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The PKD-tree for Orthogonal d-dimensional Range Search
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Abstract

We present two new d-dimensional data structures,
called the PKD-tree and the PKD+-tree, respectively.
They are explored for indexing combined text and point
data in low and high dimensional data spaces, and eval-
uated experimentally for orthogonal range search (for
2 ≤ d ≤ 128 and n up to 1,000,000) using synthetic data
points and real data. The experimental results show
that the PKD-tree and the PKD+-tree work well for
any d, and they always outperform the Pyramid tech-
nique, and are greatly better than the k-d tree and the
R∗-tree when d ≥ log2 n. For a PKD+-tree built from n
uniform and random data points, an orthogonal range
search with a query square W of side length ∆ visits
O(d log n + n(1− (1− 2∆)d)) nodes for ∆ ≤ 0.5.

1 Introduction

Given a collection of n records, each containing d at-
tributes, a range search asks for all records in the col-
lection with key values inside a specified range for each
of the d dimensions. Over the past 30 years, more than
100 data structures for the range search problem have
been presented [2][6].

The traditional indexing schemes, e.g. the k-d tree
and the quadtree, divide d-dimensional (d-d) data space
into subspaces using (d-1)-d hyperplane parallel to the
coordinate axes. They perform efficiently on small d
(d ≤ log2 n), but when d is getting larger, they suffer
from the curse of dimensionality. In recent years, sev-
eral mapping-based indexing schemes have been pro-
posed to improve the performance of range search in
high-dimensional data space, e.g. the Pyramid tech-
nique [1] and the iMinMax(θ) [5]. The basic idea is
to transform the d-d data points into 1-d values, and
then store and access the values using a B+-tree. A d-d
range query is mapped to a union of 1-d range queries.
Based on the similarity between these schemes, Zhang
et al. [8] proposed a generalized structure for multi-
dimensional data mapping and query processing. The
mapping-based indexing scheme overcomes the high di-
mensionality problem. However when d ≤ log n, the
mapping-based indexing method tends to examine more
data points during range search than the traditional in-
dexing schemes, e.g. the k-d tree.
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We can take advantage of the traditional indexing
schemes for small d (d ≤ log2 n), and the superiority
of the mapping-based indexing scheme for d > log2 n.
In this paper, we combine the Pyramid technique and
the k-d tree, called the PKD-tree and the PKD+-tree,
respectively. In Sections 2 and 3, we propose these two
data structures, and theoretically analyze their space
requirement and range search time in the worst case.
We present the experimental results from an extensive
performance study to evaluate the PKD-tree for or-
thogonal range search in Section 4, using synthetic data
points and real data. Overall, our experiments show
that the PKD-tree and the PKD+-tree are better than
the Pyramid technique when d ≤ log2 n, and they ap-
proximate the Pyramid technique when d >> log2 n.
The PKD-tree and its variant outperform the k-d tree
and the R∗-tree when d ≥ log2 n and don’t deteriorate
with increasing d.

2 The PKD-tree

Given a d-d key v = (v0, v1, · · · , vd−1), the attribute vj

can be a point coordinate value or a text string, 0 ≤ j ≤
d−1. We map the coordinate values to [0, 1]. When vj is
a text string, we use the numeric mapping method [4] to
get a numeric value in [0, 1]. We denote the mapped d-d
key as v = (v0, v1, · · · , vd−1), vj ∈ [0, 1], 0 ≤ j ≤ d− 1.

We use the Pyramid technique [1] to transform the d-
d data points to 1-d values. The maximum distance hv

from v to the center point (0.5, 0.5, · · · , 0.5) is defined to
be hv = d−1max

j=0
|0.5−vj |, with jmax= dimension where hv

is found. We say v is located in pyramid i, and i = jmax

if vjmax < 0.5, or i = d + jmax if vjmax ≥ 0.5. The
pyramid value pvv of v is pvv = i + hv. The algorithm
for calculating pvv is given in [7].

We denote by T the PKD-tree constructed by insert-
ing n keys into an initially empty tree. The root of the
PKD-tree is an internal node with 2d child pointers,
indexing 2d pyramids respectively. After determining
which pyramid v is in, we insert v into the correspond-
ing B+-tree using pvv as a key. When we reach the leaf
level of the B+-tree, we insert v into the associated k-
d tree (See Fig.1). Let S be the maximum number of
points in the k-d tree. If the number of points in the k-d
tree is S before inserting v, pvv is inserted into the B+-
tree as a key, and the k-d tree is partitioned into two k-d
trees according to the key values in the B+-tree. As we

                                      147



18th Canadian Conference on Computational Geometry, 2006

know that the k-d tree is relatively slow for large d, we
define S =

√
n
2d such that each k-d tree has fewer points

when d is large. This means more of the search is done
in the pyramid part of the PKD-tree, which is more ef-
ficient for large d. The challenge for the PKD-tree is to
determine an appropriate S such that an excellent range
search performance of the PKD-tree is always achieved.
It is obvious that the space requirement of the PKD-
tree is O(dn). In the following discussions, we assume
the B+-tree has order M . The internal nodes of a B+-
tree of order M contains between M and 2M keys, and
a node with m keys has m + 1 children.
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Figure 1: The data structure of PKD-tree.

Given a query rectangle W = [L0,H0] × [L1,H1] ×
· · · × [Ld−1, Hd−1], the key v = (v0, v1, · · · , vd−1) is in
range iff vi ∈ [Li,Hi], ∀i ∈ (0, 1, · · · , d − 1). We define
W = [L0, H0] × [L1, H1] × · · · × [Ld−1, Hd−1], where
Li = Li − 0.5 and Hi = Hi − 0.5. Range search be-
gins from the root of the PKD-tree. If the pyramid i
(0 ≤ i ≤ 2d − 1) is intersected by W (Intersection
algorithm in Fig.2), we visited the B+-tree which the
ith child the root points to using interval [i + hlow[i],
i + hhigh[i]] (hlow[i] and hhigh[i] are determined by In-
terval algorithm in Fig.3. We define a more restricted
value of hlow[i] than the one in [1]). When we reach the
leaf level of the B+-tree, we visit the associated k-d tree
to determine if the data points inside W : starting at the
root of the k-d tree, at each node v, we compare the vj

attribute of the current node with [Lj ,Hj ] (0 ≤ j < d,
j is the current node’s discriminator). If vj ≤ Lj , the
search continues on the left child of v; if vj > Hj , the
search continues on the right child of v; otherwise, we
check if v inside W and the search continues on both
children of v.

Theorem 1 Given a PKD-tree built from n d-d data
points drawn from a uniform random distribution [0, 1]d,
and a query square W with side length ∆, an orthogonal
range query visits
1. O(d log n

dS + n(1−(1−2∆)d)
S1/d + F ), if ∆ ≤ 0.5

2. O(d log n
dS + n(1+(2∆−1)d)

S1/d + F ), if ∆ > 0.5

nodes in the PKD-tree, where F is the number of data
points in range.

Intersection(W )
1 Initialize boolean array intersect[2*d]←0
2 for (i = 0; i < d; i ← i + 1)
3 do x ← 0; y ← 0
4 for (j = 0; j < d and j (= i; j ← j + 1)
5 do if (Li ≤ (−MIN(Lj ,Hj)))
6 then x ← x + 1
7 if (Hi ≥ MIN(Lj ,Hj))
8 then y ← y + 1
9 if (x = d− 1)

10 then intersect[i] ← 1
11 if (y = d− 1)
12 then intersect[d + i] ← 1

Figure 2: Algorithm determining which of the 2d pyra-
mids are intersected by W , adapted from [1].

Interval(W )
1 for (i = 0; i < 2d; i ← i + 1)
2 do if (i < d)
3 then qimin ← Li; qimax ← min(Hi, 0)
4 else qimin ← max(Li−d, 0); qimax ← Hi−d

5 m ← 0
6 for (j = 0; j < d; j ← j + 1)
7 do if (Lj ≤ 0) and (Hj ≥ 0)
8 then m ← m + 1
9 if (m = d)

10 then hlow[i] ← 0
11 else qjmax ← 0; qjmin ← 0.5
12 for (j = 0; j < d and j (= i mod d;
13 j ← j + 1)
14 do qjmax ← max(MIN(qimin , qimax),
15 MIN(Lj , Hj))
16 if (qjmin > qjmax)
17 then qjmin ← qjmax

18 hlow[i] ← qjmin

19 hhigh[i] ← max(|qimin |, |qimax |)

Figure 3: Algorithm for determining hi
low and hi

high in
each pyramid i. MIN(a, b) = 0, if a ≤ 0 ≤ b, else
MIN(a, b) = min(|a|, |b|).

Proof. We assume the input data points are randomly
and uniformly distributed. For an input size n, the num-
ber of data points in each B+-tree is expected to be n

2d ,
or O(n

d ), then the number of k-d trees in each B+-tree
of order M is O( n

dS ), and the height of the B+-tree of
order M is O(logM+1

n
dMS ). The worst case happens

when W is in the corner of the data space (See Fig.4).
When ∆ ≤ 0.5, the volume of pyramid i to be visited

intersecting W is 1
2d −

(2(0.5−∆))d

2d = 1
2d (1 − (1 − 2∆)d).

There are n
2d (1− (1− 2∆)d) data points in the shadow

region of pyramid i. The number of the k-d trees asso-
ciative to the B+-tree for the pyramid i to be visited is
) n

2dS (1− (1−2∆)d)*+1. The worst case of the number
of nodes visited in the k-d tree having S nodes during
range search is O(S(1−1/d) + f), where f is the number
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∆ ≤ 0.5 ∆ > 0.5

Figure 4: Illustration of the worst case for a PKD-
tree range search. The black area corresponds to query
square W , and the cross-hatched area is the region vis-
ited during the range search in addition to W .

of nodes in range in the k-d tree. The number of leaf
nodes in the B+-tree visited is ) #

n
2dS (1−(1−2∆)d)$+1

M *,
and the number of internal nodes visited is the height
of the B+-tree. There are d pyramids intersecting W ,
so the total nodes visited in the PKD-tree is thus
O(d logM+1

n
dMS + n(1−(1−2∆)d)

S1/d + F ).
In a similar way, when ∆ > 0.5, the center of the

data space is contained in W , so all pyramids are
intersected by W . The total volume to be visited
is d( 1

2d + (2(∆−0.5))d

2d )=1
2 (1 + (2∆ − 1)d), The maxi-

mum number of nodes visited in the PKD-tree is thus
O(2d logM+1

n
dMS + n(1+(2∆−1)d)

S1/d + F ). !

3 The PKD+-tree

The basic structure of the PKD+-tree is a B+-tree
of order M . The pyramid values of data points are
used as the key value in the B+-tree. An internal node
with m keys of the PKD+-tree has one right pointer,
m+1 child pointers and m+1 associated k-d tree point-
ers, each child pointer is related to a k-d tree (denoted
as KD) pointer. The data points stored in the leaf
nodes of the subtree which the child pointer pointed
to are store in the nodes of the k-d tree (e.g. in Fig.
5, the leftmost KD of the root contains (0.3,0.4) and
(0.2,0.7), and the rightmost KD has (0.9,0.7), (0.7,0.8)
and (0.5,0.9)). The leaf node of the PKD+-tree with m
keys has one right pointer and m data point pointers.
The right pointer points to the immediate right node at
the same level. The orthogonal range search algorithm
is given in [7].

Theorem 2 The PKD+-tree of order M built from n
d-d data points requires O(dn log n) space.

Proof. The height of the B+-tree of order M is
O(logM+1 n). The number of the nodes in the B+-tree
is O( n

M ), which require O(n) space. The leaf nodes need
additional dn space for the data points. At each level
above the leaf node level, there are totally n nodes in all
associated KDs, which require dn space. So the total
storage of the PKD+-tree is O(dn logM+1 n). !

KD

(0.3,0.4) (0.2,0.7)

 

(0.4,0.2) (0.2,0.1)(0.1,0.3) (0.6,0.3) (0.7,0.5) (0.8,0.4)      (0.9,0.7) (0.7,0.8) (0.5,0.9)

0.2     0.3 0.4     1.2 1.3     1.4 2.2     2.3 2.4     3.3      3.4

(0.5,0.3)

0.4     1.3     2.2     2.4  

KD KD KDKD

Figure 5: A 2-d PKD+-tree example (the point in-
sertion order is (0.2,0.7), (0.1,0.3), (0.3,0.4), (0.2,0.1),
(0.4,0.2), (0.5,0.3), (0.6,0.3), (0.8,0.4), (0.7,0.5),
(0.9,0.7), (0.7,0.8), (0.5,0.9)).

Theorem 3 Given a PKD+-tree built from n d-d data
points drawn from a uniform random distribution [0, 1]d,
and a query square W with side length ∆, an orthogonal
range search query visits

1. O(d log n + n(1− (1− 2∆)d)), if ∆ ≤ 0.5

2. O(d log n + n(1 + (2∆− 1)d)), if ∆ > 0.5

nodes in the PKD+-tree.

Proof. The worst case happens when the range search
doesn’t search any KD and checks the data points
in leaf nodes, and W is in the corner of the data
space, sharing a vertex and d edges with the space (See
Fig.4). The height of the B+-tree of order M is at most
+logM+1 n,.

When ∆ ≤ 0.5, the volume of pyramid i to be visited
intersecting W is 1

2d −
(2(0.5−∆))d

2d = 1
2d (1 − (1 − 2∆)d).

There are d pyramids intersecting W , so the total vol-
ume to be visited is 1

2 (1 − (1 − 2∆)d). For uniformly
and randomly distributed points, there are at most
1
2n(1 − (1 − 2∆)d)/M leaf nodes in the B+-tree, and
1
2n(1− (1−2∆)d) data points pointed by the leaf nodes
visited. With the number of internal nodes visited in the
B+-tree, the maximum number of nodes visited in the
PKD+-tree is thus d logM+1 n + M+1

2M n(1− (1− 2∆)d).
When ∆ > 0.5, the center of the data space is con-

tained in W , so all pyramids are intersected by W . The
total volume to be visited is d( 1

2d + (2(∆−0.5))d

2d )=1
2 (1 +

(2∆− 1)d), so there are at most 1
2n(1 + (2∆− 1)d)/M

leaf nodes in the B+-tree, and 1
2n(1 + (2∆ − 1)d) data

points pointed by the leaf nodes visited. The maxi-
mum number of nodes visited in the PKD+-tree is thus
2d logM+1 n + M+1

2M n(1 + (2∆− 1)d). !

4 Experiments

The programs were run on a Sun Microsystems V880
with four 1.2 GHz UltraSPARC III processors, 16 GB
of main memory, running Solaris 8. We assume all data
structures tested reside in the main memory, and there
is no I/O disk access. Each experimental point in the
following graphs was done with an average of 300 test
cases.
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4.1 Synthetic Data

Data points were drawn uniformly and randomly from
[0, 1]d. To determine the influence of the dimension on
range search performance, we vary d from 2 to 128.
We fix the input point data size n=100,000, and the
expected output E(F )=log2 n. For the constant F ,
the query rectangle W varies according to d. The ex-
perimental results in Fig.6 show that for low value of
d<16, the k-d tree takes about 0.7 of the search time
required by the PKD-tree, with the R∗-tree a close sec-
ond. When d≥16, the PKD-tree is up to 10.4 times
faster than the k-d tree and 5.4 times faster than the
R∗-tree. The PKD-tree is up to 13.5 times faster than
the Pyramid technique.

In Fig.7, we measured range search performance be-
havior with the input data size n varying from 100,000
to 1,000,000. E(F ) is set to be (log2 n)2, and d is 16.
The PKD-tree has speed-up factor up to 3.9 over the
k-d tree, 3.6 over the Pyramid technique and 2.4 over
the R∗-tree. The PKD+-tree is close to the PKD-tree
in Fig. 6 and Fig.7.
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Figure 6: n=100,000, 2≤d≤128, and E(F )=log2 n.
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Figure 7: E(F )=(log2 n)2, 100,000≤n≤1,000,000 and
d=16.
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Figure 8: volume=∆d=E(F )/n, n=68,040 and d=32.

4.2 Real Data

We tested the data structures on a color histogram data
set [3], which has 68,040 32-dimensional data points
on [0, 1]32. In Fig.8, the volume of the query square
W with side length ∆ (volume=∆d=E(F )/n) is varied
from 0.0001 to 0.1. The PKD-tree has a speed-up fac-
tor between 2.4 (volume=0.1) and 16 (volume=0.0001)
compared to the k-d tree, between 1.1 and 3.4 compared
to the Pyramid technique. The PKD-tree is slightly
faster than the PKD+-tree.

5 Conclusions

We propose the PKD-tree and the PKD+-tree for or-
thogonal range search in low and high dimensional data
space. We conducted an extensive experimental study
to evaluate their range search performance, and com-
pared them to the k-d tree, the Pyramid technique, the
R∗-tree and naive search. Overall, the experimental re-
sults show the PKD-tree and its variant work well for
any d (2 ≤ d ≤ 128). They are always better than the
Pyramid technique, and outperform the k-d tree and the
R∗-tree when d ≥ log2 n. What is the expected range
search time of the PKD-tree and the PKD+-tree?
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