
CCCG 2007, Ottawa, Ontario, August 20{22, 2007Finding segments and triangles spanned by points in R3Steven Bitner� Ovidiu DaesuyAbstratGiven a set S of n points in R3 we onsider �nding thefarthest line segment spanned by S from a query pointq given as part of the input, and �nding the minimumand maximumarea triangles spanned by S. For the far-thest line segment problem we give an O(n logn) time,O(n) spae algorithm, mathing the time and spaeomplexities of the planar version. The algorithm is op-timal in the algebrai deision tree model. We furtherprove that the minimumarea triangle spanned by S anbe found in O(n2:4 logO(1) n) time and spae, and themaximum area triangle spanned by S an be found inO(h2:4 logO(1) h+nlogn) time and O(h2:4 logO(1) h+n)spae, where h is the number of verties of the onvexhull of S (h = n in the worst ase).1 IntrodutionGiven a set S = fp1; p2; : : : ; png of n points in R3, weonsider �nding the farthest line segment spanned by Sfrom a query point q given as part of the input, and �nd-ing the minimum and maximum area triangles spannedby S. For eah problem we give eÆient algorithms for�nding the orresponding geometri struture.The problem of �nding the farthest line segmentspanned by S from a query point q given as part of theinput, in its 2-dimensional version, was introdued in [2℄and has sparked the development of fundamental datastrutures [1, 7℄ that surprisingly enough were not ad-dressed by previous work. In [2℄, they give an optimal,O(n logn) time, O(n) spae algorithm for solving the�Department of Computer Siene, University of Texas at Dal-las, stevenbitner�student.utdallas.eduyDepartment of Computer Siene, University of Texas at Dal-las, daesu�utdallas.edu Daesu's researh was partially sup-ported by NSF grant CCF-0635013.

problem. In [7℄, they address the planar all-farthest-segments problem, that asks to ompute the farthestline segment for eah of the points in S, and give an op-timal,O(n logn) time,O(n) spae algorithm, improvinga previous result on the same problem [6℄.In [5℄, they investigate the number of minimum(nonzero) volume tetrahedra spanned by n points in R3and give an O(n3) time algorithm for reporting all tetra-hedra of minimum nonzero volume. In [4℄, they showthat a set S of n points in R3 an de�ne O(n2) mini-mum area triangles, whih is asymptotially tight, andthat there exist n-element point sets that span 
(n4=3)triangles of maximum area.Results. We present the following results in R3. (i)For omputing the farthest line segment spanned byS from a query point q that is part of the input weprove that a key property in [6℄ an be extended to R3and give an O(n logn) time, O(n) spae algorithm forthe 3-dimensional version of the problem, mathing thetime and spae omplexities of the planar version [2℄.The algorithm is optimal in the algebrai deision treemodel. (ii) We prove that the minimum area trianglespanned by S an be found in O(n2:4 logO(1) n) timeand spae, and the maximum area triangle spanned byS an be found in O(h2:4 logO(1) h + nlogn) time andO(h2:4 logO(1) h + n) spae, where h is the number ofverties of the onvex hull of S.De�nitions and terminology. For a set of points S,we use CH(S) to denote the onvex hull of S. We de�nethe distane between a point q and a line segment s tobe the minimum distane between q and any point ons. The triangle de�ned by the points pi, pj, and pk isdenoted as 4ijk.



19th Canadian Conferene on Computational Geometry, 2007Given a line segment qp and a plane � orthogonalto qp at q, the proper halfspae for p is that halfspaebounded by � that does not ontain p. We use thenotation Hi to denote a halfspae bounded by a planethat ontains the point pi.2 Finding the Farthest Line SegmentLemma 1 The farthest line segment from q spanned byS has at least one endpoint at a vertex of CH(S). More-over, (i) if both endpoints are verties of CH(S) thenthe line segment is an edge of CH(S) and (ii) if onlyone endpoint is a vertex of CH(S) then the other end-point p is the farthest point from q among those pointsin S that are not verties of CH(S); in this ase thedistane from q to p is also the distane from q to theline segment.Proof. We make the proof by ontradition on variousases that do not satisfy the onditions in the lemma.Let pipj be the farthest line segment from q, for somei; j 2 f1; 2; : : : ; ng; i 6= j. Without loss of generality, tosimplify the exposition, we assume that one endpoint,say pj, of pipj is further from q than the other one.Assume the endpoints of the farthest line segment donot satisfy the onditions in the lemma. There are a fewhoies for pi and pj : (1) both are interior to CH(S);(2) one is interior and one is on a fae of the onvexhull; (3) one is interior and one is on an edge of theonvex hull; (4) eah one is on a fae of the onvex hull(possibly the same); (5) eah one is on an edge of theonvex hull (possibly the same); (6) one is on an edgeof the onvex hull and one is on a fae of the onvexhull; (7) eah one is a vertex of the onvex hull, but thetwo verties do not de�ne an edge of CH(S). All theseases an be proved false following the same strategy,whih we only illustrate for ase (1) and ase (7). Forase (1), refer to Figure 1.Consider the plane orthogonal to qpj at pj. By on-vexity of CH(S), the proper halfspae for q de�ned by

this plane must ontain a vertex pk of CH(S) and thuspjpk is further from q than pipj, a ontradition.Consider now ase (7). Assume �rst that pipj inter-sets the interior of the onvex hull. If one of pi orpj , say pi, gives the distane from q to pipj then wetake the plane � orthogonal to qpi at pi and notie thatthe proper halfspae for q de�ned by this plane ontainspipj. The proper halfspae for q de�ned by � must on-tain another vertex pk of CH(S) (else, pipj is an edgeof CH(S)). Then, pk and pj de�ne a line segment pkpjthat is further from q than pipj, a ontradition. If thedistane from q to pipj is given by a point p interiorto pipj then we take the plane � orthogonal to qp atp and notie that pipj 2 �. By onvexity of CH(S),the proper halfspae for q de�ned by this plane mustontain a vertex pk of CH(S) and thus pjpk and pipkare further from q than pipj, a ontradition.Assume now that pipj is on a fae of the onvex hull.Again, we have two possibilities, as above. In the seondase however, it may be possible that the fae ontain-ing pipj is inluded in �. If this is the ase, it is easyto see that any vertex pk of CH(S) on that fae, thatforms and edge of CH(S) with pi (or pj), de�nes a linesegment pipk (resp., pjpk) that is farther from q thanpipj, leading again to a ontradition.Thus, we are in one of the two ases in the lemma:either pipj is an edge of CH(S), or one of pi, pj is avertex of CH(S) and the other one is not. To �nishthe proof of the lemma we need to onsider the seondsituation. Reall that we assumed pj is farther from qthan pi. If pj is the endpoint that is not a vertex ofCH(S) then from the proof by ontradition for ase(1) it follows pipj is not the farthest segment. Thus, pjmust be the vertex of CH(S). On the other hand, thedistane from q to pipj must be given by the distanefrom q to pi, or otherwise we an apply the proof forase (1) with pj replaed by pi, obtaining that pipj isnot the farthest line segment. Finally, if pi is not the
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pFigure 1: Violation of farthest segment.farthest point from q among those points in S that arenot verties of CH(S), then let pk be the farthest point.We an apply the proof for ase (1) with pj replaed bypk and obtain that pipj is not the farthest line segment,again a ontradition. 2Using Lemma 1, we have the following simple algo-rithm. Start by omputing the onvex hull CH(S) ofS, in O(n logn) time and O(n) spae. From the edgesof CH(S), selet the farthest one, e1. This is one ofthe two possible andidates for the farthest line seg-ment, aording to Lemma 1, and an be found in O(n)time. Let V denote the set of points that are vertiesof CH(S) and let S0 = S n V . Find the farthest pointfrom q in S0, whih takes O(n) time. Let this point bepi, where 1 � i � n. If pi is loser to q than e1 thenreport e1 as the farthest line segment. Else, �nd thefarthest line segment from q with an endpoint at pi andthe other endpoint in V , whih an be done in O(n)time, and report this segment, e2, as the farthest linesegment. The optimality follows from [2℄.Theorem 2 Given a set S of n points in R3, and aquery point q 2 R3, the farthest line segment from qspanned by S an be found in O(n logn) time and O(n)spae, whih is optimal.3 Minimum and maximum area trianglesOur results for �nding the minimumand maximumareatriangles spanned by a set S of n points in R3 make use

of a data struture in [3℄, that uses the fat that inR3 the Eulidean distane between a point and a line,as a funtion of the line, admits a linearization into aspae of dimension 9. With s a parameter that ontrolsthe trade-o� between the query time and the spae andpreproessing time, n � s � n9=2, they [3℄ show that San be preproessed with O(s � logO(1) n) spae and timesuh that given a query line L the farthest (or losest)point of S from L an be found in O(n logn=s1=b9=2)time. We use this data struture in the theorem below.Theorem 3 Given a set S of n points in R3, a min-imum area triangle spanned by S an be omputed inO(n2:4 logO(1) n) time and spae.Proof. For eah pair of points pi; pj 2 S, i 6= j, theminimum area triangle de�ned by the line segment pipjwith the points in S n fpi; pjg an be found by �ndingthe point with minimumdistane to the line supportingpipj. Thus, over all pairs pi; pj 2 S we have O(n2)suh queries. Balaning the preproessing time withthe query time leads to the laimed bounds. 2For the maximum area triangle we have:Lemma 4 The verties of the maximum area trianglespanned by S are among the verties of CH(S).Proof. Let pi, pj, and pk be the verties of the maxi-mum area triangle. Assume one or more verties of4ijkare not among the verties of CH(S). Let pk be one ofthe verties of 4ijk that is not a vertex of CH(S), andassume pk is interior to CH(S). Let p be the pointon the line supporting pipj that de�nes the distaneÆ(pk; pipj), from pk to that line. Let � be the planethrough pk, that is orthogonal to ppk (see Figure 2).Notie that a vertex p0k of CH(S) must lie in the properhalfspae for p de�ned by �. Moreover, the points piand pj are not ontained in that halfspae.Notie also that the distane from p0k to the line sup-porting pipj is greater than the distane from pk to that
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jFigure 2: The area of 4ijk an be inreased by extend-ing the height away from the baseline. Sine we did not hange the length of the base pipjof the resulting triangle, but only inreased the heightby �nding a point p0k of S that is farther from the linesupporting pipj , the area of this new triangle must begreater than that of 4ijk, thus a ontradition.Assume now that pk is interior to a fae of CH(S). Ifthat fae is not in � then the proof above applies result-ing in a triangle of larger area. Let the fae ontainingpk be in �. Take the line L through pk and parallel topipj . This line is orthogonal to ppk at pk. The line Lintersets the fae of the onvex hull at two points. Ifone of the intersetion points is on an edge e of CH(S),then one of the end verties p0k of e, together with piand pj , de�nes a triangle of larger area than 4ijk. Ifboth intersetion points are verties of the onvex hull,then any other onvex hull vertex p0k on that fae, to-gether with pi and pj, de�nes a triangle of larger areathan 4ijk. 2Theorem 5 Given a set S of n points in R3, a max-imum area triangle spanned by S an be found inO(h2:4 logO(1) n+n logn) time and O(h2:4 logO(1) n+n)spae, where h is the number of verties of CH(S).Proof. Find CH(S) in O(n logn) time and use theapproah in Theorem 3 on the verties of CH(S). 2

4 ConlusionIn this paper we disussed �nding the farthest line seg-ment spanned by S from a query point q given as partof the input, and �nding the minimum and maximumarea triangles spanned by S. For eah of these problemswe desribed eÆient, exat algorithms for �nding theorresponding geometri struture.A number of open problems remain with respet toomputing losely related geometri strutures. One in-teresting problem is to answer whether it is possible to�nd the farthest line spanned by S from a query point q,given as part of the input, in subquadrati time. Whilewe an prove interesting properties for this problem, wehave not been able to �nd a subquadrati time algo-rithm for it. We notie that in some sense the problemseems harder than the problem of �nding the farthestplane spanned by S.Finally, there are the problems of �nding the losestline segment and the losest line spanned by S from q.It would be interesting to see whether either of thesetwo problems an be solved in subquadrati time.Referenes[1℄ F. Aurenhammer, R.L.S. Drysdale, and H. Krasser. Far-thest line segment Voronoi diagrams. IPL, 100(6):220{225, 2006.[2℄ O. Daesu, J. Luo, and D. Mount. Proximity problemson line segments spanned by points. Comput. Geom.,33(3):115{129, 2006.[3℄ O. Daesu and R. Sering. Extremal point queries withlines and line segments and related problems. Comput.Geom., 32(3):223{237, 2005.[4℄ A. Dumitresu and C. Toth. Extremal problems on tri-angle areas in two and three dimensions. In 16th FallWorkshop on Comput. and Combin. Geom., 2006.[5℄ A. Dumitresu and C. Toth. On the number of tetrahe-dra with minimum, unit, and distint volumes in three-spae. Pro. 18th Sympos. Disrete Algorithms, 2007.[6℄ A. Mukhopadhyay, S. Chatterjee, and B. Lafreniere. Onthe all-farthest-segments problem for a planar set ofpoints. IPL, 100(3):120{123, 2006.[7℄ A. Mukhopadhyay and R.L.S. Drysdale. An O(nlogn)algorithm for the all-farthest segments problem for aplanar set of points. Pro. 18th Canad. Conf. Comput.Geom., pages 185{188, 2006.


