
CCCG 2006, Kingston, Ontario, August 14–16, 2006

(Approximate) Conic Nearest Neighbors and the induced Voronoi Diagram

Stefan Funke†∗ Theocharis Malamatos† Domagoj Matijevic† Nicola Wolpert†

Abstract

For a given point set in Euclidean space we consider the
problem of finding (approximate) nearest neighbors of a
query point but restricting only to points that lie within a
fixed cone with apex at the query point.

We investigate the structure of the Voronoi diagram in-
duced by this notion of proximity and present approximate
and exact data structures for answering cone-restricted near-
est neighbor queries. In particular we develop an approx-
imate Voronoi diagram of size O((n/εd) log(1/ε)) that can
be used to answer cone-restricted nearest neighbor queries
in O(log(n/ε)) time.

1 Introduction

Answering nearest neighbor queries for a given point set S
in a (low-dimensional) Euclidean space is a classical prob-
lem in computational geometry and many algorithms have
been proposed to solve that problem. The natural datas-
tructure to solve it is the so-called Voronoi diagram V D(S).
V D(S) is a decomposition of Rd into Voronoi cells such that
for the cell V (s,S) of point s ∈ S we have V (s,S) := {p ∈
Rd |d(p,s) ≤ d(p,s′)∀s′ ∈ S}. Unfortunately it is easy to
come up with point sets for which the Voronoi diagram has
size Ω(n#d/2$), so its use to answer nearest neighbor queries
in dimensions d > 2 is rather unattractive. The lack of
other methods that guarantee efficient (i.e. poly-logarithmic)
query times has led to the introduction of the notion of ap-
proximate nearest neighbors. For a query point q, a point
s ∈ S is a (1+ ε) approximate nearest neighbor (ANN) for q
if d(q,s)≤ d(q,s′) ·(1+ε)∀s′ ∈ S. Not insisting on the exact
nearest neighbor has allowed for datastructures of near-linear
size and logarithmic query time, e.g. [AMN+98], [DGK99].
Similarly, the notion of an approximate Voronoi diagram
(AVD) has allowed for space decompositions of near-linear
size, e.g. by Har-Peled [Har01] and Arya and Malamatos
[AM02]. Here each cell C of this decomposition has a point
N(C)∈ S assigned such that ∀q∈ C , N(C) is an approximate
nearest neighbor (ANN) for q. In all these papers as well as
in our work the dimension d is treated as a constant. In this
paper we consider a variant of the nearest neighbor search
problem: given a set of points S and a cone C we want to
preprocess S such that for a query point q we can determine
the (approximate) nearest neighbor sq ∈ S that is contained in

∗This work was done while the first author was member of Prof. Leoni-
das Guibas’ group at the Computer Science Department, Stanford Universi-
ty, USA

†Max-Planck-Institut f. Informatik, Saarbrücken, Germany,
{funke,tmalamat,dmatijev,wolpert}@mpi-sb.mpg.de

the cone C with apex at q. This class of problems goes back
to Yao [Yao82] who showed that the conic nearest neighbors
(cNN), using a fan of cones, can be used to find an O(n)-size
supergraph of the minimum spanning tree. This construc-
tion is known today in the wireless literature as the Yao-
graphs or somethimes also as Θ-graphs. We want to note
though, that this approach answers cNN in any fixed dimen-
sion in sublinear time for arbitrary query point and direction
but fixed angle. Several other authors showed that a similar
construction, using a fan of cones of small angular diameter,
yields a geometric spanner (see [KG92], [RS91], [AMS94],
[Cla87]). Funke and Ramos [FR02] showed how to prepro-
cess S in O(n polylog n) time and determine for each s ∈ S
its cNN in S. Their approach does not provide a query
datastructure which can determine the conic nearest neigh-
bor for a point q /∈ S. Attempts to instrument directly some
of the known datastructures for approximate nearest neigh-
bor queries ([AMN+98], [DGK99]) to solve the case of cone
queries failed so far, since a certain crucial packing property
necessary for these approaches does not seem to hold in case
of cones. In this paper we develop datastructures for an-
swering exact cone queries in sublinear time (Section 2) and
propose near-linear size datastructures for answering cone
queries for a fixed cone approximately and construct an ap-
proximate conic Voronoi diagram of size O((n/εd) log(1/ε)
which allows for query time O(log(n/ε)) (Section 3). The
latter is the main contribution of our paper.

The original motivation for this work stems from a prob-
lem in surface reconstruction/analysis of point cloud data
(see e.g. [FR02]).

This extended abstract omits most proofs and details
which can be found in the long version of the paper1.

2 Exact cNN Queries for arbitrary Query, Angle, and
Direction

Let S be a set of n distinct points (sites) in Rd . Furthermore,
let V be a set of d linearly independent vectors v1, . . . ,vd ∈
Rd . We define the set C(V) := {v ∈ Rd |v = ∑i λivi, λi ≥ 0}.
For any point q ∈ Rd we define the cone of q as C(q,V) :=
{x ∈ Rd | x = q + v, v ∈ C(V)}. We also define the reverse
cone of q as C(q,V) := {x ∈ Rd | x = q − v, v ∈ C(V)}.
Note that we use simplicial cones. Suppose we want to
construct a data structure such that for any cone C(q,V)
we can efficiently report the site sq ∈ S∩C(q,V) such that
d(q,sq) ≤ d(q,s) for any other s ∈ S∩C(q,V). We say that
sq is a conic nearest neighbor (cNN) of q with respect to

1For the long version of the paper see http://www.mpi-
inf.mpg.de/ dmatijev/papers/ConeQueries.ps.gz

 23

18th Canadian Conference on Computational Geometry, 2006

C(q,V). The solution to our problem mainly relies on the
well known Partition theorem which has been used in the
context of range searching ([Mat92]). We cite the theorem
in the following:
Theorem 1 Any set S of n points in Rd can be partitioned
into O(r) simplices, such that every simplex contains be-
tween n/r and 2n/r points and every hyperplane crosses at
most O(r1−1/d) simplices (crossing number). Moreover, for
any ψ > 0 such a simplicial partition can be constructed in
O(n1+ψ) time.
Using this theorem recursively one can construct a tree
which is called a partition tree (e.g. the root of the tree,
associated with S, has O(r) children, each associated with
a simplex from the first level, and so on). Observe that if
r is a constant, partition tree is of O(n) size and it can be
constructed in time O(n1+ψ) for any ψ > 0. With the help of
such tree it is well-known that one can answer range counting
queries in O(n) space and O(n(1−1/d)+ψ) time in Rd , which
is very close to the best possible. The good news for us is
that we can use almost the same data structure to answer
cone queries. We first deal with the 2D case and then show
that a similar approach works in higher dimension as well.
Lemma 2 Let S ⊂ R2 be a set of points. For any ψ > 0,
there is a data structure of O(n logn) size and O(n1+ψ) con-
struction time such that for any point q and an arbitrary cone
C(q,V) one can compute cNN of q in time O(n1/2+ψ).

In principle our ideas developed so far for computing cNN
of a point q in the plane work for cNN in arbitrary dimension.
The disadvantage is the high space complexity for storing the
Voronoi diagrams associated with each triangle. The space
complexity for a Voronoi diagram of n points is Ω(n#d/2$).
However, one can avoid storing the Voronoi diagrams at the
cost of moving to the higher-dimensional space Rd+1 instead
of Rd .
Lemma 3 Let S ⊂ Rd be a set of points. For any ψ > 0,
there is a data structure of O(n) size and O(n1+ψ) con-
struction time such that for any point q ∈ Rd and an ar-
bitrary cone C(q,V) one can compute cNN of q in time
O(n(1−1/(d+1))+ψ).

The techniques presented in this section only allow for
sublinear but not polylogarithmic query times. Since in prac-
tice this is rather prohibitive, we will now present datastruc-
tures that guarantee polylogarithmic query times at the cost
of only approximate answers.

3 Approximate Conic Voronoi diagrams and NN
Queries

In this section we relax the problem in a sense that when
querying with a point q we do not insist on receiving the
exact nearest neighbor from the datastructure. In particular
we allow as output a point that is slightly (by a factor of
(1 + ε)) further than the true conic nearest neighbor and –
for our second approach – slightly outside (by an angle of
O(ε)) of the cone with apex at q. Let V be a set of d linear
ind. vectors v1, . . . ,vd ∈ Rd . Let s ∈ Rd be some point and

bi = vT
i s for i = 1, . . .d. We define the cone of s w.r.t. V

as cone(s) := {p ∈ Rd : ∀i : vT
i p ≤ bi}. We also define the

reverse cone of s w.r.t. V as cone(s) := {p ∈ Rd : ∀i : vT
i p ≥

bi}. Note that we use here a different definition of cone – it
is expressed wrt to the normals of the bounding hyperplanes.
We call the cone in which answers to a query q should lie the
reverse cone. In the following we fix a set of l.i. vectors V
and aim to preprocess a set S of points in Rd such that for
any given query point q we can find an approximate conic
nearest neighbor (cANN) sq with the following properties:

• if dmin = min{d(s,q) : s ∈ S∩cone(q)}, then d(sq,q)≤
(1+ ε)dmin

• either sq ∈ S∩cone(q) or the angle minp∈cone(q) ∠sqqp.
is O(ε).

Intuitively the former guarantees that the returned point is
not too far away compared to the ’true’ conic nearest neigh-
bor, the latter guarantees that it ’almost’ lies within the de-
sired reverse cone of the query point.

The first approach is based on a simple construction of
nested range trees and returns points that lie exactly in
the cone of query point q, and only approximates the dis-
tance. The second approach is based on a conic approximate
Voronoi diagram (cAVD) – a decomposition of the underly-
ing space – and allows for very fast query times and rather
low space requirements.

3.1 Reduction to ’orthogonal’ Range Queries in a
skewed Coordinate System

Here we briefly sketch a method to solve approximate conic
nearest neighbor queries using nested range trees. For con-
venience we assume that the respective cone which we want
to query is reasonably small, i.e. ∀vi,v j ∈ V : ∠viv j ≥ π/4.
If this is not the case we could always subdivide the desired
cone into a constant number of smaller cones.

The idea is to derive new coordinates for all s ∈ S based
on the set of hyperplanes V forming the cone. We set
the new ith coordinate sN

i of a point s = (s1, . . . ,sd) to be
sN

i := vT
i s. Now, if we have a query point q with respective

new coordinates (qN
1 , . . .qN

d) all points p within its reverse
cone have new coordinates pN

i ≥ qN
i . That is we can deter-

mine them using a nested range query for points of the form
[qN

1 ,∞], . . . , [qN
d ,∞] and obtain all points within the cone(q)

in O(logd n) batches. It remains to extract an (approxi-
mately) closest amongst them. Let −→r be a vector starting at
(0, . . . ,0) that is contained in the reverse cone of (0, . . . ,0).
We order the sets associated with the internal nodes of the
last level of our range tree hierarchy according to the direc-
tion −→r . Let p1 be the point amongst the O(logd n) batches
that minimizes −→r T p (this can be found by inspecting the
first element in each batch, as they are stored sorted accord-
ing to −→r T p). It’s easy to see that for cone angles of less than
π/4, d(q, p1) ≤ d(q, p) ·3/2 for all p ∈ cone(q), so p1 is al-
ready a 3/2 approximation. That is we have a upper bound of
dup = d(q, p1) and a lower bound of dlow = d(q, p1) · 2/3
for the distance of the conic nearest neighbor of q. Now

24

CCCG 2006, Kingston, Ontario, August 14–16, 2006

consider the following part of the reverse cone of q: G :=
cone(q)∩B(q,dup/(1 + ε))−B(q,dlow). Using a standard
packing argument it is easy to see that we can certify using
O(1/εd) many cone queries whether G does not contain any
point (in which case the point determining the current upper
bound is a (1 + ε) cANN) or whether G contains a point (in
which case we improve the upper bound by a factor of at
least (1+ε)). Hence after at most O(log1+ε(3/2)) = O(1/ε)
iterations we arrive at a (1+ ε) cANN. Therefore the overall
query time is O((1/εd+1) logd n).
Theorem 4 Given a set S of points in Rd and a cone defined
by a set of vectors V , we can preprocess them in a datastruc-
ture of size O(n logd n) such that one can determine an cANN
(with no angle error) in time O((1/εd+1) logd n).
We note that using the standard technique of fractional cas-
cading one can improve the query time by a logn factor.

3.2 An approximate conic Voronoi diagram of near-
linear size

For the first part we will borrow some ideas first presented in
[AM02] for construction of (’normal’) approximate Voronoi
diagrams but following more the presentation in [HP].

The overall picture of our construction is as follows:
based on the well-separated pair decomposition (WSPD,
see [CK95]) of the point set S we generate a set of
O((n/εd) log(1/ε)) many grid cells. Some of the grid cells
are marked critical, and some of the cells have a point from
S associated, such that if the smallest of the generated cells
containing a query point q is non-critical and has a point as-
sociated, this point is an approximate conic nearest neighbor
for q (where the approximation is both w.r.t. the angle as well
as the distance). Then in a second step, we treat the critical
cells individually and partition them using a constant num-
ber of hyperplanes. The set of all generated (and possibly
split) cells can then be transformed into a space decomposi-
tion and/or stored in a compressed quadtree (e.g. in [HP]) to
allow for efficient point location in the space decomposition
(query time O(log(n/ε)) and space of O((n/εd) log(1/ε))).

A central component of our construction is the so-called
well-separated pair decomposition (WSPD) of a point set.
For a point set S in Rd and a separation constant s, the
WSPD is a collection of O(nsd) cluster pairs (Ai,Bi), with
Ai,Bi ⊂ S and centers ai ∈ Ai,bi ∈ Bi such that ∀p ∈ Ai :
d(p,ai) ≤ |ab|/s (and likewise for points in Bi). Further-
more, for any two points s, t ∈ S, there exists a unique pair
(Ai,Bi) with s∈Ai and t ∈Bi. In contrast to the constructions
in [AM02] or [HP] we do not rely on a separate query datas-
tructure to determine points associated with single cells, but
rather determine them directly during the construction via a
WSPD of the point set. Assume as in [HP] that the point
set S is contained in a cube of dimensions [0.5− ε,0.5+ ε]d ,
and this cube is a minimum axis-aligned cube for S. For
the rest of the paper we only consider a decomposition or
conic nearest neighbor relationships for points q ∈ [0,1]d

since for points outside this unit cube, we can determine
easily whether they’re contained in an enclosing cone of the

point set S, and then any point in S is a conic approximate
nearest neighbor. Our algorithm constructs cells that arise
in the quadtree (or its higher dimensional equivalent) when
decomposing the unit cube [0,1]d recursively – we call this
the canonical grid and the cells the canonical cells. The
canonical grid Gαi consists of cubes of width/side length
αi (for αi = 2−i, i ∈ N). Hence the constructed cells in
the algorithm are either disjoint, identical or one is con-
tained in the other. We use the notion of an exponential grid
GE(p,r,R,ε) introduced in [HP] around p. Let bi = b(p,ri),
i = 0, . . .)logR/r* be the ball of radius ri = r2i. Define G′

i to
be the set of cells of the canonical grid Gαi that intersect bi
with αi = 2'log(εri/(16d))(. Obviously |G′

i| = O(1/εd). We re-
move from G′

i all cells completely covered by cells of G′
i−1.

Cells that are partially covered by cells in G′
i−1 are replaced

by the cells covering them in G′
i−1. Let Gi be the resulting

set of canonical cells. And let GE(p,r,R,ε) =∪iGi. We have
|GE(p,r,R,ε| = O(ε−d log(R/r)). It can be computed in lin-
ear time in its size.
Stage I of the construction: We first construct a WSPD
for the point set with separation constant 32 and then con-
sider all pairs of the WSPD. A pair (A,B) with represen-
tatives (a,b) ∈ P × P in the WSPD has the property that
∀p ∈ A we have d(p,a) ≤ |ab|/32 (and likewise for B
and b). For each pair (A,B) with representatives a and b,
construct the exponential grid GE(a, |ab|/8,64|ab|/ε,ε) ∪
GE(b, |ab|/8,64|ab|/ε,ε). The idea is now to associate ei-
ther a or b with some of the cells but maintaining the invari-
ant that if a cell C has a (b respectively) associated, then any
point q ∈ C can see a (b respectively) within its reverse cone
or the line between q and a makes an angle of at most O(ε)
with the reverse cone of q. Furthermore some cells (which
might or might not have a or b associated with it, could be
marked as ’critical’). Only cells that are marked as critical or
have a point associated with them are remembered for further
processing. The construction proceeds as follows: Partition
the set of grid cells into Ca (cells that intersect the ball of
radius |ab|/8 around a), Cb (cells that intersect the ball of
radius |ab|/8 around b) and Cx (the remaining cells). Now
determine which cells are ’close’ to the cone for a (likewise
to the cone for b) as follows: A cell C is said to be ’close’ to
the cone of a if ∃p1 ∈ C , p2 ∈ cone(a) : ∠p1ap2 ≤ ε. Now
for all cells C ∈Cx:

• if C is only close to the cone of a, store a with C
• if C is only close to the cone of b, store b with C
• if C is not close to either . . . don’t store anything
• if C is close to both, store either a or b (whichever is

closer to the center of C)
For all cells C ∈ Cb (that is, cells near b), if C is close to
the cone of a, store a with it and if C is close to the cone of
b, mark C as ’critical’ and remember the WSPD pair (A,B)
with it. Do the symmetric thing for all C ∈ Ca. Let C be
a cell created during the processing of WSPD pair (A,B),
N(C) the point stored with it. Then for all points q ∈ C it
should be possible to see that N(C) either lies in the reverse
cone of q or is at most an angle of 2ε away from it.

 25

18th Canadian Conference on Computational Geometry, 2006

At this point we have not claimed anything about the dis-
tances of the associated points: collect all the cells created
(i.e. that have a point associated or have been marked crit-
ical) in the above step (some cells might be created several
times) and aggregate the conic neighbor for some cell C as
follows: cell C keeps the closest (to its center) point stored
with C or one of its ancestors (i.e. cells that contain C). This
step completely ignores the fact whether cells are marked
’critical’ or not. ’Criticality’ is also not inherited, i.e. a cell
C is called critical iff all of its instances created were crit-
ical (no dependence on ancestors or children). Clearly the
Lemma above still remains true and the distance of the point
associated with a cell can only decrease.

Let q be a query point, and C the smallest cell generated
which contains q. We claim that if C is not marked ’critical’,
the point N(C) stored with C is a (1 + O(ε)) cANN with
angle error of O(ε).

If the smallest generated cell C containing a query point q
is not critical, the point stored with that cell is a valid cANN,
i.e. it has distance at most (1 + ε) times the distance of the
exact cNN, and the returned point lies at most an angle of 2ε
off the reverse cone with apex at q.

Stage II of the Construction: In the following we will
refine the construction to cope with the case that the query
point ends up in a critical cell.
Lemma 5 Let C be a critical cell that is also the smallest
cell containing some query point q, assume w.l.o.g. C was
generated and declared critical while processing WSPD pair
(A,B) with representatives (a,b) and d(C ,a) < |ab|/8. If the
true conic nearest neighbor of q is not in the set A but exists,
then C has already an approximate conic nearest neighbor
for q associated.

So we know that for points q for which a critical cell C is
the smallest containing cell, the conic nearest neighbor is in
A (the cluster whose representative a marked C as critical) or
it is already associated with C .

Let us distinguish two cases: |A| = 1: we can simply split
the relevant region of C by the planes of the cone of a and
assign a to one part, the ’old’ representative (if existant) to
the other part.
|A| > 1: Let δ be the minimum distance of a part of C to

a, that is not covered by smaller cells. If δ = 0 (i.e. a is
not covered by a smaller cell), another point in A together
with a would have induced a finer grid cell at a. Hence as-
sume δ > 0. Then the diameter of point set A must be less
than δε. Otherwise consider the WSPD pair (E,F) sepa-
rating a and the point x ∈ A furthest from a. Then either
the cell C is non-critical for (E,F) (contradiction to the ini-
tial assumption) or it is covered by smaller cells induced by
(E,F). So for |A| > 1 we can construct an enlarged cone
econe(a) := {p : ∠pap′ ≤ ε|p′ ∈ cone(a)} use this to parti-
tion the relevant part of cell C . Any point in C uncovered
by smaller cells but contained in the enlarged cone of a has
a as a cANN: distance wise and angle-wise. We note that
the complexity of the intersection of relevant parts of C with
the enlarged cone can be quite considerable (in particular, if

C has many direct descendants). But since every cell has
only one direct parent and the complexity of the intersection
between a cube and d hyperplanes is constant for constant
d, the overall complexity of the resulting decomposition re-
mains linear in the number of original cubic cells.
Theorem 6 For a set of points S ⊂ Rd and a cone defined
by d halfspaces, one can compute a decomposition of Rd

into O(n
εd log 1

ε) regions with one associated point ∈ S each,
such that for any point q ∈ Rd , the point associated with the
cell C containing q is a cANN. If C has no point associated,
q has no cNN in S. The space decomposition can be queried
in time O(log(n/ε)) and constructed in O(n

εd log2 n
ε).

Observation: Our (approximate) datastructures that allow
for polylogarithmic query time require a fixed cone during
their construction. One interesting question is to design a
datastructure that could answer queries for variable cones
(like the part.-tree based approach, but the latter has almost-
linear query time).
References

[AM02] S. Arya and T. Malamatos. Linear-size approximate voronoi
diagrams. In Proc. 13th ACM-SIAM Sympos. Discrete Algo-
rithms, pages 147–155, 2002.

[AMN+98] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and
A. Y. Wu. An optimal algorithm for approximate nearest
neighbor searching fixed dimensions. J. ACM, 45(6):891–923,
1998.

[AMS94] S. Arya, D. M. Mount, and M. Smid. Randomized and de-
terministic algorithms for geometric spanners of small diame-
ter. In IEEE Symposium on Foundations of Computer Science,
pages 703–712, 1994.

[CK95] P. B. Callahan and S. R. Kosaraju. Algorithms for dynamic
closest pair and n-body potential fields. In Proc. 6th an-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 263–272, 1995.

[Cla87] K. Clarkson. Approximation algorithms for shortest path mo-
tion planning. In STOC ’87: Proc. 19th annual ACM confer-
ence on Theory of computing, pages 56–65. ACM Press, 1987.

[DGK99] C. A. Duncan, M. T. Goodrich, and S. Kobourov. Balanced
aspect ratio trees: combining the advantages of k-d trees and
octrees. In Proc. 10th annual ACM-SIAM Symp. on Discrete
Algorithms, pages 300–309, 1999.

[FR02] S. Funke and E. A. Ramos. Smooth-surface reconstruction in
near-linear time. In Proc. 13th annual ACM-SIAM Symposium
on Discrete algorithms (SODA’02), pages 781–790, 2002.

[Har01] S. Har-Peled. A replacement for voronoi diagrams of near lin-
ear size. In Proc. 42nd Annu. IEEE Sympos. Found. Comput.
Sci., pages 94–103, 2001.

[HP] S. Har-Peled. Geometric approximation algorithms. Lecture
Notes for CS598, UIUC.

[KG92] J. M. Keil and C. A. Gutwin. Classes of graphs which approx-
imate the complete euclidean graph. Discrete Comput. Geom.,
7(1):13–28, 1992.

[Mat92] J. Matousek. Efficient partition trees. Discrete & Computa-
tional Geometry, 8:315–334, 1992.

[RS91] J. Ruppert and R. Seidel. Approximating the d-dimensional
complete euclidean graph. In Canadian Conf. on Comp. Ge-
ometry, pages 207–210, 1991.

[Yao82] A. Chi-Chih Yao. On constructing minimum spanning trees in
k-dimensional spaces and related problems. SIAM J. Comput.,
11(4):721–736, 1982.

26

