thrackle incidence type (2, 2, 2).
Induction hypothesis: Suppose that all full thrackle in-
cidence types that have no more than n−1 vertices can
be reduced (via α, β, or γ reduction) to one or more full
thrackle incidence types in a lower class.
Induction step: For an incidence type in n-Vertex class
(n > 3), if it is the incidence type of a full thrackle, then
the thrackle is either a cycle thrackle or it has at least
one vertex of degree 1 (Lemma 2).
Case 1: If it is an n-cycle thrackle, it can be β-reduced
(n ≥ 5 and n #= 6) or γ-reduced (n = 6). When it can
be β-reduced, the reduced thrackle has n − 2 vertices
(Lemma 4), and it is in the (n− 2)-Vertex class. When
it can be γ-reduced, the result is the 3-cycle thrackle (2,
2, 2) (Lemma 5), which is in the 3-Vertex class.
Case 2: If it is not a cycle thrackle, then it can be α-
reduced to a full thrackle on n− 1 vertices (Lemma 3),
which belongs to the (n− 1)-Vertex class. !

2.4 Extensibility of full thrackles

Reductions are used as a tool to show that a full thrackle
is not extensible if its reduced thrackle is not extensible.
The non-extensibility of a subset of full thrackles called
the 1-2-3 group is not proved using reductions. Hence,
we reduce Conway’s thrackle conjecture to the problem
of proving the non-extensibility of the 1-2-3 group.

Definition 7 Extensible Thrackle: A thrackle T is
called extensible if there exists a new line between a pair
of vertices of T such that the resulting geometric graph
is still a thrackle.

Lemma 6 The full thrackle (2, 2, 2) (the 3-cycle
thrackle) is not extensible.
Proof : Since the 3-cycle is a complete graph, no edges
can be added. !

Next, we introduce a subset of full thrackles called
the 1-2-3 group. The significance of this group is that,
unlike other full thrackles, a 1-2-3 group full thrackle
has a body and a tail, which will also be defined.

Definition 8 1-2-3 Group: The set of full thrackles
where the incidence type of each thrackle in the group
is in the form of (1, 2, ..., 2︸ ︷︷ ︸

n−2

, 3) (n ≥ 4).

Now we characterize the structure of a full thrackle
in the 1-2-3 group. We start with the simplest, which is
the full thrackle (1, 2, 2, 3) as shown in Figure 1. As we
can see, this full thrackle can be decomposed into two
parts: a 3-cycle thrackle, and a line between the vertices
of degree 1 and 3. We call this 3-cycle thrackle the body
and the line the tail of this 1-2-3 group thrackle. If the
tail contains just one vertex, it is said to have a length
of 1. Next, we use induction to show that every full
thrackle in the 1-2-3 group has a body and a tail.

Lemma 7 A full thrackle in the 1-2-3 group has a body
and a tail, where the body is a cycle thrackle and the
tail is a path between the vertices of degree 1 and 3.
Proof : By induction on number of vertices.
Induction basis: The simplest 1-2-3 group thrackle (1,
2, 2, 3), which has a body and a tail (attached to the
vertex of degree 3).
Induction hypothesis: Suppose for a 1-2-3 group
thrackle on n−1 vertices, it has a body and a tail which
is a path between the vertices of degree 1 and 3.
Induction step: For a 1-2-3 group thrackle T on n ver-
tices (n ≥ 5), its incidence type is (1, 2, ..., 2︸ ︷︷ ︸

n−2

, 3) (by De-

finition 8). The vertex of degree 1 must be connected
to either the vertex of degree 3 (case 1) or one of the
vertices of degree 2 (case 2).
In case 1, apply α-reduction to T ; the incidence type of
the resultant thrackle is (2, ..., 2︸ ︷︷ ︸

n−1

), which is an (n − 1)-

cycle thrackle. Thus, the body of T is an (n− 1)-cycle
thrackle and the tail of T has a length of 1. Note that
if the incidence type of T is (1, 2, 2, 2, 3) (when n =
5), the vertex of degree 1 must be connected to one of
the vertices of degree 2 (since otherwise, T will contain
a 4-cycle), which forces the α-reduction of T to fall into
case 2 instead of case 1.
In case 2, again, we can apply α-reduction to T ; the
incidence type of the result is (1, 2, ..., 2︸ ︷︷ ︸

n−3

, 3), which is a

1-2-3 group thrackle T ′ on n − 1 vertices. By the in-
duction hypothesis, T ′ has a body and a tail which is a
path between the vertices of degree 1 and 3. The line
removed from T by α-reduction was therefore attached
to the only vertex of degree 1 in T ′, which is the tail of
T ′. Thus, the body of T is the same as that of T ′, and
the tail of T is of length 1 more than that of T ′. !

For example, in Figure 1, there are two 1-2-3 group
thrackles in the 6-Vertex class. One has a 3-cycle
thrackle as its body and a tail of length 3, and the other
has a 5-cycle thrackle as its body and a tail of length 1.

Conjecture 1 1-2-3 non-extensibility conjecture:
A full thrackle in the 1-2-3 group is not extensible.
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Theorem 2 Let T be a full thrackle and let T ′ be a
full thrackle that T is reducible to. If the 1-2-3 non-
extensibility conjecture is true and T ′ is not extensible,
then T is not extensible.
Proof : By Lemma 3, 4 and 5, we know T ′ is a full
thrackle too. By contradiction, assume T is extensible
to a thrackle Y by adding a new line l. Applying to the
sub-thrackle T in Y the same reduction that is used to
reduce T to T ′, we can transform Y to Y ′. Compare Y ′

to T ′; the only difference between these two thrackles
is line l, which indicates that T ′ can be extended to Y ′,
contradicting the assumption that T ′ is not extensible.
Note that the above proof works only when the two ver-
tices associated with line l both still exist in Y ′ after the
reduction operation is applied to Y. What if one or both
of the vertices associated with line l are removed during
the reduction? There are three cases:
Case 1: The reduction applied to T is a γ-reduction.
In this case, T is the 6-cycle thrackle. Use the 6-cycle
thrackle and the numbering scheme shown in Figure 3.
Note that there are three groups of vertices. If line l
is between two vertices that are not in the same group,
the above proof by contradiction is still valid. If line l
is between two vertices that are in the same group, for
example, between #1 and #4, then vertices #1, #2, #3
and #4 will form a 4-cycle, which is a contradiction.
Case 2: The reduction applied to T is a β-reduction.
In this case, T is a cycle thrackle on ≥ 5 vertices. Be-
cause β-reduction removes two adjacent vertices from a
cycle thrackle, we can “carefully” pick for the reduction
from T to T ′ two adjacent vertices neither of which are
associated with line l. Since T has ≥ 5 vertices, such
two adjacent vertices are always available. Therefore,
the above proof by contradiction can still be applied.
Case 3: The reduction applied to T is an α-reduction.
For those full thrackles that have ≥ 3 vertices of degree
1, we choose the vertex that is not associated with line l
to apply α-reduction. Then, the above proof by contra-
diction is still valid. For those full thrackles that have
exactly two vertices of degree 1, if line l is connected to
only one of the two vertices, we can use the vertex that
is not associated with line l to generate a contradiction.
If line l is connected to both vertices of degree 1, we can
show that the result is equivalent to adding a line to a
1-2-3 group thrackle. If the 1-2-3 non-extensibility con-
jecture is true, the result cannot be a thrackle. For those
full thrackles that have exactly one vertex of degree 1,
by Lemma 1, their thrackle incidence types must be in
the form of (1, 2, ..., 2, 3). All these full thrackles form
precisely the 1-2-3 group. If the 1-2-3 non-extensibility
conjecture is true, then, this completes case 3. !

Corollary 1 Suppose the 1-2-3 non-extensibility con-
jecture is true, then if a full thrackle T1 can be reduced
to T2, T2 can be reduced to T3, . . . , Tn−1 can be reduced
to Tn, and Tn can be reduced to the full thrackle (2, 2,

2), then Ti is not extensible for all 1 ≤ i ≤ n.
Proof : Using Theorem 2 and Lemma 6, we know Tn is
not extensible. Applying Theorem 2 to Tn, shows Tn−1

is not extensible. Using Theorem 2 recursively, we know
Ti is not extensible for all 1 ≤ i ≤ n. !

By Lemma 7, a full thrackle T in the 1-2-3 group has
a body and a tail. Denote the vertex of degree 1 in T
(which is the tip of its tail) by v, and that of degree 3
by u. If such a thrackle is extensible, then there exists a
new line l that can be added. If l is added between two
vertices neither of which is v, then a reduction argument
leads to a contradiction (as shown in Theorem 2 above).
Difficulty arises when vertex v is involved, which leads
to the following three cases:
Case 1: Line l is between v and u.
Case 2: Line l is between v and one of the vertices in
the body (except u).
Case 3: Line l is between v and one of the vertices on
the tail (except u).
In any of the above cases, the result contains two cycles.
In Case 1, two cycles share one vertex in common. In
Case 2, they share a path in common. In Case 3, two cy-
cles are connected by a single path. Thus, we have just
proved Wehner’s prediction of what a minimal coun-
terexample to Conway’s thrackle conjecture may look
like [4]. If the 1-2-3 non-extensibility conjecture is true,
then none of these three cases exist.

Corollary 1 tells us that if the 1-2-3 non-extensibility
conjecture is true, then in the full thrackle incidence
type hierarchy, every incidence type is not extensible,
because, by Theorem 1, from any incidence type, there
is a reduction sequence which leads to the incidence type
(2, 2, 2). Thus, we can state the following theorem:

Theorem 3 If the 1-2-3 non-extensibility conjecture is
true, then any full thrackle is not extensible and Con-
way’s conjecture is true.
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