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uyAbstra
tGiven a set S of n points in R3 we 
onsider �nding thefarthest line segment spanned by S from a query pointq given as part of the input, and �nding the minimumand maximumarea triangles spanned by S. For the far-thest line segment problem we give an O(n logn) time,O(n) spa
e algorithm, mat
hing the time and spa
e
omplexities of the planar version. The algorithm is op-timal in the algebrai
 de
ision tree model. We furtherprove that the minimumarea triangle spanned by S 
anbe found in O(n2:4 logO(1) n) time and spa
e, and themaximum area triangle spanned by S 
an be found inO(h2:4 logO(1) h+nlogn) time and O(h2:4 logO(1) h+n)spa
e, where h is the number of verti
es of the 
onvexhull of S (h = n in the worst 
ase).1 Introdu
tionGiven a set S = fp1; p2; : : : ; png of n points in R3, we
onsider �nding the farthest line segment spanned by Sfrom a query point q given as part of the input, and �nd-ing the minimum and maximum area triangles spannedby S. For ea
h problem we give eÆ
ient algorithms for�nding the 
orresponding geometri
 stru
ture.The problem of �nding the farthest line segmentspanned by S from a query point q given as part of theinput, in its 2-dimensional version, was introdu
ed in [2℄and has sparked the development of fundamental datastru
tures [1, 7℄ that surprisingly enough were not ad-dressed by previous work. In [2℄, they give an optimal,O(n logn) time, O(n) spa
e algorithm for solving the�Department of Computer S
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problem. In [7℄, they address the planar all-farthest-segments problem, that asks to 
ompute the farthestline segment for ea
h of the points in S, and give an op-timal,O(n logn) time,O(n) spa
e algorithm, improvinga previous result on the same problem [6℄.In [5℄, they investigate the number of minimum(nonzero) volume tetrahedra spanned by n points in R3and give an O(n3) time algorithm for reporting all tetra-hedra of minimum nonzero volume. In [4℄, they showthat a set S of n points in R3 
an de�ne O(n2) mini-mum area triangles, whi
h is asymptoti
ally tight, andthat there exist n-element point sets that span 
(n4=3)triangles of maximum area.Results. We present the following results in R3. (i)For 
omputing the farthest line segment spanned byS from a query point q that is part of the input weprove that a key property in [6℄ 
an be extended to R3and give an O(n logn) time, O(n) spa
e algorithm forthe 3-dimensional version of the problem, mat
hing thetime and spa
e 
omplexities of the planar version [2℄.The algorithm is optimal in the algebrai
 de
ision treemodel. (ii) We prove that the minimum area trianglespanned by S 
an be found in O(n2:4 logO(1) n) timeand spa
e, and the maximum area triangle spanned byS 
an be found in O(h2:4 logO(1) h + nlogn) time andO(h2:4 logO(1) h + n) spa
e, where h is the number ofverti
es of the 
onvex hull of S.De�nitions and terminology. For a set of points S,we use CH(S) to denote the 
onvex hull of S. We de�nethe distan
e between a point q and a line segment s tobe the minimum distan
e between q and any point ons. The triangle de�ned by the points pi, pj, and pk isdenoted as 4ijk.
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e on Computational Geometry, 2007Given a line segment qp and a plane � orthogonalto qp at q, the proper halfspa
e for p is that halfspa
ebounded by � that does not 
ontain p. We use thenotation Hi to denote a halfspa
e bounded by a planethat 
ontains the point pi.2 Finding the Farthest Line SegmentLemma 1 The farthest line segment from q spanned byS has at least one endpoint at a vertex of CH(S). More-over, (i) if both endpoints are verti
es of CH(S) thenthe line segment is an edge of CH(S) and (ii) if onlyone endpoint is a vertex of CH(S) then the other end-point p is the farthest point from q among those pointsin S that are not verti
es of CH(S); in this 
ase thedistan
e from q to p is also the distan
e from q to theline segment.Proof. We make the proof by 
ontradi
tion on various
ases that do not satisfy the 
onditions in the lemma.Let pipj be the farthest line segment from q, for somei; j 2 f1; 2; : : : ; ng; i 6= j. Without loss of generality, tosimplify the exposition, we assume that one endpoint,say pj, of pipj is further from q than the other one.Assume the endpoints of the farthest line segment donot satisfy the 
onditions in the lemma. There are a few
hoi
es for pi and pj : (1) both are interior to CH(S);(2) one is interior and one is on a fa
e of the 
onvexhull; (3) one is interior and one is on an edge of the
onvex hull; (4) ea
h one is on a fa
e of the 
onvex hull(possibly the same); (5) ea
h one is on an edge of the
onvex hull (possibly the same); (6) one is on an edgeof the 
onvex hull and one is on a fa
e of the 
onvexhull; (7) ea
h one is a vertex of the 
onvex hull, but thetwo verti
es do not de�ne an edge of CH(S). All these
ases 
an be proved false following the same strategy,whi
h we only illustrate for 
ase (1) and 
ase (7). For
ase (1), refer to Figure 1.Consider the plane orthogonal to qpj at pj. By 
on-vexity of CH(S), the proper halfspa
e for q de�ned by

this plane must 
ontain a vertex pk of CH(S) and thuspjpk is further from q than pipj, a 
ontradi
tion.Consider now 
ase (7). Assume �rst that pipj inter-se
ts the interior of the 
onvex hull. If one of pi orpj , say pi, gives the distan
e from q to pipj then wetake the plane � orthogonal to qpi at pi and noti
e thatthe proper halfspa
e for q de�ned by this plane 
ontainspipj. The proper halfspa
e for q de�ned by � must 
on-tain another vertex pk of CH(S) (else, pipj is an edgeof CH(S)). Then, pk and pj de�ne a line segment pkpjthat is further from q than pipj, a 
ontradi
tion. If thedistan
e from q to pipj is given by a point p interiorto pipj then we take the plane � orthogonal to qp atp and noti
e that pipj 2 �. By 
onvexity of CH(S),the proper halfspa
e for q de�ned by this plane must
ontain a vertex pk of CH(S) and thus pjpk and pipkare further from q than pipj, a 
ontradi
tion.Assume now that pipj is on a fa
e of the 
onvex hull.Again, we have two possibilities, as above. In the se
ond
ase however, it may be possible that the fa
e 
ontain-ing pipj is in
luded in �. If this is the 
ase, it is easyto see that any vertex pk of CH(S) on that fa
e, thatforms and edge of CH(S) with pi (or pj), de�nes a linesegment pipk (resp., pjpk) that is farther from q thanpipj, leading again to a 
ontradi
tion.Thus, we are in one of the two 
ases in the lemma:either pipj is an edge of CH(S), or one of pi, pj is avertex of CH(S) and the other one is not. To �nishthe proof of the lemma we need to 
onsider the se
ondsituation. Re
all that we assumed pj is farther from qthan pi. If pj is the endpoint that is not a vertex ofCH(S) then from the proof by 
ontradi
tion for 
ase(1) it follows pipj is not the farthest segment. Thus, pjmust be the vertex of CH(S). On the other hand, thedistan
e from q to pipj must be given by the distan
efrom q to pi, or otherwise we 
an apply the proof for
ase (1) with pj repla
ed by pi, obtaining that pipj isnot the farthest line segment. Finally, if pi is not the
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pFigure 1: Violation of farthest segment.farthest point from q among those points in S that arenot verti
es of CH(S), then let pk be the farthest point.We 
an apply the proof for 
ase (1) with pj repla
ed bypk and obtain that pipj is not the farthest line segment,again a 
ontradi
tion. 2Using Lemma 1, we have the following simple algo-rithm. Start by 
omputing the 
onvex hull CH(S) ofS, in O(n logn) time and O(n) spa
e. From the edgesof CH(S), sele
t the farthest one, e1. This is one ofthe two possible 
andidates for the farthest line seg-ment, a

ording to Lemma 1, and 
an be found in O(n)time. Let V denote the set of points that are verti
esof CH(S) and let S0 = S n V . Find the farthest pointfrom q in S0, whi
h takes O(n) time. Let this point bepi, where 1 � i � n. If pi is 
loser to q than e1 thenreport e1 as the farthest line segment. Else, �nd thefarthest line segment from q with an endpoint at pi andthe other endpoint in V , whi
h 
an be done in O(n)time, and report this segment, e2, as the farthest linesegment. The optimality follows from [2℄.Theorem 2 Given a set S of n points in R3, and aquery point q 2 R3, the farthest line segment from qspanned by S 
an be found in O(n logn) time and O(n)spa
e, whi
h is optimal.3 Minimum and maximum area trianglesOur results for �nding the minimumand maximumareatriangles spanned by a set S of n points in R3 make use

of a data stru
ture in [3℄, that uses the fa
t that inR3 the Eu
lidean distan
e between a point and a line,as a fun
tion of the line, admits a linearization into aspa
e of dimension 9. With s a parameter that 
ontrolsthe trade-o� between the query time and the spa
e andprepro
essing time, n � s � n9=2, they [3℄ show that S
an be prepro
essed with O(s � logO(1) n) spa
e and timesu
h that given a query line L the farthest (or 
losest)point of S from L 
an be found in O(n logn=s1=b9=2
)time. We use this data stru
ture in the theorem below.Theorem 3 Given a set S of n points in R3, a min-imum area triangle spanned by S 
an be 
omputed inO(n2:4 logO(1) n) time and spa
e.Proof. For ea
h pair of points pi; pj 2 S, i 6= j, theminimum area triangle de�ned by the line segment pipjwith the points in S n fpi; pjg 
an be found by �ndingthe point with minimumdistan
e to the line supportingpipj. Thus, over all pairs pi; pj 2 S we have O(n2)su
h queries. Balan
ing the prepro
essing time withthe query time leads to the 
laimed bounds. 2For the maximum area triangle we have:Lemma 4 The verti
es of the maximum area trianglespanned by S are among the verti
es of CH(S).Proof. Let pi, pj, and pk be the verti
es of the maxi-mum area triangle. Assume one or more verti
es of4ijkare not among the verti
es of CH(S). Let pk be one ofthe verti
es of 4ijk that is not a vertex of CH(S), andassume pk is interior to CH(S). Let p be the pointon the line supporting pipj that de�nes the distan
eÆ(pk; pipj), from pk to that line. Let � be the planethrough pk, that is orthogonal to ppk (see Figure 2).Noti
e that a vertex p0k of CH(S) must lie in the properhalfspa
e for p de�ned by �. Moreover, the points piand pj are not 
ontained in that halfspa
e.Noti
e also that the distan
e from p0k to the line sup-porting pipj is greater than the distan
e from pk to that
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an be in
reased by extend-ing the height away from the baseline. Sin
e we did not 
hange the length of the base pipjof the resulting triangle, but only in
reased the heightby �nding a point p0k of S that is farther from the linesupporting pipj , the area of this new triangle must begreater than that of 4ijk, thus a 
ontradi
tion.Assume now that pk is interior to a fa
e of CH(S). Ifthat fa
e is not in � then the proof above applies result-ing in a triangle of larger area. Let the fa
e 
ontainingpk be in �. Take the line L through pk and parallel topipj . This line is orthogonal to ppk at pk. The line Linterse
ts the fa
e of the 
onvex hull at two points. Ifone of the interse
tion points is on an edge e of CH(S),then one of the end verti
es p0k of e, together with piand pj , de�nes a triangle of larger area than 4ijk. Ifboth interse
tion points are verti
es of the 
onvex hull,then any other 
onvex hull vertex p0k on that fa
e, to-gether with pi and pj, de�nes a triangle of larger areathan 4ijk. 2Theorem 5 Given a set S of n points in R3, a max-imum area triangle spanned by S 
an be found inO(h2:4 logO(1) n+n logn) time and O(h2:4 logO(1) n+n)spa
e, where h is the number of verti
es of CH(S).Proof. Find CH(S) in O(n logn) time and use theapproa
h in Theorem 3 on the verti
es of CH(S). 2

4 Con
lusionIn this paper we dis
ussed �nding the farthest line seg-ment spanned by S from a query point q given as partof the input, and �nding the minimum and maximumarea triangles spanned by S. For ea
h of these problemswe des
ribed eÆ
ient, exa
t algorithms for �nding the
orresponding geometri
 stru
ture.A number of open problems remain with respe
t to
omputing 
losely related geometri
 stru
tures. One in-teresting problem is to answer whether it is possible to�nd the farthest line spanned by S from a query point q,given as part of the input, in subquadrati
 time. Whilewe 
an prove interesting properties for this problem, wehave not been able to �nd a subquadrati
 time algo-rithm for it. We noti
e that in some sense the problemseems harder than the problem of �nding the farthestplane spanned by S.Finally, there are the problems of �nding the 
losestline segment and the 
losest line spanned by S from q.It would be interesting to see whether either of thesetwo problems 
an be solved in subquadrati
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