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Abstract

In this paper we present a linear space dynamic data
structure for orthogonal range reporting and emptiness
queries. This data structure answers range reporting
queries in time O(log nloglogn + klog® n) for any £ > 0
and k the size of the answer. Our data structure also
supports emptiness and one-reporting queries in time

O(lognloglogn).

1 Introduction

The orthogonal range reporting problem is to store a
set P of points on the plane so that for an arbitrary
rectangle ) = [a,b] x [¢,d] all points in SN @ can be
reported efficiently. Special cases of orthogonal range
reporting are emptiness queries that answer the ques-
tion "is SN Q = ( ?” and one-reporting queries that
report an arbitrary point from SN Q if SN Q # 0.

There are data structures that answer range report-
ing queries in O(logn + k) time and O(nlog® n) space
([5] in the static case; [9] in the dynamic case). How-
ever, the best known linear space data structures for this
problem require either superpolylogarithmic query time
or a penalty for each point in the answer. The static
data structure from [5] supports queries in O(logn +
klog ﬁ—_fl) time. In the dynamic case, the data structure
of [8] supports range reporting queries in O(y/n log n+k)
and updates in O(logn) time; the data structure of [5]
supports queries in O((k+1) log® ﬁ—fl) time and updates
in O(log?n) time.

In this paper we present a dynamic data struc-
ture that answers orthogonal range reporting queries
in O(lognloglogn + klog® n) time where k is the size
of the answer. Qur data structure supports emptiness
queries in O(log nloglog n) time; updates are supported
in O(logSnloglog n) time. Thus our dynamic data
structure almost matches the upper bound of Chazelle
[5] for the range reporting queries in the static case,
and achieves almost-optimal time for the emptiness and
one-reporting queries.

Our data structure is based on the standard range tree
technique [3] that reduces the two-dimensional range re-
porting to one-dimensional range reporting. The space-
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efficient solution is obtained by a compact representa-
tion of the data structures for one-dimensional queries.
Suppose that coordinates of n, points must be stored in
a node v of the range tree; we replace the coordinates by
labels from [1, O(n,)]. The data structure that answers
one-dimensional queries for the labels stored in v can be
implemented with O(n,) bits using the approach of [4].

2 Preliminaries

Let P be the set of points stored in the data struc-
ture; let P, and P, be the sets of z-coordinates and
y-coordinates of the points in P.

The space-efficient data structure presented in this
paper uses two important techniques: dynamic range
reduction to extended rank space ( [9]) and the approach
of the compact data structure [4].

The dynamic range reduction to extended rank space
is based on maintaining a bijective order-preserving
mapping f : S — S for a dynamic set S; f assigns
to each element e € S a label f(S) from a polynomially
bounded universe. In this paper we strengthen this con-
dition and require that f(e) for all e € S belong to the
universe of linear size, i.e. Ve € S : f(e) € [1,0(]5])]
and e; < ez = f(e1) < f(ez). If a new element e is
inserted into S we assign it a label f(S) and change the

values of f(e1), f(ea),.... f(es) for some ey, €3,... 65 €
S so that the order-preserving property of f is main-
tained. In this case we say that elements e, ..., ez are

f-moved. 1f an element e € S is deleted, some elements
of S can also be f-moved.

We can efficiently maintain an order preserving map-
ping f: S — [1,0(|S])] using the sparse table technique
of [7], [12] (see e.g., [2] for applications of this technique
to cache-oblivious B-trees). The following Lemma is a
reformulation of the result in [12]

Lemma 1 We can maintain an order preserving map-
ping f S — [1,2]S5]], so that in the case of an update
O(log? |S|) elements of S must be f-moved.

We maintain two order-preserving mappings f : Py —
Py and fy 1 Py — P, so that all elements of P, and P,
belong to the universe of linear size, P, C [1,0(|P.))]
and P, C [1, O(|Fy))].

Let P o= {(fu(0). fy(0)l(e.9) € P} A two

dimensional range reporting query [a,b] x [¢,d] on el-
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ements of P can be reduced to a query [@,b] x [¢.d] on
elements of P due to the order-preserving property of f,
and fy: Weset a = fo(succ(a. Py)). b= fu(pred(b, Py)),
¢ = fy(suce(e, Py)), and d = fy(pred(d, Py)); here
and further pred(a,S) = max{z € S|z < a} and
succ(a,S) = min{x € S|z > «a}. Then (2,y) €
(QNP) < (z,9) € (@N P). The range reduction
technique described above can also be applied to one-
dimensional range reporting queries. This approach can
be viewed as an extension of the well-known reduction
to rank space technique.

Another component of our method is the compact
data structure of Blandford and Blelloch[4] that allows
us to store a set S C [1, N] using O(]S|log %) bits so
that main search operations are supported efficiently.
The following reduction is shown in [4]: Given a tree-
based data structure D with n elements from the uni-
verse [1, N] that uses O(n) words of log N bits and
supports predecessor searches in time O(¢(n)) and up-
dates in time O(u(n)), we can construct a data structure
D’ that uses O(nlog %) bits and supports predecessor
searches in time O(¢(n)) and updates in time O(u(n)).
Using a similar approach we can prove:

Lemma 2 There exists a data structure D for the ele-
ments from the universe [1,0(n)] where n is the num-
ber of elements in D; D wuses O(n) bits and sup-
ports updates, predecessor, and successor queries in time

O(loglogn).

This Lemma will be proven in the full version of this
paper.

3 Description of the Data Structure

Our data structure is based on the standard range trees
introduced by Bentley [3] and used in a number of other
data structures. We build a tree T, over P,; T, is im-
plemented as a WBB tree [1] with branching parameter
4 and leaf parameter 1, i.e. each leaf contains one ele-
ment, and each internal node is of degree p, 1 < p < 16.
A WBB tree over n elements is of height O(logn), and
anode of height [ has between 4!/2 and 2-4! leaf descen-
dants (see [1] for details). All elements of T, are stored
in the leaves of T,. We associate a range with each
node v of Ty: the range associated to a leaf contains
this leaf, and all ranges associated to leaves of T, are
disjoint; the range associated to an internal node v 1s a
union of ranges associated to its children. We say that
a point p belongs to a node v if its z-coordinate belongs
to the range of v. Let Y, be the set of y-coordinates of
points that belong to a node v. For each node v, ex-
cept of the root, we store a data structure D, that con-
tains y-coordinates of all points that belong to v. The
data structure D, allows us to find for each element
p in v: the predecessor pred(p,Yy) and the successor
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suce(p, Yy) of p in Yy; for each child u of v, pred(p, Ya,)
and suce(p,Yy). The y-coordinates of points that be-
long to the root r of T, are stored in a binary tree T,,
so that pred(a, Py) and succ(a, Py) can be found for any
a in O(logn) time.

Suppose a query @ = [a,b] X [¢, d] must be answered.
The search procedure starts in the root r of 7. For each
visited node v, if the range of v is a subset of [a, b], we
report all points in v with y-coordinates in [¢, d]. Oth-
erwise, if D, contains points with y-coordinates in [c, d]
we visit all children of v whose range intersects with
[a,b]. For each node v of T, visited by our search pro-
cedure, we find ¢, = suce(e,Yy) and dy = pred(d, YVy).
We can find ¢, and d, using 7, in O(logn) time. If ¢,
dy are known and w is a child of v, we can find ¢, and
dy using Dy: ¢y = succ(cy, Yy) and dy, = pred(dy, Yy,)
for Y, C Y,. Since the number of nodes visited by
the search procedure is O(logn) the search time is
O(logn t(n)), if data structures D, answer predecessor
queries in time ¢(n) and if we ignore the time to report
the points in the answer.

4 Space-efficient Implementation

In this section we describe a compact representation of
data structures D,. Our solution consists of two key
components: dynamic range reduction to extended rank
space and the compact representation of a data struc-
ture in a bounded universe in the spirit of [4].

Firstly, we apply the reduction to extended rank space
to the elements of P, 1.e. we store the elements of range-
reduced set P in the data structure. W.l.o.g., we assume
that all points have different y-coordinates. Then each
point in P can be identified by its y-coordinate in P
using a table of size O(n). This allows us to store only
the y-coordinates of points in the nodes of T}.

Second, we apply reduction to extended rank space in
each node of the tree T but in the root node r: If v is a
child of r, there is a mapping f, that assigns to each ele-
ment e € P, stored in v a v-label f(e) € [1,0(|Y,])]. If
u is a child of some non-root node v, there is a mapping
fu that assigns to each element stored in node u a u-
label f,(e) € [1,0(|Yy])]. Thus f, maps the v-labels of
elements in u (that belong to the universe [1, O(|Y,])]) to
u-labels (that belong to the universe [1,O(|Yy])]). Ob-
serve that each v-label together with a node v in which
it 1s stored uniquely identifies a point p € P since all f,,
are bijective. Further in this paper we denote by Y, the
set of v-labels stored in a node v; we denote by Y ,, the
set of v-labels of elements that belong to a child u of v.

We say that element e € Y, corresponds to an element
e’ €Y, (e is the corresponding element of €'), if there is

a path v.ny,ns. ..., ns u between nodes v and u in T}
such that ey, = fon,(€¢'), €ny = fra(€ny); .6 = fulen,)
O €n, = fu_l(e): R fﬁgl(enz):el = fﬁl(em)- In
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other words, ¢ € Y, corresponds to ¢’ € Y, if ¢ and ¢’
are labels of the same point in P.

In the next section we will show that it is possible to
store both f, and D, with O(m) bits, where m is the
number of elements in Y.

Suppose the query [a,b] x [e¢.d] is to be answered;
applying reduction to extended rank space we reduce
it to a query [&,I;} X [écﬂ in P. The search pro-
cedure, described in the previous section, starts at
the root r of T,. Using 7, the predecessor of d in
Yy, d, = pred(d,Yy), and the successor of ¢ in Y,
¢y = suce(ce,Yy) can be found in O(logn) time. If the
search procedure visits a node u that is a child of some
node v, we find succ(cy, Yy o), pred(dy, Yy, ) and set
cu = ful(suee(ey.Yyn)), du = fu(pred(dy, Yy ). The
predecessor and successor queries can be answered in
O(loglogn) time using Lemma 2.

If the range of node u is contained in [a, b], we identify
all elements in Y, between ¢, and d,,. A label e € Y, 1s
in the interval [c,, d,] if and only if the corresponding
clement ¢, € Y, is in the interval [¢,d]. In this way
we can find the labels of all points in [a,b] x [¢.d] in
O(logn + k) time. For each e € Yy, ¢y < e < dy, we
determine its “original” coordinates, i.e. we find the
element ¢, in Y, that corresponds to ¢ and a point in P
with y-coordinate e,.

To find e, for some label e € V,,, we apply inverse
range reduction. That is, we compute e,, = f;!(e),

are nodes in T, on the path from u to the root r. It will
be shown in Lemma 3 that each f;!(e) can be com-
puted in O(loglogn) time. This would incur a penalty
of O(log nloglogn) for each point in the answer. The
penalty can be sufficiently reduced if we store for the el-
ements in some nodes u the corresponding elements in
Y,» where u’ is an ancestor of u on some higher level (we
say that a node u is on level d if the path from u to the
root consists of d edges). For each e € V), and for every
node u on level | = t|v/logn], t = 1,2,.. . we store the
corresponding element of Y, where v’ is the ascendant
of u on level (¢ —1)]y/logn|. Suppose we look for the
element e, corresponding to some e € Y,, for some node
u. Then we can find in O(y/Tog n loglog n) time e, that
corresponds to the ancestor u’ of u on level ¢|/Togn|
for some t. Once e, 1s known, we can find e, in time
O(+/lognloglogn). Tt will be shown in Lemma 3 that
each data structure in a node u that stores for each
e € Yy, the corresponding element ¢/ € Y, where v’ is
situated |/Togn| levels ahove u requires O(]Y,,|v/logn)
bits. Since the total number of elements in all such data
structures is O(ny/logn), these additional data struc-
tures use O(nlogn) bits. We can reduce the penalty
for each point in the answer from O(y/logn loglogn)
to O(log'/* nloglog n) using O(n logn) additional bits:
For each e € Y, where u is on level tUogl/4 n| we

store the corresponding element e, € Y,/ for v’ on level
(t —1)[log!/*n|. Yor each e € Y, where u is on level
tLlog3/4 n] we store the corresponding element e, € Yy
for u” on level (& — 1)|[log®*n|. For each ¢ € Y, for
some node u we compute the corresponding e, for v’
on level 11 Llog1/4 n], then compute e, that corresponds
to ey and belongs to a node on level ¢4 Uogl/2 n], then
compute e, that corresponds to ey~ and belongs to a
node on level 3 Llog3/4 n] for some 1,15, 13; finally, we
compute e, that corresponds to eyn. The four above
steps take time O(logl/4 nloglogn).

We can repeat the above trick p times and ob-
tain a data structure that uses O(2Pnlogn) bits and
answers range reporting queries in O(lognloglogn +
k(2P) log'/*" nloglog n) time. By choosing p =
log(1/¢’) for some ¢’ < ¢, we obtain the time bounds
stated in the introduction.

5 Analysis

Lemma 3 Given a set S C U = [1,0(m)] such that
|S| = m and an order-preserving mapping f @ S —
[1, Ny] where Ny, is a function of m, S can be stored
in a data structure A using O(mlog %) bats so that:
(a) Given e € U we can determine whether e € S and
if e € S find a pointer to e in A in O(1) time

(b) Given a pointer to element e € S;, f(e) can be com-
puted and changed in O(loglogn) time

(¢) Given a pointer to pred(e,S) fore & S and f €
[1,0(Ny,)] such that f(pred(e, S)) < f' < f(succ(e, S))
a new element e with f(e) = f' can be inserted into A
in O(logm) time. Given a pointer to e € S, e can be
deleted from A in O(logm) time.

Proof. The data structure A can be constructed using
a slight modification of the approach of [4] and some
additional tricks.

We maintain the elements of S as a doubly-linked list
of blocks L.. Each node in the list L, stores a block
B; that consists of elements e;7 < €52 < ... < e5,.
Blocks B; are organized in exactly the same way as in
[4]. We store the value of the first element in a block
with O(logm) bits; other values are difference coded,
i.e. we store the differences e; ; — e; ;1 between con-
secutive elements in the block. All differences are en-
coded using a logarithmic code, so that the difference
€;; — €3 j—1 can be encoded with log(e; ; — €; ;1) bits.
We choose the number of elements in a block B; so that
Z?;Q log(e; ; — €ij—1) = O(logm). For each block B;
we store the number of elements in B; with O(loglog m)
bits (since b; = O(logm)). We can insert and delete el-
ements into a block, split a block into two blocks, and
merge two blocks in O(1) time; we can also find the
predecessor and the successor of v € U in a block Bj,
and the k-th element in a block B; in O(1) time. (see
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[4] for the proof). The values f(e) for e € S are also
stored in a list of blocks L organized in the same way
as L. but with blocks of size O(log Ny,). Observe that
elements e; 1, ..., ¢€;p, are stored in one block in L, but
flei1) ..., fless,) may be stored in a number of differ-
ent blocks of Ly. We will describe in the full version of
this paper how for any e € L, f(e) € Ly can be found.

All blocks L, and L; take O(mlog N—n;") bits and up-
dates of individual blocks in L, and L; can be per-
formed in O(1) time given a pointer to a (predecessor)
of the updated element (a proof can be found in [4]). A
complete description of update operations will be given
in the full version of this paper. A pointer to an element
e € S consists of a pointer to the block B; in which e is
stored. and the index of e in B;.

We split the universe U into O(m/logm) intervals
of size logm, and we store an array V|| with entries
that correspond to those intervals: V[i] contains a
pointer to the first element in L. that belongs to interval
[ilogm, (i+1)logm] or NULL if [ilogm, (i+1) log m]N
S = 0. If some e € SN[ilogm, (i+1) logm] is stored in a
block B;, all other elements in SN [ilogm, (i + 1) log m]
are stored in a constant number of blocks that follow
B; in L.. To determine for some v € U, whether v be-
longs to S. we check a constant number of blocks after
Viv/ logm].

O

Now we give a brief sketch of the space and update
time analysis of our data structure. A detailed descrip-
tion will be given in the full version of this paper. Using
Lemma 3 we can store for each node u the set Y,, and the
mapping f,, using O(|Yy]) bits. The inverse mappings
J~1(u) can also be stored with O(n) bits. We can store
for all elements in some node u on level | the correspond-
ing elements on level I’ using O(n(l—1")) bits. Therefore
our data structure uses O(nlogn) bits or O(n) words of
size logn.

When a new point (z,y) is inserted into P, we update
the information for all nodes T, whose range contains
x. For every such node u in T, we update the data
stored in the data structure D, and the mapping f,.
According to Lemma 1 we can update f,, by changing
the labels of O(log® n) elements in Y,,. This means we
must delete and insert O(log® n) elements in D,, and
this takes O(log2 nloglogn) time according to Lemma
2. Since there are O(log n) nodes « whose range contains
z, an insertion takes O(log® n loglog n) time. Deletions
can be processed in the same way as insertions.

We also rebalance the tree T;: rebalancing in WBB
tree is done by splitting nodes, and if a node u contains
w elements it is rebuilt only once in a series of Q(w)
updates affecting the node u (see [1] for details). When
u 1s split, we rebuild all data structures in all children
of w in O(wlogn) time. Since every update operation
affects O(logn) nodes in a WBB tree, the amortized

162

cost incurred by rebalancing is O(log2 n). Thus our data
structure can be updated in O(log® nloglog n) time.

6 Conclusion

We presented a linear space dynamic data structure
that answers emptiness and one-reporting queries in
O(log nloglogn) time. Existence of the linear space dy-
namic data structure with optimal O(logn) query time
is an interesting open question.
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