
CCCG 2006, Kingston, Ontario, August 14–16, 2006

An O(n log n) Algorithm for the All-Farthest-Segments Problem for a Planar
Set of Points

R. L. Scot Drysdale∗ Asish Mukhopadhyay†

Abstract

In this paper, we propose an algorithm for computing
the farthest-segment Voronoi diagram for the edges of a
convex polygon and apply this to obtain an O(n log n)
algorithm for the following proximity problem: Given
a set P of n(> 2) points in the plane, we have O(n2)
implicitly defined segments on pairs of points. For each
point p ∈ P , find a segment from this set of implicitly
defined segments that is farthest from p. We improve
the previously known time bound of O(nh+n log n) for
this problem, where h is the number of vertices on the
convex hull of P .

1 Introduction

There is an extensive literature on Voronoi diagrams
[1, 3], including algorithms for computing farthest-point
and closest-segment diagrams. However, little seems
to be known about the problem of computing farthest-
segment Voronoi diagram for a set of line segments in
the plane. Our particular interest in this paper is the
construction of the farthest-segment Voronoi diagram
for the edges of a convex polygon. This was triggered
by an attempt to improve an O(nh + n log n) time
solution [10] for the following problem: Given a set P
of n(> 2) points in the plane, for each point p ∈ P
find a segment determined by two other points of P
that is farthest from p. The distance from a point p
to a segment is the minimum distance from p to this
segment. Indeed, we have been successful in improving
the time complexity of the latter problem to O(n log n).

The rest of the paper is structured as follows. In the
next section, we briefly review prior work on the farthest
segment Voronoi diagram and the problems of comput-
ing the nearest and farthest segment from among a set of
segments implicitly defined by a planar set of n points.
In the following section we briefly review the algorithm
of Mukhopadhyay et al. [10]. In the fourth section
we outline our improvement to this algorithm, while in
the last two sections we discuss the properties of the

∗Department of Computer Science, Dartmouth College,
scot@cs.dartmouth.edu

†School of Computer Science, University of Windsor,
asishm@cs.uwindsor.ca.

farthest-segment Voronoi diagram for edges of a convex
polygon and an algorithm for its construction.

2 Prior Work

While there appear to be no references in the literature
to the problem of computing the farthest-segment
Voronoi diagram of a given set of line segments,
the work by Barequet et al. [2] discusses how to
compute what are called 2-site Voronoi diagrams;
various distance functions from an arbitrary point in
the plane to pairs of points taken from of a set of n
sites are considered. One distance function considered
is the distance to the segment defined by a pair of
sites, but the diagram they consider is for all

(n
2

)

possible segments as opposed to a selected set of
segments. For the case when all points are on a convex
polygon, their farthest-pair diagram is equivalent to
the farthest-segment Voronoi diagram for edges of the
polygon. Several of the properties that they derive for
their diagram therefore apply to ours. They give no
explicit algorithm for computing this diagram.

For the nearest version of the above proximity problem,
Daescu and Luo [4] presented an O(n log n) algorithm;
Duffy et al [8] presented an O(n2) algorithm for the
all-nearest version, and also provided evidence that this
might be an Θ(n2)-hard problem. Daescu and Luo [4]
also presented an O(n log n) algorithm for the farthest
version of this problem (see also [5]). Mukhopadhyay et
al [10] showed that the all-farthest version of the prob-
lem can be solved in O(nh+n log n) time, where h is the
number of vertices on the convex hull of the n points.

3 The Previous Algorithm

In [10], the authors give a simple O(nh + n log n)
algorithm for solving the all-farthest-segments problem.
If pjpk is a farthest segment from the point pi, it is
classified as a member of one of two groups, depending
on the location of ci, the closest point of pjpk to pi.
Type A segments are those where ci is an interior point
of pjpk, while type B segments are those where ci is an
endpoint of pjpk.

 185

18th Canadian Conference on Computational Geometry, 2006

They prove the following lemmas that characterize type
A and type B segments, assuming that no three points
are co-linear (which we will also assume).

Lemma 1 If the segment pjpk is a type A farthest seg-
ment for a point pi then pjpk is an edge on the convex
hull of P .

Lemma 2 If the segment pjpk is a type B farthest seg-
ment for a point pi then either pjpk is an edge on the
convex hull of P or pj is farthest from pi among all the
points that are interior to the convex hull of the point
set, while pk is a convex hull vertex of P .

This leads to their algorithm. For each point pi they
find the convex hull edge ei that is farthest from pi and
the interior point pj that is farthest from pi. Given pj

they find a convex hull vertex pk whose distance from
pi is greater than pj ’s distance from pi. They report
the farther of ei and pjpk.

They compute the farthest point from pi via point loca-
tion in a pre-computed farthest-point Voronoi diagram
of the points of P which lie interior to the convex hull
of P . This requires O(log n) time per point. They find
ei and pk by a linear search of the convex hull. This
requires O(h) per point. Thus their overall run-time is
in O(nh + n log n).

4 Our Algorithm

We use the algorithm described above, but improve the
run time by avoiding a linear search of the convex hull.

To find pk, a hull point farther from pi than pj is, we
find the intersection of the convex hull and the ray →

pipj .
We consider the endpoints of the segment intersected
by the ray.

Lemma 3 The farther of the two endpoints from pi

must be further from pi than pj is, and that endpoint
is chosen as pk.

Proof: The ray →
pipj intersects the convex hull

boundary that lies in the half-plane, defined by a
line orthogonal to pj , that does not contain pi (see
Fig. 1). Now, at least one of the endpoints of the
convex hull edge that the ray intersects must lie in the
same half-plane by convexity arguments. If pk is this
endpoint then the angle # pipjpk is obtuse and hence
pipk > pipj . If the other endpoint of the intersected
segment also belongs to this half-plane, the same
argument also applies to it; in this case we set pk to be
the one that is farther from pi. !

Because the convex hull is a convex polygon, we can
use binary search to find the intersection of the ray and

pk

pi

pj

Figure 1: The point pk is farther from pi than pj

the convex hull. This takes O(log h) time.

To find ei, the edge of the convex hull furthest from
pi, we locate pi in a farthest-segment Voronoi diagram
of the edges of the convex hull. In the next section we
show that this diagram has complexity O(h), so the
point location can be done in O(log h) time. We also
show that the diagram can be computed in O(h log h)
time.

The preprocessing requires computing a farthest-point
Voronoi diagram of the points of P that lie interior to
the convex hull of P and a farthest-segment Voronoi
diagram of the edges of the convex hull of P . This takes
a total of O(n log n) time. For each point we perform a
point location in both Voronoi diagrams and a binary
search, requiring O(log n) time per point. The entire
algorithm therefore runs in O(n log n) time.

5 Properties of the farthest-segment Voronoi dia-
gram

We define the farthest-segment Voronoi diagram in the
standard way. Given a set S of n line segments in the
plane, we define a (possibly empty) region for each
line segment s ∈ S. Let d(p, s) to be the Euclidean
distance from point p to the closest point on segment
s. The Voronoi region of a segment s is defined to be
V (s) = {p|d(p, s) ≥ d(p, s′)∀s′ ∈ S}.

This gives a diagram where points equidistant from
two or more segments lie in multiple regions. For
disjoint segments these regions of overlap consist of
one-dimensional curves: rays, segments, and pieces of
parabolas. These curves form the boundaries between
regions. However, if two segments can share an end-
point then all points closer to the shared endpoint than
to the interior of the segments are equidistant from both
segments, and the overlap contains a two-dimensional
cone. To avoid the computational problems that arise
from this we somewhat arbitrarily define the angle
bisector as the boundary curve between the points
“closer” to one segment and the points “closer” to
the other segment. (Eliminating this two-dimensional

186

CCCG 2006, Kingston, Ontario, August 14–16, 2006

overlap region by defining a boundary curve is standard
when computing Voronoi diagrams of segments [6, 7, 9]).

The general farthest-segment Voronoi diagram has
properties that are quite different from those of the
farthest-point Voronoi diagrams. In the farthest-point
diagram a point’s region is always convex, and only
those points lying on the convex hull have non-empty
regions [11]. In contrast, in the farthest-segment
Voronoi diagram, segments which have no points on
the convex hull can have non-empty regions and the
region assigned to a segment can be disconnected.
There are no published algorithms for computing the
general farthest-segment Voronoi diagram.

However, for our application we need only compute
the farthest-segment Voronoi diagram for the edges
a convex polygon. This greatly simplifies the task.
Figure 2 shows the farthest-segment Voronoi diagram
of a set of line segments that form a quadrilateral.

A’s region

C’s region D’s region

B’s region

A B

C
D

Figure 2: Farthest-segment Voronoi diagram for a
quadrilateral

We first prove some properties of the farthest-segment
Voronoi diagram for this special case. The facts that
regions are infinite and that the size of the diagram is
O(n) also follow from Barequet et al. [2] .

Lemma 4 In the farthest-segment Voronoi diagram for
a convex polygon each segment s has a non-empty, con-
nected, infinite Voronoi region, V (s). The Voronoi re-
gion boundaries of the diagram form a tree and the size
of the diagram is O(n).

Proof: Let s be a an edge of the convex polygon
and l its supporting line. To prove our claim about
s, consider any ray r perpendicular to s that passes
through the interior of the polygon. Consider a circle
C tangent to s centered on r. As its center moves
away from s (see Fig. 3), its radius increases, and C
approaches l in the limit. Since the polygon is convex,
all other segments have their interiors in the half-plane

C

s

l

r

Figure 3: A circle C tangent to s that intersects all edges
of the convex hull

that is bounded by l and contains the interior of the
polygon. Therefore, when C is large enough at least
one point of every other segment will lie within C, and
all points on r further from s than the center of this
circle will be within V (s). This proves that V (s) is
non-empty and infinite.

To prove that V (s) is connected, we show that given
any two points p and q in V (s), we can construct a
path between them lies entirely in V (s). Consider the
ray r with endpoint p that is perpendicular to l and
points away from l. We claim that r lies within V (s).
To see this, consider the circle C centered at p which
passes through the nearest point in s. If C is tangent
to s then by the previous argument all points on the
ray r from p, pointing away from s, are in V (s).

Otherwise, C will intersect l twice, once at an endpoint
of s and once somewhere else. As the center of C moves
away from l along r the two intersection points will
remain the same. The part of C on the far side of l
will shrink and the part of C on the near side of l will
grow. Because none of the segments can lie on the far
side of l any segment points in the circle centered at p
will also lie in every larger circle. Therefore all points
on r will be in V (p).

We further note that because C approaches l in the
limit it is possible to find a point on r such that the
circle centered there that is tangent to l contains a
point from every other segment. If we construct a ray r′

at q in the same way we constructed r at p then r′ will
lie completely in V (s), and we can find a circle centered
on r′ tangent to l that contains a point from every
other segment. If we slide the larger of these two circles
along l from one point of tangency to the other, from
continuity arguments, this circle will always contain at
least one point of every other segment. Therefore the
segment s′ traced by the center of the sliding circle will
lie in V (s). This gives us a path from p to q - go out r
to s′, cross s′ to r′, and follow r′ back down to q. This

 187

18th Canadian Conference on Computational Geometry, 2006

shows that V (s) is connected.

A similar argument can be used to show that each re-
gion’s boundary is connected. Each segment’s region
shares a boundary with both of its neighboring seg-
ments, so it is possible to get from any region to any
other region by following segments around the polygon.
A connected boundary with no finite regions can have
no cycles, so must be a tree. The diagram is a planar
graph and the bisector between two segments contains
a constant number of curves. From these facts we can
conclude that the diagram has size O(n). !

6 Computing the farthest-segment Voronoi diagram
of a convex polygon

We can compute the farthest-segment Voronoi diagram
using a divide-and-conquer algorithm. The final merge
joins two halves of the polygon. Earlier merges join two
consecutive chains of segments around the polygon.

There are two parts to this merge. The first is finding
an infinite part of the bisector curve between the two
sets of segments to be merged. This becomes the
starting curve for the merge. The two parts of the
convex polygon to be merged share a vertex (or two
in the case of the final merge). The two segments
adjacent to this vertex will each have an infinite region,
and these regions will be adjacent. Therefore there will
be an infinite bisector separating these two regions.
The final portion of this bisector will be a part of of
the perpendicular bisector of the non-shared segment
endpoints. It will go to infinity in the direction away
from the segments. This is because the two segment
endpoints are the closest points on the segments in this
direction.

The second part is to do the standard segment Voronoi
diagram merge step, tracing the bisector between
points closer to a segment in the first group and points
closer to a segment in the second group. This merge
uses a clockwise/counter-clockwise merge step that
is very similar to the one presented in the literature
for closest-segment Voronoi diagrams [6, 7, 9]. The
one difference is that the farthest-segment diagram
merge keeps the parts of the merged diagrams that
the closest-segment merge discards and discards the
portions that the closest-segment merge keeps. (This
is exactly the same relationship that the merge step
for computing the farthest-point Voronoi diagram has
to the merge step for computing the closest-point
diagram.)

The papers on computing closest-segment Voronoi di-
agrams prove that the merge procedure traces the bi-

sector curve correctly. The only difficulty that arises is
“islands,” which are closed loops of the bisector curve.
Lemma 4 guarantees that there will be no islands, be-
cause all regions are infinite.

Theorem 5 A divide-and-conquer algorithm can be
used to compute the farthest-segment Voronoi diagram
of an n-sided convex polygon in time O(n log n).

Proof: The algorithm and a proof of its correctness are
given above. The standard segment Voronoi diagram
merge step runs in time proportional to the size of the
two diagrams to be merged. Therefore the divide-and-
conquer algorithm runs in O(n log n) time. !

References

[1] F. Aurenhammer. Voronoi diagrams - a survey of a
fundamental geometric structure. ACM Comput. Surv.,
23(3):345–405, 1991.

[2] G. Barequet, M. T. Dickerson, and R. L. S. Drysdale.
2-point site voronoi diagrams. Discrete Applied Mathe-
matics, 122:37–54, 2002.

[3] B. Boots, A. Okabe, and K. Sugihara. Spatial Tessela-
tions: Concepts and Applications of Voronoi Diagrams.
John Wiley, 1992.

[4] O. Daescu and J. Luo. Proximity problems on line
segments spanned by points. In Proc. of 14th Annual
Fall Workshop on Computational Geometry, pages 9–
10, 2004.

[5] O. Daescu, J. Luo, and D. M. Mount. Proximity prob-
lems on line segments spanned by points. In Proc. of
17th Canadian Conference on Computational Geome-
try, pages 224–228, 2005.

[6] R. Drysdale. Generalized Voronoi Diagrams and Geo-
metric Searching. Stan-cs-79-705, Department of Com-
puter Science, Stanford University, Stanford, Califor-
nia, 1979.

[7] R. Drysdale and D. Lee. Generalized voronoi diagrams
in the plane. In Proc. of the 16th Allerton Conference
on Communications, Control, Computing, pages 833–
842, Oct 4-6 1978.

[8] K. Duffy, C. McAloney, H. Meijer, and D. Rappaport.
Closest segments. In Proc. of CCCG 2005, pages 229–
231, 2005.

[9] D. Lee and R. Drysdale. Generalization of voronoi di-
agrams in the plane. SIAM J. Comput., 10(1):73–87,
1981.

[10] A. Mukhopadhyay, S. Chatterjee, and B. Lafreniere.
On the all-farthest-segments problem for a planar set
of points. In Abstracts of the 22nd Eoropean Workshop
on Computational Geometry, pages 47–49, March 27-29
2006.

[11] M. I. Shamos and D. Hoey. Closest-point problems. In
Proc. 16th Annu. IEEE Sympos. Found. Comput. Sci.,
pages 151–162, 1975.

188

