
CCCG 2006, Kingston, Ontario, August 14–16, 2006

Range-Aggregate Proximity Detection for Design Rule Checking in VLSI Layouts

R. Sharathkumar∗ Prosenjit Gupta∗

Abstract

In a range-aggegate query problem we wish to prepro-
cess a set S of geometric objects such that given a query
orthogonal range q, a certain intersection or proxim-
ity query on the objects of S intersected by q can be
answered efficiently. Although range-aggregate queries
have been widely investigated in the past for aggrega-
tion functions like average, count, min, max, sum etc.
there is little work on proximity problems. In this pa-
per, we consider the problem of determining if any pair
of points in a query range are within a constant λ of
each other. We consider variants with ranges being a
vertical strip, a quadrant and a rectangle. All our solu-
tions work in close to linear space and polylogarithmic
query time.

1 Introduction

1.1 Range-Aggregate Queries

Range searching is a fairly well-studied problem in Com-
putational Geometry [1]. In such a problem, we are
given a set S of n geometric objects. The goal is to
efficiently report or count the intersections of the given
set of objects with a given query range q. Since we are
required to perform queries on the geometric data set
several times, it is worthwhile to arrange the informa-
tion into a data structure to facilitate searching.

In a class of problems called range-aggregate query
problems [11] we deal with some composite queries in-
volving range searching, where we need to do more than
just a simple range reporting or counting. In a generic
instance of a range-aggregate query problem, we wish to
preprocess a set of geometric objects S, such that given
a query range q, a certain aggregation function that op-
erates on the objects of S ′ = S ∩ q can be computed
efficiently.

In on-line analytical processing (OLAP), geographic
information systems (GIS) and other applications range
aggregate queries play an important role in summarizing
information [11] and hence large number of algorithms

∗Algorithms and Computation Theory Laboratory, Interna-
tional Institute of Information Technology, Gachibowli, Hy-
derabad 500032, INDIA. This research is supported in part
by grants SR/S3/EECE/22/2004 and DST/INT/US/NSF-RPO-
0155/04 from the Department of Science and Technology, Gov-
ernment of India. Email: sharath@students.iiit.ac.in,

pgupta@iiit.ac.in

and storage schemes have been proposed. However
most of these work consider functions like count, sum,
min, max, average etc. [11, 7]. In [4], range-aggregate
query problems involving geometric aggregation oper-
ations like intersection, point enclosure and proximity
were studied. Other than the work of [6] on the range-
aggregate closest-pair problem, and the 1-dimensional
(resp. 2-dimensional) range-aggregate closest pair prob-
lems with query orthogonal rectangles which were solved
in [4], little or no work has been done on range-aggregate
queries with proximity related aggregation functions.

Geometric proximity problems arise in numerous ap-
plications and have been widely studied in computa-
tional geometry. The closest-pair problem involves find-
ing a pair of points in a set such that the distance be-
tween them is minimal. Work on the closest-pair and
some related problems are surveyed in [9]. The range-
aggregate version was considered in [6] for the vari-
ant where the query range is an axes-parallel rectangle
and a R-tree based solution was given. In [4] the 1-
dimensional (resp. 2-dimensional) range-aggregate clos-
est pair problems with query orthogonal rectangles were
solved in O(n) space (resp. O(n2 log3 n) space) and
O(1) (resp. O(log3 n)) query time.

1.2 Motivating Applications

The range-aggregate closest-pair problem considered in
[6] can arise in applications like GIS. For instance, con-
sider an example borrowed from [6]. We may be inter-
ested in finding the closest pair of post offices in a city.
If the City Hall wants to move some post office to a new
location, this query may help in decision making.

As another application consider VLSI design rule
checking (also called “DRC”[10]). VLSI design rules
are often based on the so-called lambda (λ) based de-
sign rules made popular by Mead and Conway [5]. De-
sign rule checking (DRC) is the process of checking if
the layout satisfies the given set of rules. In a VLSI
layout editing environment [8], geometric queries com-
monly arise. However, the user often zooms to a part
of the layout and is interested in queries with respect to
the portion of the layout on the screen. One problem
of interest to the designer is to check whether certain
features are apart at least by a required separation. To
check for violations in a part of the circuit, we can check
if any two points in a query range violate the minimum
separation rule. This can be reduced to an instance of

 151

18th Canadian Conference on Computational Geometry, 2006

the range-aggregate closest-pair query in [6].

2 Our Contributions

Unless otherwise mentioned, we assume that all dis-
tances are euclidean distances. Let d(a, b) denote the
euclidean distance between a and b. Let us consider the
special case of the above problems that occurs in VLSI
design rule checking. A generic instance of the problem
may be specified as follows:

Problem 2.1 Preprocess a set S of n points in R2 into
a data structure such that given a query range q, whether
or not there exists a pair of points (v, w), v, w ∈ S ∩ q
and d(v, w) < λ can be reported efficiently, where λ > 0
is a constant.

Of course, we can solve this problem by using the so-
lution to the range-aggregate closest pair problem of
[4]. Let us first recall the solution in [4]. To solve
the 2-dimensional problem, we first find all pairwise
distances between the points in S. We create O(n2)
tuples (ax, ay, bx, by, d(a, b)) where a = (ax, ay) and
b = (bx, by) are points in S and d(a, b) is the euclidean
distance between a and b. We preprocess these tuples
into a data structure D for the 4-dimensional range min-
imum query of [3]. An instance of D built on a set of
n points occupies O(n log3 n) space and can be queried
in time O(log3 n). Given q, we query D to find a pair
(a, b) with the minimum value of d(a, b). This gives
us an O(n2 log3 n) space and O(log3 n) time solution.
Clearly the space bound is too high for the solution to
be of any practical use. In this paper, we show how we
can solve Problem 2.1 by storing at most n (respectively
4n and 8n) tuples for the case where the query range is
a vertical strip (respectively a quadrant and an orthog-
onal rectangle). All our solutions work in close to linear
space and polylogarithmic query time. Due to lack of
space, we omit some proofs and many details.

3 Proximity checking in a vertical strip

In this section, we consider a special case of Problem 2.1
where the query q is a vertical strip.

During preprocessing, we create for each point p =
(px, py) in S, a tuple (p, r, d(p, r)) where r = (rx, ry) is
a point with the minimum |sx − px| amongst all points
s = (sx, sy) satisfying sx ≥ px and d(p, r) < λ. (We do
not create a tuple for p if no such point r exists.) We
preprocess these tuples into a data structure D for the
4-dimensional range minimum query of [3]. An instance
of D built on a set of n points occupies O(n log3 n) space
and can be queried in time O(log3 n). Given the vertical
strip q = [a, b], defined by the vertical lines x = a and
x = b, we query D to find a pair (p, r) with the minimum

value of d(p, r). Then we report Y ES if such a pair is
found and NO otherwise.

Lemma 1 The query algorithm reports Y ES, iff p and
r are points in S ∩ q and d(p, r) < λ.

Proof: If the algorithm reports Y ES, it does so after
the query on D returns a pair (p, r) such that d(p, r) <
λ. From the from the correctness of the structure D
it follows that p and r are in q = [a, b]. To prove the
converse let there exist a pair of points (p, r), p ∈ (S∩q),
r ∈ (S ∩ q) such that d(p, r) < λ. Without loss of
generality let p = (px, py) and r = (rx, ry) be such that
rx ≥ px. Then D must contain tuples (p, s, d(p, s)) for
points s ∈ (S ∩ q)) where px ≤ sx ≤ rx and d(p, s) < λ.
Then the query on D will return a pair (p, s) for such a
point s.

4 Proximity checking in a query quadrant

In this section, we consider a special case of Problem 2.1
where the query is the northeast quadrant of a point q.
Given point q = (a, b), the northeast quadrant of q,
denoted by NE(q), is the set of all points (x, y) in R2

such that x ≥ a and y ≥ b. Analogously, we can define
NW (q), SE(q), SW (q) as the northwest, southeast and
southwest quadrants respectively.

During preprocessing, we compute for each point
p ∈ S, the nearest neighbour NNE(p) (re-
spectively NNW (p), NSE(p) and NSW (p)) of p
in the northeast (respectively northwest, southeast
and southwest) quadrant. We create the tu-
ples (p, NNE(p), d(p, NNE(p))), (p, NNW (p),
d(p, NNW (p))), (p, NSE(p), d(p, NSE(p))), and (p,
NSW (p), d(p, NSW (p))), if the distance of the corre-
sponding neighbour from p is less than λ. We prepro-
cess these tuples into a data structure DM for the 4-
dimensional range minimum query of [3]. An instance
of DM built on a set of n points occupies O(n log3 n)
space and can be queried in time O(log3 n). We also
preprocess the points in S into a data structure DC for
the 2-dimensional range counting problem. An instance
of DC built on a set of n points occupies O(n log n)
space and can be queried in time O(log n).

Given a query point q = (a, b), we query DM with
the range NE(q) to find a pair (p, r) with the minimum
value of d(p, r). Then we report Y ES if d(p, r) < λ.
Else we query DC with the square [a, a + λ] × [b, b +
λ]. If the count returned by the second query is more
than four, we report Y ES. Else we check the distances
between all pairs of points within the square and report
Y ES iff we find a pair (p, r) with d(p, r) < λ.

Lemma 2 Let S be a set of points in R2, and let for
any pair of points (p, r), p ∈ S, r ∈ S, d(p, r) ≥ λ, then
a square of side λ contains at most 4 points of S.

152

CCCG 2006, Kingston, Ontario, August 14–16, 2006

p

r

u

v

Figure 1: Points r and p are in the query quadrant but
the corresponding tuple is not stored.

Lemma 3 Given a query quadrant NE(q), q = (a, b),
the query algorithm reports Y ES, iff p and r are points
in S ∩ q and d(p, r) < λ.

Proof: The only-if part is true since d(p, r) < λ for
a pair (p, r) that is reported. To prove the if part, let
(p, r) be a pair of points in S ∩ q and d(p, r) < λ. If
(p, r, d(p, r)) is a tuple stored in DM , then the range-
minimum query will return a pair of points (s, t) such
that d(s, t) ≤ d(p, r) < λ. Hence a Y ES answer is re-
ported. So assume that the tuple (p, r, d(p, r)) is not
stored in DM . Without loss of generaliy, let p be the
point with the higher y-coordinate amongst p and r
Then either p ∈ NE(r) or p ∈ NW (r). Let p ∈ NE(r).
Since r ∈ NE(q), d(p, r) < λ and the tuple (p, r, d(p, r))
is not stored in DM , there exists a point s = NNE(r),
d(r, s) < λ such that the tuple (r, s, d(r, s)) is stored in
DM . Point r ∈ NE(q). Since NE(r) ⊆ NE(q), point
s ∈ NE(q). Hence the range-minimum query on DM
returns a witness and the query algorithm returns Y ES.
If p ∈ NW (r), r ∈ SE(p). Since the tuple (p, r, d(p, r))
is not stored in DM , there exist points u ∈ S, v ∈ S
such that u /∈ q, v /∈ q, u = NSE(p) and v = NNW (r).
See Figure 1. For q′ = [a, a + λ] × [b, b + λ], if p /∈ q′,
d(p, u) > λ which is impossible since u = NSE(p) and
d(p, u) < λ. Hence p ∈ q′. Similarly r ∈ q′. If the num-
ber of points in q′ is more than four, the query algorithm
will return Y ES. This step is correct by Lemma 2.
If the number of points in q′ is four or less, it checks
all pairs of points in q′, and since there is at least a
pair (p, r) with d(p, r) < λ, the query algorithm reports
Y ES.

5 Proximity checking in a rectangle

In this section we consider an instance of Problem 2.1
where the query range q is a rectangle. During prepro-

cessing, for each point p ∈ S, we compute NXNE(p)
(respectively NXNW (p), NXSE(p) and NXSW (p)),
being the point r in NE(p) (respectively NW (p), SE(p)
and SW (p)) such that d(p, r) < λ and |rx − px| is
the minimum for all such points r in NE(p) (respec-
tively NW (p), SE(p) or SW (p)). Similarly, we com-
pute NY NE(p) (respectively NY NW (p), NY SE(p)
and NY SW (p)), being the point s in NE(p) (respec-
tively NW (p), SE(p) and SW (p)) such that d(p, s) < λ
and |sy − py| is the minimum for all such points s in
NE(p) (respectively NW (p), SE(p) or SW (p)).

We preprocess the 8n tuples (p, r, d(p, r)) for all
p ∈ S and r ∈ {NXNE(p), NXNW (p), NXSE(p),
NXSW (p), NY NE(p), NY NW (p), NY SE(p),
NY SW (p)} into an instance DM of the data structure
of [3] for the 4-dimensional range-minimum query. This
occupies O(n log3 n) space and can be queried in time
O(log3 n). We also preprocess the points in S into a
data structure DC for 2-dimensional range counting.

Given a query rectangle q = [a, b] × [c, d], we query
DM . If we find a pair (p, r), we report Y ES. Else if
|b − a| ≤ 2λ and |d − c| ≤ 2λ, we query DC with q.
If the number of points in q is 9 or less, we check all
pairs of points in q to find if there is a pair (p, r) with
d(p, r) < λ and report Y ES if we find such a pair. If
the number of points in q are more than 9, we report
Y ES. In all other cases, we report NO.

r

p

v

u

Figure 2: Points r and p are in the query rectangle but
the corresponding tuple is not stored.

Lemma 4 Given a query rectangle q = [a, b] × [c, d]
such that |b−a| > 2λ, the range-minimum query on DM
returns a pair (s, t), s ∈ S, t ∈ S, such that d(s, t) < λ if
and only if there is a pair (p, r), p ∈ (S∩q), r ∈ (S∩q),
such that d(p, r) < λ.

Proof: The proof of the only-if part follows from
the correctness of the data structure DM . To prove
the if part, let there be a pair (p, r), p ∈ (S ∩ q), r ∈

 153

18th Canadian Conference on Computational Geometry, 2006

(S ∩ q), such that d(p, r) < λ. In DM , we must have
stored tuples (p, u, d(p, u)), u = NXNE(p), d(p, u) < λ
and (r, v, d(r, v)), v = NXSW (r), d(r, v) < λ. See
Figure 2. Suppose the range minimum query on DM
with q misses both the tuples. Then u /∈ q and v /∈ q.
Then,
|b − a| < d(p, u) + d(r, v) < 2λ. This contradicts the
fact that |b− a| > 2λ. Hence the range-minimum query
on DM returns a pair (s, t), s ∈ S, t ∈ S, such that
d(s, t) < λ.

Lemma 5 Given a query rectangle q = [a, b] × [c, d]
such that |d−c| > 2λ, the range-minimum query on DM
returns a pair (s, t), s ∈ S, t ∈ S, such that d(s, t) < λ if
and only if there is a pair (p, r), p ∈ (S∩q), r ∈ (S∩q),
such that d(p, r) < λ.

Proof: Similar to that of Lemma 4.

Lemma 6 Let S be a set of points in R2, and let for
any pair of points (p, r), p ∈ S, r ∈ S, d(p, r) ≥ λ, then
a rectangle of sides at most 2λ contains at most 9 points
of S.

Lemma 7 Given a query rectangle q = [a, b] × [c, d]
such that |b − a| ≤ 2λ and |d − c| ≤ 2λ, the query
algorithm returns a pair (s, t), s ∈ S, t ∈ S, such that
d(s, t) < λ if and only if there is a pair (p, r), p ∈ (S∩q),
r ∈ (S ∩ q), such that d(p, r) < λ.

Proof: The proof of the only-if part follows from the
correctness of the data structure DM . To prove the if
part, let there be a pair (p, r), p ∈ (S ∩ q), r ∈ (S ∩ q),
such that d(p, r) < λ. If the number of points in the
rectangle is 9 or less, the algorithm checks the distance
between all possible pairs of points in the rectangle and
hence at least some pair (s, t),s ∈ S, t ∈ S, such that
d(s, t) < λ, is detected. If the number of points in the
rectangle is more than 9, then by the contrapositive of
Lemma 6, the rectangle must contain a pair of points
(p, r), d(p, r) < λ. Then the query algorithm correctly
determines the answer to be Y ES.

Note that since all tuples stored are ones for which
the point pairs are within λ, we can replace the range-
minimum query data structure with a data structure
for orthogonal range reporting in R4 and stop after the
first report. This can be done in O(n log2+ε) space and
O(log2 n) time [2].

Theorem 8 A set of n points in R2 can be prepro-
cessed into a data structure of size O(n log3 n) (respec-
tively O(n log2+ε)) such that given a query rectangle
q = [a, b] × [c, d], whether q contains a pair of points
(p, r), d(r, p) < λ, can be reported in time O(log3 n)
(respectively O(log2 n)).

References

[1] P.K. Agarwal, and J. Erickson. Geometric range search-
ing and its relatives. In B. Chazelle, J. E. Goodman,
and R. Pollack, editors, Advances in Discrete and Com-
putational Geometry, Contemporary Mathematics, 23,
1999, 1–56, American Mathematical Society Press.

[2] S. Alstrup, G. Brodal and T. Rauhe. New data struc-
tures for orthogonal range searching. Proceedings, IEEE

FOCS, 2000, 198–207.

[3] H.N. Gabow, J.L. Bentley, and R.E. Tarjan. Scaling and
related techniques for geometry problems. Proceedings,
ACM Symposium on Theory of Computing, 1984, 135–
142.

[4] P. Gupta. Algorithms for range-aggregate query prob-
lems involving geomteric aggregation operations. Pro-

ceedings ISAAC 05, Springer Verlag LNCS, Vol. 3827,
2005, 892–901.

[5] C.A. Mead, and L.A. Conway. Introduction to VLSI

Systems, Addison Wesley, USA, 1980.

[6] J. Shan, D. Zhang, and B. Salzberg. On spatial-range
closest-pair query. Proceedings, Symposium on Spatial
and Temporal Databases, Springer Verlag LNCS, Vol.
2750, 2003, 252–269.

[7] S. Shekhar, and S. Chawla. Spatial Databases: A Tour,
Prentice Hall, 2002.

[8] N. Sherwani. Algorithms for VLSI Physical Design Au-
tomation, Kluwer Academic, 1998.

[9] M. Smid. Closest point problems in computational ge-
ometry. Handbook of Computational Geometry, J. Sack
and J. Urrutia editors, Elsevier, 2000, 877–935.

[10] T.G. Szymanski, and C.J. van Wyk. Layout analy-
sis and verification, Physical Design Automation of
VLSI Systems, B. Preas and M. Lorenzetti eds., Ben-
jamin/Cummins, 1988, pp. 347–407.

[11] Y. Tao and D. Papadias. Range aggregate processing
in spatial databases. IEEE Transactions on Knowledge

and Data Engineering, 16(12), 2004, 1555–1570.

154

