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On Planar Path Transformation
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Abstract

A flip or edge-replacement is considered as a transfor-
mation by which one edge e of a geometric object is re-
moved and an edge f (f != e) is inserted such that the
resulting object belongs to the same class as the original
object. In this paper, we consider Hamiltonian planar
paths as geometric objects. A technique is presented for
transforming a given planar path into another one for a
set S of n points in convex position in the plane. Under
these conditions, we show that any planar path can be
transformed into another planar path by at most 2n− 5
flips. For the case when the points are in general po-
sition we provide experimental results regarding trans-
formability of any planar path into another. We show
that for n ≤ 8 points in general position any two paths
can be transformed into each other. For n points in
convex position we show that there are n2n−2 directed
Hamiltonian planar paths. An algorithm is presented
which uses flips of size 1 and flips of size 2 to generate
all such paths with O(n) time between the generation of
two successive paths.

1 Introduction

The problem of transformations of a certain class of ge-
ometric objects consisting of straight line segments and
points in the plane by applying small changes or flips
(e.g. removing an edge and replacing it with another)
in the object has been studied extensively [1], [2], [4],
[7]. Given any two objects, two usual questions that
are studied are whether the two objects can be trans-
formed to each other and how many transformations
are required. In this paper, we study the transforma-
tion of Hamiltonian planar paths using flips for a set
of points in convex position and in general position in
the plane and also determine bounds on the number of
transformations needed.

Although flips are studied extensively in triangula-
tions, there are a number of other examples such as
spanning trees, Euclidean matchings [5, 6], linked-edge
lists, pseudo-triangulations that illustrate this partic-
ular computational problem of transformation related
to flips. Algorithms for such transformation as well as
lower and upper bounds of achieving those transforma-
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tion results are presented in [2]-[7]. One of the best-
known results in the case of planar tree transformation
is by Avis and Fukuda [4] who showed that for a point
set in general position every planar tree can be trans-
formed into another planar tree by means of at most
2n − 4 flips. Here we study similar problem in planar
Hamiltonian path transformation on a set of points in
convex position and show that any such path can be
transformed into another planar Hamiltonian path by
at most 2n − 5 flips. Besides, we show that all planar
Hamiltonian paths on a set of at most 8 points in gen-
eral position can be transformed into other planar paths
by single edge flips.

The problem of generating all objects that satisfy
a specified property has enjoyed some interest among
mathematicians and geometers for many years. There
are a number of techniques to handle the problem of
enumeration of geometric objects [8]. Also there are
some general-purpose strategies for enumeration of com-
binatorial structures and geometric figures. One such
technique is the reverse search scheme due to Avis and
Fukuda [4] that has been used to enumerate faces of
convex polyhedra, spanning trees of graphs and trian-
gulations of a set of points in the plane, all connected
induced subgraphs of a graph etc. A nice treatment
of algorithms for enumerating geometric objects can
be found in [4, 7]. In [9], Zhu et. al an algorithm is
described that enumerates simple polygons for a fixed
point set which are monotone with respect to the x-
direction.

In this paper, we present an algorithm to generate
directed planar Hamiltonian paths for points in convex
position. We show that for set of n points in convex po-
sition there are n2n−2 such planar paths. Our algorithm
uses edge flips and requires linear space. The time de-
lay between generation of two consecutive paths is also
linear.

2 Preliminaries

Let P denote a set of points in the plane in general posi-
tion. Let CH(P ) denote the convex hull of P . Through-
out this paper S will denote a set of points in convex
position, so all points in S are extreme points of CH(S).
The length of a path is defined as the number of edges
in the path. Let P(P ) denote the set of all undirected
planar Hamiltonian paths on P .

Let Pi(P, p) denote a set of paths of length i such that

                                      27



18th Canadian Conference on Computational Geometry, 2006

each path P ′ ∈ Pi(P, p) can be expanded into a path in
P(P ) with an endpoint p.

We define the quality of a path P ∈ P(S) as the
number of edges of P that lie on CH(S). The quality of
a path P is denoted by Qua(P). A canonical path P
is a path in P(S) with Qua(P) = n − 1.

A k-flip is defined as the removal of k edges and the
addition of k edges. If P and Q are two paths in P(P )
we say that P can be transformed into Q by a k-flip if
there are edges e0, e1, . . . , ek−1 and f0, f1, . . . , fk−1 such
that Q = P \ {e0, e1, . . . , ek−1}∪ {f0, f1, . . . , fk−1}. We
define the meta graph of P as the graph with vertex set
P(P ). There is an edge (P ,Q) in the meta graph if and
only if P can be transformed into Q by a 1-flip.

3 Transforming Hamiltonian paths

We begin with the observation that if any Hamiltonian
path on a convex set of points S has an edge that does
not lie on the CH(S), then that edge separates the other
points of that path.

Lemma 1 Let P ∈ P(S) be the path p0, p1, . . . , pn−1.
The edges (p0, p1) and (pn−2, pn−1) lie on CH(S).
Moreover, if a path P has an edge (pi, pi+1) with 0 <
i < n − 2 that does not lie on CH(S), then the sets
{p0, p1, . . . , pi−1} and {pi+2, pi+3, . . . , pn−1} lie on dif-
ferent sides of (pi, pi+1).

Proof. The result follows from the fact that since P is
planar and S is a convex set of points, no edge can con-
nect two points that lie on different side of (pi, pi+1). !

The next lemma shows that the quality of any non-
canonical path can be increased by one using a 1-flip.

Lemma 2 A path P ∈ P(S) with Qua(P) < n − 1 can
be transformed by a 1-flip into a path Q with Qua(Q) =
Qua(P) + 1.

Proof. Let P be the path p0, p1, . . . , pn−1. Let i be the
smallest integer such that i > 1 and pi is a neighbour of
p0 on CH(S). If i = n− 1 then from Lemma 1 we know
that all edges of P lie on CH(S), i.e., Qua(P) = n − 1.
So i < n − 1. Since i > 1 the edge (p0, pi) is not in P .
If the edge (pi−1, pi) lies on CH(S), then the path from
p0 to pi contains an edge e not on CH(S). Vertices p0

and pi lie on the same side of e, contradicting Lemma 1.
Therefore (pi−1, pi) does not lie on CH(S). Construct Q
by removing edge (pi−1, pi) from and add edge (p0, pi)
to P . So Q = pi−1, pi−2, . . . , p1, p0, pi, pi+1, . . . , pn−1.
Since (p0, pi) lies on CH(S) and (pi−1, pi) does not, we
have Qua(Q) = Qua(P) + 1. !

Lemma 3 A path P ∈ P(S) can be transformed into a
path Q ∈ P(S) using at most 2n − 5 1-flips.

Proof. From Lemma 1 we see that Qua(P) ≥ 2 and
Qua(Q) ≥ 2. So Lemma 2 shows that we can transform
both P and Q into canonical paths in at most n − 3
steps each. Since any canonical path can be transformed
into another canonical path by a single flip, the result
follows. !

3.1 Experimental Results: Transforming Hamilto-
nian paths on points in general position

In this section, we present experimental results that will
show that two planar paths on any set of n(n ≤ 8) points
in general position (with no three points collinear) can
be transformed into each other using 1-flips.

We base our analysis on the enumeration of all com-
binatorially inequivalent sets of points as described in
[10]. The order type of a set {p0, p1 · · · , pn−1} of n
points in general position is a mapping that assigns to
each ordered triple i, j, k in {0, 1, · · · , n − 1} the orienta-
tion (either clockwise or counterclockwise) of the triple
pi, pj, pk. Two point sets P0 and P1 with n points each
are said to be combinatorially equivalent if the points
in P0 as well as the points in P1 can be labeled with the
same set of n labels so that they have the same order
types [10],[11].

Lemma 4 Two point sets P0 and P1 with the same or-
der types have the same meta graphs.

Proof. Assume the points in both P0 and P1 are la-
beled with labels {p0, p1, · · · , pn−1} such that P0 and
P1 have the same order type. Consider a planar path
P in P0 and the same path Q in P1. Suppose that in P
the edges (ph, pi) and (pj , pk) intersect. So in P0 points
pj and pk lie on opposite sides of the line through ph

and pi. Therefore (ph, pj , pi) and (ph, pk, pi) have op-
posite orientations. Similarly ph and pi lie on opposite
sides of the line through pj and pk, so (pj , ph, pk) and
(pj , pi, pk) have opposite orientations. Since P0 and P1

have the same order type, this implies that (ph, pi) and
(pj , pk) intersect in P1. Therefore edges in P0 intersect
each other if and only if they intersect each other in P1.
So any path that is planar in P0 is also planar in P1 and
the meta graphs of P0 and P1 have the same vertex set.

If two planar paths in P0 can be transformed into each
other by a 1-flip, then the same two paths in P1 can be
transformed into each other by the same 1-flip. So the
meta graphs of P0 and P1 have the same edge set.

!

For each combinatorially distinct set of n points with
n ≤ 8 given in [11] we generate all Hamiltonian paths
consisting of n points and compute the set of permuta-
tions that correspond to the planar paths. These paths
forms the vertex set of the meta graph. We find the
edge set of the meta graph by determining which two
planar paths can be transformed into each other by a
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1-flip. Finally we determine whether the meta graph is
connected. For an illustration, see Figure 1 which shows
the meta graph of paths of a set of 4 points.
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Figure 1: The meta graph of a set of 4 points.

Based on these experiments we prove the following
lemma.

Lemma 5 The meta graph for n ≤ 8 points in general
position is connected.

We also form the meta graphs for larger sets of points
and in all cases found connected meta graphs. We dare
to conjecture that the meta graph for any set of points,
even those not in general position, is connected.

4 Counting Hamiltonian paths on convex point sets

In this section we show that the size of P(S) is n2n−3.
We start with counting the number of paths Pi(S, p).
Let p0 be a point of S. Let ci be the number of paths in
Pi(S, p0). Clearly the value of ci is independent of p0.
The extremal points in a subset of neighbouring points
in S are called the first and last points of the subset.
The names refer to the order in which we encounter
these points if we traverse S counter clockwise.

Lemma 6 We have of ci = 2i for 0 ≤ i < n − 1 and
cn−1 = 2n−2.

Proof. We prove this lemma by induction. Clearly
the lemma holds for i = 0. Assume the lemma holds
for 0 ≤ i < k with 0 < k ≤ n − 2. We now show
that the lemma holds for i = k. Consider a path
P = p0, p1, . . . pi ∈ Pi(S, p0). Recall that P is a sub-
graph of a planar Hamiltonian path with p0 as one of its
end points. From Lemma 1 we derive that {p0, p1, . . . pi}
are neighbours on CH(S). Moreover, the point pi has
to be the first or the last point of {p0, p1, . . . pi}.

For the same reason, pi−1 is the first or the last point
of {p0, p1, . . . pi−1}. So for each path in Pi−1(S, p0) we
can have two paths in Pi(S, p0): one in which pi−1 and
pi are neighbours on CH(S) and one in which they are
not. This implies that ci = 2 ∗ ci−1. Since c0 = 1 we
have ci = 2i for 0 < i < n − 1. The final part of the
lemma holds since cn−1 = cn−2 = 2n−2. !

Now we prove the main theorem:

Theorem 7 The number of undirected Hamiltonian
paths on a set of points in convex position is n2n−3.

Proof. From Lemma 6 we know that the number of
Hamiltonian paths of S with an end point p0 is equal to
2n−2. Since there n different end points and each path
has two end points, the proof follows.

!

5 Directed Path Construction Algorithm

Let D(S) be the set of all directed planar Hamiltonian
paths on S. We present an algorithm for the generation
of D(S). A directed path A ∈ D(S) can be associated
with an undirected path A′ ∈ P(S). Let us define a
k-flip in directed paths. If A, B ∈ D(S) and A′, B′ ∈
P(S) we say that A is transformed into B by a k−flip
if there is a k−flip that transforms A′ into B′.

Consider a path D = (p0, p1, · · · , pn−1) ∈ D(S). We
define an encoding [p0, b1, b2, . . . , bn−1] of D as follows:
The first element is the first point of the path. The value
of bi for 1 ≤ i < n−1 is 0 or 1 if pi is the first or last point
respectively of the points {pi, pi+1, . . . , pn−1}. Since an
encoding of a path in D(S) contains one point and n−2
bits, we have |D(S)| = n2n−2, which also follows from
Theorem 7 which deals with undirected paths.

Now we show that beginning from a canonical path
with encoding [p0, 0, 0, 0, · · · ] we can generate all paths
that start at p0 using 1-flips and 2-flips. The last path
generated has encoding [p0, 1, 1, 1, · · · ]. After that we
can generate a path with encoding [pi, 0, 0, 0, · · · ], where
pi is any point different from p0.

Let [p0, b1, b2, . . . , bn−2] denote the most recently gen-
erated path. The following three cases define the next
path in the generation:

Case one: bn−2 = 0. The next path is
[p0, b1, b2, . . . , bn−3, b′n−2] with b′n−2 = 1.

Case two: bk = 0 and bt = 1 for k + 1 ≤ t < n − 1.
The next path is
[p0, b1, b2, . . . , bk−1, b′k, b′k+1, . . . , b

′

n−2] with
b′t = 1 − bt for k ≤ t < n − 1.

Case three: bt = 1 for 1 ≤ t < n − 1. The next path
is [pi, 0, 0, 0, . . .], where pi is any point in S.
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Lemma 8 The paths generated in case one, two and
three can be achieved with a 1-flip, a 2-flip and a 1-flip
respectively.

Figure 2 shows an example of the first two cases.

(a) (b)

pn−2

pn−1
pk

p0

pk+1

pn−1

p0

Figure 2: (a) Showing an example of case one with en-
coding [p0, b1, b2, . . . , 0] (b) and case two with encoding
[p0, b1, b2, . . . , bk−1, bk, bk+1, . . . , bn−2] with bk = 0 and
bt = 1, for k + 1 ≤ t < n − 1.

5.1 Generation Method

Let S = {p0, p1, . . . , pn−1}. We start generating the
sequence of planar Hamiltonian directed paths with the
path [p0, 0, 0, 0, · · · ]. As shown above we can generate
all 2n−2 directed paths which begin at p0. After that
we can generate the path with encoding [p1, 0, 0, 0, · · · ].
This process is continued until we have reached path
[pn−1, 1, 1, 1, · · · ]. Since given a path we can generate
the next path, it is clear that the algorithm requires
O(n) space. Also the time between the generation of
successive paths is O(n).

6 Conclusion and Open Problem

The problem of transforming planar Hamiltonian paths
for points in general position and points in convex po-
sition is considered. In the case where the points are
in convex position it is proved that at most (2n − 5)
edge changes are sufficient for any two planar paths to
be transformed from one to another. The main implica-
tion of this result is that the meta graph of P(S) is con-
nected and the diameter of the meta graph is bounded
by 2n−5. In addition, experimental results for the case
of a small number of points in general position indicate
that, for all sets with at most 8 points, the correspond-
ing meta graphs are connected. A recursive technique
is used to show that the number of directed Hamilto-
nian planar paths when the points are in convex position
equals n2n−2. An algorithm is also presented that al-
lows us to generate uniquely the set of all directed paths
of a set of points in convex position employing flips of
size one and flips of size two. Finally we conjecture that
the meta graph is always connected for a set of points

in general position. Settling this conjecture remains an
interesting and challenging open problem.
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