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Abstract

We propose four simple algorithms for routing on
planar graphs using virtual coordinates. These algo-
rithms are superior to existing algorithms in that
they are oblivious, work also for non-triangular
graphs, and their virtual coordinates are easy to
construct.

1 Introduction

Local geographic routing methods for networks use
only information about the location of the current
node, its neighbors and the destination to route a
packet. The main challenge is to guarantee that the
packet will actually arrive at the intended destination.
If this is guaranteed — we say that the algorithm de-
livers. A routing algorithm is called oblivious if it
does not require any extra information to be added to
the routed packet, apart from information on the des-
tination node. It is called competitive if the ratio of
the routing path length (in hops) to the shortest path
between the source and the destination is bounded by
some constant. Bose et al. [5] proved that there is no
oblivious and competitive geographic routing algo-
rithm which delivers for a// convex planar tilings.

An alternative to geographic routing is to assign
carefully chosen virtual coordinates to the nodes
[4,14], and apply routing methods based on these
new “locations”.

In this paper we provide four constructions of virtual
coordinates and accompanying oblivious routing
algorithms. For the sake of brevity, we omit the (non-
trivial) proofs of the theorems that the routing algo-
rithms deliver. These, involving extensive use of
duality and convex embeddings, will appear in a fu-
ture full-length version of this paper. The algorithms
may be applied to any 3-connected planar network
connectivity. We experimentally show that the aver-
age performance of these algorithms is comparable to
existing alternatives.

2 Previous Work

Important algorithms for oblivious geographic rout-
ing on planar graphs, with an analysis of their per-
formance, were provided by Bose and Morin and co-
workers [5,6,7]. The main difference between the
algorithms is the forwarding rule. Among a node’s
neighbors there is always one (D) which is closest in
Euclidean distance to the destination, one which is
closest in clockwise angular distance to the line con-
necting the node to the destination (CW), and one
which is closest in counterclockwise angular distance
to the line connecting the node to the destination
(CCW). Greedy routing forwards a packet from a
node to D. Compass routing forwards to the closest
(in angular distance) among CW and CCW. Greedy
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compass routing forwards to the closest in Euclidean
distance to the destination among CW and CCW.
Random compass routing forwards to a random
choice among CW and CCW.

Bose et al. [5,6] show that all these routing algo-
rithms work on Delaunay triangulations. Greedy
compass routing works on arbitrary triangulations,
and compass routing works on a subclass of triangu-
lations known as regular triangulations (these are
similar to the rubber band embeddings defined in
Section 3.1.1). None of the deterministic algorithms
work for non-triangular planar tilings. This is a se-
vere limitation, as it is not always possible to find a
triangulation subgraph of an arbitrary graph. For ex-
ample, if the graph is the communication graph of a
sensor network, there may be regions called "gaps",
or "communication voids", which do not contain
sensors at all. Such gaps are usually also the cause of
failure for greedy routing algorithms, as the algo-
rithm may get stuck there in a local minimum. Ran-
dom compass routing works on any convex planar
tiling, but due to its indeterminism, generates quite
long paths in practice.

A common remedy to a routing algorithm getting
stuck in a local minimum on a convex planar tiling is
to continue from that point with so-called face rout-
ing. Examples of these are GFG [3], GPSR [12], and
GOAFR+ [11], but they are not oblivious.

Virtual coordinates for routing were first introduced
by Morin [4]. Papadimitriou and Ratajczak [13] con-
jecture that every 3-connected planar graph has an
embedding in the plane such that greedy routing
works. They propose an embedding of such graphs as
a special convex 3D polyhedron edges-tangent to a
sphere [16], and a routing algorithm that exploits
angles between vectors. While ingenious, these em-
beddings are quite difficult to construct for large
graphs [2], thus have limited practical value.

3 The Routing Algorithms

We describe now our virtual coordinate constructions
and accompanying routing algorithms. All the con-
structions apply to 3-connected planar graphs.

Definitions:

Let G(V,E) be a 3-connected planar graph, with an
outer face B. An embedding of G in R’ is a function
f+ V -> R? that assigns to each vertex of G coordi-
nates in R’. The edges of G are embedded as straight
lines between neighboring vertices. A planar embed-
ding is an embedding in R’, such that the faces of G
occupy disjoint regions of the plane. A convex tiling
is a planar embedding whose faces are all convex17

An oblivious routing scheme on an embedding is a
function R:VxV—V. Given two vertices (v,f) the
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function designates one of v's neighbors, u, to be the
next vertex. This choice depends only on the coordi-
nates of v — the current vertex, ¢+ — the destination
vertex, and the neighbors of v. An oblivious routing
path from s to ¢ is generated by applying R succes-
sively, with its first argument starting at s, continuing
with the vertex specified by R. Its second argument is
always z. We say that a routing scheme works for an
embedding, if for any two vertices (s,7) in the em-
bedding there exists a finite oblivious routing path
from s to ¢ generated by the routing scheme.

In the next subsections, we describe four oblivious
routing schemes that work on wide sub-classes of
convex tilings, using virtual coordinates which are
relatively easy to construct.

3.1 Left Compass Routing
3.1.1 The Virtual Coordinates

An easy way to generate a convex tiling from a 3-
connected planar graph is by using the well-known
convex-combination embedding of Tutte [17]. A face
is first identified as the outer face, or boundary, of
the graph. The boundary vertices are constrained to
form a strictly convex polygon, and the location of
each interior vertex to be some strictly convex com-
bination of the locations of all its neighbors. The
latter involves solving a linear set of equations. A
rubber band embedding is such an embedding, where
the convex combination weights are edge-symmetric,
i.e. w; - w;. A rubber band embedding has a physical
interpretation as the equilibrium of a constrained
spring system with zero lengths at rest. Note that
rubber band embeddings are a strict subset of con-
vex tilings. In practice we use the largest face in the
graph as the boundary, embedded to equally spaced
points along the unit circle, and unit weights.

3.1.2 The Routing Algorithm

For the routing algorithm we use the Left Compass
algorithm [4], which always forwards the packet to
the CCW vertex. Morin [4] showed that Left Com-
pass delivers on a special embedding of a class of
graphs that includes 3-connected planar graphs.
However, their embedding is more complex than the
rubber band embedding, and is harder to construct
locally.

Theorem 1: Left compass routing works for any
rubber band embedding of a 3-connected planar
graph. ¢

3.2 Visibility Dual Face Walking
3.2.1 The Virtual Coordinates

While extremely simple to implement, left compass
routing sometimes generates long routing paths
winding through the graph. It seems more natural
that the path follows the edges closest to a straight
line in the plane between the source and destination.
Outénext routing algorithm is based on this idea, but
is a little more complicated. The virtual “coordi-

nates” of the graph vertices are derived from the
faces of a rubber band embedding of the dual graph.

It is not obvious which face of the dual should be
considered the outer face, and, even if it was obvi-
ous, the dual mapping causes a primal vertex to van-
ish as it is mapped to this outer face. To overcome
this difficulty, we stellate the outer primal face by
augmenting the primal with a dummy vertex con-
nected it to all the vertices on this face. Then we
compute the combinatorial dual of the stellated graph
and identify its boundary vertices as the primal faces
incident on the dummy vertex. Thus, the primal ver-
tex that corresponds to the outer face of the dual (and
vanishes) is the dummy vertex.

After creating a rubber band embedding of the dual,
each primal vertex stores the locations of the vertices
dual to its incident faces. This allows the primal
graph to simulate a face walking algorithm on the
dual graph.

3.2.2 The Routing Algorithm

We use the visibility face walking algorithm [8] on
the dual graph. This was originally designed as a
point location algorithm on a convex planar tiling.
When at a face f, visibility walk proceeds to a
neighboring face g if the line supporting the common
edge between f'and g separates the destination ¢ from
/- We will run a visibility face walking algorithm on
the dual graph, by simulating it on the vertices of the
primal graph. Given a destination vertex ¢, our dual
destination point ¢’ will be the barycenter of the face
dual to #. When at vertex v, we forward to neighbor-
ing vertex u if the edge e’ dual to the primal edge e =
(v,u) separates the destination ¢' from the face dual to
v. Note that e’ is an edge of this dual face, and the
computation may be facilitated by examining its
barycenter.

Theorem 2: Visibility dual face walking works for
any rubber band embedding of the dual of a 3-
connected planar graph. ¢

3.3 Three Dimensional Hill Climbing
3.3.1 The Virtual Coordinates

Steinitz’s theorem states that every 3-connected pla-
nar graph has an embedding as a strictly convex
polyhedron in R®. This embedding is not unique, and
a number of such constructions exist. The simplest is
probably the Maxwell-Cremona /ifting of the Tutte
rubber band embedding with a triangular boundary
[15]. Thus an arbitrary triangle is chosen to be this
boundary. In the rare case that the 3-connected planar
graph does not contain a triangle that may be used as
the boundary, the dual graph, its lifting and polar
dual may be used instead, since either the primal or
its dual must contain a triangle [15].

For the virtual coordinates will use the 3D coordi-
nates of the vertices of this polyhedron, with the fol-
lowing twist: the coordinates of the target vertex will
be the unit normal of a supporting plane of that
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vertex — a plane through the vertex such that the
polyhedron is entirely on one side of it. The exis-
tence of such a plane is guaranteed by the convexity
of the polyhedron, and may be computed by linear
programming at each node, involving just the coor-
dinates of the node and its neighbors.

3.3.2 The Routing Algorithm

At vertex v, we forward the packet to the neighbor of
v which is closest to the destination #'s supporting
plane. This is implemented by forwarding to the
neighbor u such that
u =argmax(n, -u)
ueN(v)

where n, is the unit normal of that plane. The algo-
rithm delivers since, as Papadimitriou and Ratajczak
[13] observed, in a strictly convex polyhedron every
vertex has a neighbor which is strictly closer to an-
other vertex' supporting plane. Indeed, for the special
case of a polyhedron which is edge tangent to a
sphere, our algorithm is equivalent to Papadimitriou
and Ratajczak’s polyhedral routing algorithm.

Theorem 3: Three dimensional hill climbing works
for any 3D lifting of a 3-connected planar graph. ¢

3.4 Greedy Power Routing

Our final algorithm has more theoretical than practi-
cal value. Although it is well known [6] that greedy
routing works for Delaunay triangulations, there is
no known generalization to non-triangulated planar
graphs. Moreover, not every planar graph whose
faces are all triangles is Delaunay-realizable [9]. We
present a generalization of greedy routing to general
3-connected planar graphs. The embedding is planar,
but the routing requires the use of an extra scalar
value for each vertex.

3.4.1 The Virtual Coordinates

An orthogonal dual of a convex tiling is a planar
embedding of the graph dual to the tiling, such that
primal-dual edge pairs lie on orthogonal lines. We
consider the setting in which the faces dual to bound-
ary vertices are unbounded, and the vertex dual to the
outer face is not embedded.

For a 3-connected planar graph, there may exist
many orthogonal primal/dual embedding pairs. De-
fine a contained embedding of a 3-connected planar
graph to be an orthogonal primal/dual embedding
pair, such that each primal vertex is strictly contained
in its dual face.

A power diagram on a set of sites v ,.., v, having
coordinates (x;,y;) in the plane and associated power
radii r;, is the partition of the plane to convex regions
such that the all points x in the region R; associated
with v; are closer to v; than to any other site using the
distance function pow(x,v;) = d°(x,v;) — 77, where
d(x,v;) is the Euclidean distance between x and v;, and
r; is the power radius associated with v;. The famous
Voronoi diagram is the special case when all r; are

identical (not necessarily zero). Power diagrams are
sometimes called weighted Voronoi diagrams.

Lemma 1: Any 3-connected planar graph and its
dual have a contained embedding.

Proof: Follows from the “kissing disks” embedding
theorem of Koebe and Andre'ev [16], which is by
definition a contained embedding. ¢

Note that a contained embedding is not necessarily
unique. For example, if the graph happens to be a
Delaunay-realizable triangulation, then any Delaunay
realization and its dual Voronoi diagram are also a
contained embedding.

A theorem of Aurenhammer [1] states that all or-
thogonal duals are power diagrams of the primal ver-
tices (with some radii). In the special case of the
Koebe-Andreev contained embedding, it is easy to
show that the radii of the orthogonal dual power dia-
gram are also the radii of the inscribed circles of the
dual faces (whose centers are at the primal vertices).

For a given 3-connected planar graph, the virtual
coordinates that we propose are the locations of the
primal vertices in a contained embedding, and the
accompanying power radii of the dual.

3.4.2 The Routing Algorithm

The routing algorithm is greedy using the pow dis-
tance function associated with the power radii.
Namely, to route to destination ¢ when at vertex v,
forward to the neighboring vertex u such that

u = argmin pow(t,u)
ueN(v)

Theorem 4: Greedy power routing works for any
contained embedding of a 3-connected planar graph,
and its associated power radii. ¢

4 Experimental Validation

The competitiveness of routing algorithms is an im-
portant feature. Although none of our algorithms is
competitive, it is still useful to know how well they
perform in practice, namely, what the average rout-
ing path lengths are. In our experiments, we used
uniformly-distributed random 3-connected planar
graphs [10], and applied the methods described in
this paper to them. Following Bose et al [6], we de-
fine the competitive ratio for a pair of vertices (s,?) to
be routing path length(s,t)/shortest path length(s,?t).
Path lengths are measured in hops (and not in
Euclidean distance). For each graph and each routing
algorithm we computed the average competitive ratio
for all vertex pairs in the graph. We repeated this
experiment with 10 graphs per graph size (averaging
over all 10 graphs), and compared the results with
those of state-of-the-art algorithms which are guaran-
teed to deliver on general convex tilings: GPSR
(which is very similar to the GFG algorithm), ran-
dom compass and polyhedral routing. GPSR and
random compass were run on the simplest pospigle
rubber band embeddings of the graphs — where the
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largest face is embedded as a circular boundary and
all weights are unit.

Figure 1 shows our results. As expected, random
compass performs significantly worse than the oth-
ers, whose average competitive ratios are below 2.0.
The two 3D algorithms are the most efficient and
perform comparably. Construction of the lifting for
hill climbing required dealing with some minor nu-
merical precision problems, as the dihedral angle
between adjacent faces is sometimes quite small.
Other numerical problems were also encountered in
the routine [2] for computing the edge-tangent poly-
hedron required for polyhedral routing. Of the 2D
algorithms, our power routing seems to be the most
efficient, but GPSR is only slightly worse. The per-
formance of these algorithms is closely followed by
that of dual face walking and left compass routing.
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Figure 1: Mean competitive ratios for some routing algorithms.

5 Conclusions and Future Work

Although many local geographic routing algorithms
exist, there is no deterministic oblivious algorithm
which guarantees delivery on a general 3-connected
plane graph. Thus the only hope is that a specific
embedding may be computed, which does work. We
proposed four such embeddings and associated rout-
ing algorithms, and showed that their performance is
good in practice, and one of them is superior to all
the existing ones. In real-world applications the vir-
tual coordinates must be constructed in a distributed
manner. Our first three constructions are simple
enough to facilitate this.

Choice of a routing algorithm involves a perform-
ance/implementation tradeoff. Left compass routing
is extremely simple to implement, but it may gener-
ate long routing paths. Dual face routing generates
better paths, but it requires a more sophisticated con-
struction of the virtual coordinates. Hill climbing
requires 3-dimensional virtual coordinates, but these
coordinates are significantly easier to construct than
those of polyhedral routing. Moreover, this algorithm
has an additional advantage over our first two algo-
rithms - it can be applied to a non-planar graph once
thg,virtual coordinates of a planar subgraph are
found, without compromising the guaranteed deliv-

ery property.
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Despite its good performance, greedy power routing
is the least practical algorithm among those we pro-
pose here, because of the complicated construction
involved. But it is not the least interesting. The only
method at our disposal today to generate a contained
embedding of a 3-connected planar graph is the im-
plementation of Bobenko [2] of the “kissing disk”
embeddings [16], which is much stronger than what
we need. If an easier way of generating a contained
embedding is found, this algorithm may be of practi-
cal value, beyond its theoretical value as a generali-
zation of greedy routing on Delaunay triangulations.
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