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On the Smallest Enclosing Information Disk∗

Frank Nielsen† Richard Nock‡

Abstract

In this paper, we present a generalization of the small-
est enclosing disk problem for point sets lying in
Information-geometric spaces. Given a set of vector
points equipped with a (dis)similarity measure that is
not necessarily the Euclidean distance, we investigate
the problem of finding its center defined as the point
minimizing the maximum distance to the point set. For
a broad class of distortion measures known as Bregman
divergences, these centers are unique and can further
be computed efficiently in linear-time by extending the
randomized Euclidean algorithm of Welzl [7]. As an
application, we show how to solve a statistical model
estimation problem by computing the center of a finite
set of 1D Normal distributions.

1 Introduction

Given a set S = {s1, ..., sn} of n vector points, we
are interested in computing a simplified description,
which is a good fit to S, called its center c∗. Two
optimization criteria are usually considered for find-
ing c∗: (MinAvg) minimizes the average distortion
c∗ = argminc

∑
i d(c, si), or (MinMax) minimizes the

maximal distortion c∗ = argminc maxi d(c, si). These
problems have been widely studied in computational ge-
ometry (1-center problem), computational statistics (1-
point estimator), and machine learning (1-class classifi-
cation). It is known that for squared Euclidean distance
(L2

2) the centroid is the center of MinAvg(L2
2) [2]. For

the Euclidean distance L2, the circumcenter of S is the
center of MinMax(L2), and the Fermat-Weber point
is the center of MinAvg(L2). Historically, the small-
est enclosing disk problem dates back to 1857 when
Sylvester first asked for the smallest disk enclosing n
points on the Euclidean plane E2, a metric space. Al-
though O(n log n)-time algorithms were designed for the
planar case in the early 1970s, the problem complexity
was only settled in 1984 with Megiddo’s first linear time
algorithm for solving linear programs. Unfortunately,
Megiddo’s pruning algorithm exhibits a large constant
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hidden in the big-Oh notation and performs poorly in
practice. Welzl [7] developed a simple and elegant re-
cursive Õ(n) randomized algorithm that is often used
in practice. On the Euclidean plane E2, the distance
measure d(p,q) = ||p − q|| defines a metric space (the
L2 norm). In a metric space, the distance function has
important properties: (1) d(p,q) ≥ 0 with equality if
and only if p = q, (2) symmetry d(p,q) = d(q,p), and
(3) triangle inequality: d(p, r) ≤ d(p,q) + d(q, r). A
disk B = Disk(c, r) of center c and radius r is defined
as the set of points that are within distance r from the
center: B = {x ∈ E2 | d(c,x) ≤ r}. Euclidean disks are
invariant by translation: B + t = Disk(c + t, r).

In computational machine learning, it is seldomly the
case that the L2 geometric distance reflects the distor-
tion between two d-dimensional data elements (vector
points are information containers). A general distor-
tion framework, known as Bregman divergences [2, 6],
is rather used. Informally speaking, a Bregman diver-
gence DF is the tail of a Taylor expansion of a strictly
convex and differentiable function F :

DF (x,y) = F (x) − F (y) − 〈x − y,∇F (y)〉,where
∇F denotes the gradient operator, and 〈·, ·〉 the inner
product (dot product). Bregman divergences are pa-
rameterized families of distortions defined on a convex
domain X ⊆ Rd for strictly convex and differentiable
functions F on int(X ) (see Figure 1 and Table 1). For
Bregman divergences, there exist two types of Breg-
man balls depending on the argument position of the
center [6]: Bc,r = {x ∈ X : DF (c,x) ≤ r} and
B′

c,r = {x ∈ X : DF (x, c) ≤ r} , that are not nec-
essarily convex nor identical. We can further define a
third-type of disk by taking the symmetric divergence

xy

F (·)

DF (x,y)

〈x − y,∇F (y)〉

Figure 1: Visualizing convex and differentiable function
F and its corresponding Bregman divergence DF (·, ·).
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D′
F (x, c) = D′

F (c,x) = DF (x,c)+DF (c,x)
2 . Note that

Bregman disks are not invariant by translation. For the
remainder of this paper, we consider only the first-type
of disks Bc,r.

We have shown in [6] that Bregman smallest enclosing
balls are unique, thus generalizing the former results of
Welzl for balls/ellipsoids [7]. We denote by B∗S the
smallest enclosing ball of set S. Moreover, let c∗(S)
and r∗(S) denote the center and radius of the smallest
enclosing ball B∗S of S.

Domain F (s) DF (c, s)

Quadratic loss L2
2 norm

R
d d

j=1 s2
j

d
j=1 (cj − sj)

2

(R+,∗)d Shannon entropy (I/KL)-divergence
d-simplex

d
j=1 sj log sj − sj

d
j=1cj log(cj/sj) − cj + sj

Burg entropy Itakura-Saito divergence
(R+,∗)d − d

j=1 log sj
d
j=1 (cj/sj) − log(cj/sj) − 1

Table 1: Most common Bregman divergences DF .

2 LP-type and Basis Procedures

The randomized linear-time algorithm of Welzl [7] for
finding the smallest enclosing ellipsoid is a particular
case of a broader class of algorithms that solve linear
programming-type (LP-type) problems [3]. Finding the
smallest Bregman ball is LP-type because it satisfies the
two sufficient and necessary LP-type axioms [3]:

Monotonicity. For any F and G such that F ⊆ G ⊆
X , r∗(F) ≤ r∗(G).

Locality. For any F and G such that F ⊆ G ⊆ X with
r∗(F) = r∗(G), and any point p ∈ X ,

r∗(G) < r∗(G ∪ {p}) → r∗(F) < r∗(F ∪ {p}).

The latter locality property holds because of the
uniqueness of Bregman balls. Thus, we are able to use
Welzl’s abstract randomized recursive algorithm [7]:
MiniInfoBall(S = {p1, ...,pn},B)
1. ! Initially B = ∅. Returns B∗ = (c∗, r∗) "
2. if |S ∪ B| ≤ 3
3. then return B = SolveInfoBasis(S ∪ B)
4. else
5. Select at random p ∈ S
6. B∗ = MiniInfoBall(S\{p},B)
7. if p &∈ B∗

8. then ! Then add p to the basis "
9. return MiniInfoBall(S\{p},B ∪ {p})

We still need to solve the basis problem: solving the
smallest enclosing disk of (at most) three points B. We
do this by computing all enclosing disks of B generated
by either two or three points of B on their boundaries,

Figure 2: Three Itakura-Saito bisectors: first-type
(red), second-type (blue) and third-type (green). The
first-type Bregman bisector is always a linear separator.

and choose the disk that has minimum radius (ie., min-
imum divergence). For computing exactly the center of
a Bregman disk passing through three points, we first
define the Bregman bisectors. Let Bisector(p,q) = {c ∈
X | DF (c,p) = DF (c,q)} be the Bregman bisector of
locii p and q. That is, Bisector(p,q) represents the set
of points that have the same divergence to p and q. We
observe the following lemma:

Lemma 1 The first-type Bregman bisector is linear.
(But not necessarily the second- nor the third-type, as
depicted in Figure 2.)

Proof. We write DF (c,p) = DF (c,q). That is,

F (c) − F (p) − 〈(c − p),∇F (p)〉 =
F (c) − F (q) − 〈(c − q),∇F (q)〉,

〈c, (∇F (p) − ∇F (q))〉 +
F (p) − F (q) + 〈q,∇F (q)〉 − 〈p,∇F (p)〉 = 0.

This is a linear equation in c. Thus, the bisector
Bisector(p,q) = {x | 〈x,dpq〉 + kpq = 0} (with dpq =
∇F (p) − ∇F (q) a vector and kpq = F (p) − F (q) +
〈q,∇F (q)〉 − 〈p,∇F (p)〉 a constant) is geometrically
an hyperplane (eg., a line for 2D vectors). #

It follows that for any Bregman divergence, the exact
circumcenter of the Bregman disk passing through three
points p1,p2 and p3 can be computed exactly as the in-
tersection point of any two bisectors. We get: c∗ =
l12 × l13 = l12 × l23 = l13 × l23, where lij is the projective
point associated to the linear bisector Bisector(pi,pj)
and × denote the vector cross-product operation (see [4]
for further explainations/source codes). That is, the
“circumcenter” of three points is the Bregman trisector,
as shown in Figure 3. Observe that although we com-
pute the circumcenter exactly, the border of the Breg-
man ball is rasterized approximately (require to solve
a convex optimization). To solve for the exact circum-
center c∗ of the smallest Bregman disk passing through
two points p and q, we consider c∗ ∈ Bisector(p,q) and
minimize DF (c,p). Another approach is to perform a
logarithmic search on parameter λ ∈ [0, 1] used to de-
scribe a point rλ = ∇F

−1((1 − λ)∇F (p) + λ∇F (q))
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(a) (b) (b)

Figure 3: Examples of smallest enclosing disks for various Bregman divergences: (a) Kullback-Leibler, (b) Itakura-
Saito and (c) Logistic loss. See applet at http://www.csl.sony.co.jp/person/nielsen/BregmanBall/MINIBALL/

on the geodesic of pq, where ∇F
−1 denotes the re-

ciprocal gradient. For Mahalanobis distance (including
squared Euclidean distance), c∗ is simply the intersec-
tion of the bisector with the line passing through p and
q (for L2, it is simply p+q

2 ). This is not always the
case for Bregman divergences (eg., Kullback-Leibler or
Itakura-Saito divergences). However, for any Bregman
divergence, we get a convex optimization problem that
can be solved approximately within b bits (machine pre-
cision) in O(b) time. In fact, we do not need to compute
the circumcenter of the disk, but rather implicitly rep-
resent and manipulate the disk using its combinatorial
basis (two or three points). To decide whether a point
p falls inside, on, or outside the Bregman disk defined
by two points p1 and p2, We compute the exact ra-
dius of the disk Disk(p1,p2,p) and check whether that
radius is strictly larger than the radius of the small-
est disk Disk(p1,p2) or not. This becomes a decision
problem (better known as the InSphere predicate) that
can be solved only within some prescribed precision (bit
complexity model). (Note that Bregman co-circularities
can be detected exactly by checking the centers of any
3-point subsets.)

3 An Application Example of MiniInfoBall

Let N denote the statistical exponential family of uni-
variate Normal distributions.1 A Normal probabil-
ity distribution N(µ,σ) ∈ N with mean µ and vari-
ance σ2 (σ is called the standard deviation) has a cor-
responding probability density function2 N(x|µ,σ) =

1
σ
√

2π
exp(− (x−µ)2

2σ2 ) (with ∀x N(x|µ,σ) ≥ 0 and∫ ∞
−∞ N(x|µ,σ)dx = 1). Let S = {N1, ..., Nn} be a set of

n univariate Normal distributions Ni = N(µi,σi). Es-
timating the population center of S amounts to finding
the Normal distribution N∗(µ∗,σ∗) ∈ N such that the

1Also commonly called Gaussian distributions.
2pdf for short, the relative frequency function.

maximum divergence of N∗ to any Ni ∈ S is minimized.
That is, the population mean µ∗ and population vari-
ance σ∗2 defines the center of the smallest enclosing disk
of the 2D set P = {p1, ...,pn} with pi = (µi,σi) for all
i ∈ {1, ..., n}. This statistical model selection is useful
for person/machine identification or change detection
algorithms that require to take into account variability
of distributions, as depicted in Figure 5. We need to
choose an appropriate divergence DF for Normal dis-
tributions. The entropy H(f) of a pdf f is defined
as H(f) =

∫
x f(x) log2

1
f(x) , and mathematically rep-

resents the amount of information in bits.3 The relative
entropy KL, also known as the Kullback-Leibler diver-
gence [1], measures the dissimilarity of two probability
distributions f and g: KL(f, g) =

∫
x f(x) log2

f(x)
g(x) . The

relative entropy corresponds to the average number of
additional bits required for coding f when using an op-
timal code for g. The measure is therefore not symmet-
ric nor does the triangle inequality hold. Let H(f, g)
denote the cross-entropy −

∫
x f(x) log g(x). Then, we

have KL(f, g) = H(f, g) − H(f) (entropy loss). It
turns out that the relative entropy KL is a good distor-
tion measure of distributions, and belongs to the fam-
ily of Bregman divergences. In fact, we can rewrite
the pdf of the Normal distribution as N(x|µ,σ) =

1√
2πZ(θ)

exp{〈θ, f(x)〉}, with Z(θ) = σ exp{ µ2

2σ2 } =√
− 1

2θ1
exp{− θ2

2
4θ1

}, f(x) = [x2 x]T is called the suffi-
cient statistics and θ = [− 1

2σ2
µ
σ2 ]T is called the natural

parameters of the statistical exponential family of Nor-
mal distributions. Exponential families contain many
famous distributions such as Poisson, Gaussian and
multinomial distributions, and have been thoroughly

3For example, assume that f is the frequency of letter oc-
curences in a given text, then H(f) = x f(x) log2

1
f(x) provides

a theoretical lower bound on the minimum number of bits required
to encode each letter (see Huffman or Ziv-Lempel codings). For
natural logarithm (base e, H(f) = x f(x) log 1

f(x) ), the unit of

information of the Shannon entropy is defined as a nat.
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Figure 4: “Normal” disk passing through exactly three
Normal points in the coordinate system (µ2 + σ2, µ).
Thick Gaussian corresponds to the MinMax center.
Thick dashed Gaussian depicts the MinAvg center.

studied in Information Geometry [1]. The Kullback-
Leibler divergence between any two models p and q
of an exponential family with respective parameters θp

and θq is obtained from the Bregman divergence by
choosing F (θ) = − log Z(θ). This yields KL(θp||θq) =
DF (θp,θq) = 〈(θp − θq),θp[f ]〉 + log Z(θq)

Z(θp) , with:

θp[f ] =

[ ∫
x

x2

Z(θp) exp{〈θp, f(x)〉}∫
x

x
Z(θp) exp{〈θp, f(x)〉}

]
=

[
µ2

p + σ2
p

µp

]

Note that the equation of the linear bisector is:
〈(θp − θq),θc[f ]〉 + log Z(θp)

Z(θq) = 0. Thus, we choose to
change variables as (µ,σ) → (µ2 + σ2, µ) = (x, y) (with
x > y > 0) to get the proper coordinate system on
which to apply MiniInfoBall. It comes that Z(x, y) =√

x − y2 exp{ y2

2(x−y2)}, log Z(x, y) = log
√

x − y2 +
y2

2(x−y2) and ∇F (x, y) = ( 1
2(x−y2) − y2

2(x−y2) ,
y3

(x−y2)2 ).
Once the center (x∗, y∗) of the smallest enclosing ball
is computed, we retrieve the corresponding (µ∗,σ∗)
parameters as (y∗, x∗ − (y∗)2). Figure 4 depicts the
ball passing through exactly three Normal “statistical”
points (µ1 = 2,σ1 = 1), (µ2 = 2,σ2 = 3

2 ) and (µ3 =
3,σ3 = 1). We found (µ∗,σ∗) . (2.67446, 1.08313)
and r∗ . 0.801357. For comparison, the MinAvg

center has coordinates (µ∗′
,σ∗′

) = (2.40909, 1.10782).
Computing the reciprocal gradient ∇F

−1(x, y) requires
to solve a quartic equation, that we omit here. Note that
for two normal distributions Ni(µi,σi) and Nj(µj ,σj),
the relative Kullback-Leibler entropy KL(Ni, Nj) ad-
mits the following closed-form solution: KL(Ni, Nj) =
1
2

(
σ2

i

σ2
j

+ 2 log σj

σi
− 1 + (µj−µi)

2

σ2
j

)
. The mean and vari-

ance parameters of the Gaussian distributions can be es-
timated from random samples using the maximum like-
lihood estimators (MLEs). The MLEs of µ and σ2 given
by a random sample n = {n1, ..., nk} from N(x|µ,σ)
is µ̂ = 1

k

∑k
i=1 ni and σ̂ = 1

k

∑k
i=1(ni − µ̂)2, respec-

tively. If we assume the standard deviations identical,
this KL-divergence becomes simply a weighted squared
Euclidean distance. In sound processing, since it has
been observed that human ear perceives loudness in a
logarithmic way, the Itakura-Saito divergence (see Ta-
ble 1) often measures the perceptual closeness of two
power spectra. We can similarly ask for the center spec-

Statistical Person Modeling

Variability
threshold

(µp,σp)

(µ(1)
p ,σ(1)

p )

(µ(4)
p ,σ(4)

p )

(µ(5)
p ,σ(5)

p )

(µ(3)
p ,σ(3)

p )

(µ(2)
p ,σ(2)

p )

(µq,σq)

Identification

Figure 5: Identification/change detection by model se-
lection: each observation of a person P yields a statisti-
cal Normal distribution (µ(i)

p ,σ(i)
p ). A person is modeled

using a Normal distribution (µp,σp) by minimizing the
MinMax KL divergence and a variability parameter r:
the radius of the smallest enclosing Bregman disk. A
person Q is different from P iff KL(P ||Q) > r.

trum that minimizes the maximal divergence to a given
set of spectra, a problem known in the statistics litter-
ature as model/feature selection. This again amounts
to compute the smallest enclosing Itakura-Saito (Breg-
man) ball.

4 Perspectives

The methodology extends to arbitrary dimension as well
but requires to solve convex optimization programs for
finding out centers of basis. For large dimensions, we
have shown how to extend the simple 2-line iterative
approximation algorithm of Bădoiu and Clarkson to ar-
bitrary Bregman divergences [6] (based on the existence
of core-sets). Computing exactly the center of the infor-
mation ball passing through d + 1 points is a key prim-
itive to generalize the Voronoi/Delaunay structures on
information-theoretic spaces of dimension d using the
notion of “empty spheres.”
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