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Finding segments and triangles spanned by points in R?

Steven Bitner*

Abstract

Given a set S of n points in R3 we consider finding the
farthest line segment spanned by S from a query point
g given as part of the input, and finding the minimum
and maximum area triangles spanned by S. For the far-
thest line segment problem we give an O(nlogn) time,
O(n) space algorithm, matching the time and space
complexities of the planar version. The algorithm is op-
timal in the algebraic decision tree model. We further
prove that the minimum area triangle spanned by .S can
be found in O(n2'4logo(1) n) time and space, and the
maximum area triangle spanned by S can be found in
O(h**10g®™) h 4 nlogn) time and O(h%*1og®™) h+n)
space, where h is the number of vertices of the convex

hull of S (h = n in the worst case).
1 Introduction

Given a set S = {p1,p2,...,pn} of n points in R3 we
consider finding the farthest line segment spanned by S
from a query point ¢ given as part of the input, and find-
ing the minimum and maximum area triangles spanned
by S. For each problem we give efficient algorithms for
finding the corresponding geometric structure.

The problem of finding the farthest line segment
spanned by S from a query point ¢ given as part of the
input, in its 2-dimensional version, was introduced in [2]
and has sparked the development of fundamental data
structures [1,7] that surprisingly enough were not ad-

dressed by previous work. In [2], they give an optimal,

O(nlogn) time, O(n) space algorithm for solving the
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problem. In [7], they address the planar all-farthest-
segments problem, that asks to compute the farthest
line segment for each of the points in S, and give an op-
timal, O(n log n) time, O(n) space algorithm, improving
a previous result on the same problem [6].

In [5], they investigate the number of minimum
(nonzero) volume tetrahedra spanned by n points in R3
and give an O(n?) time algorithm for reporting all tetra-
hedra of minimum nonzero volume. In [4], they show
that a set S of n points in R3 can define O(n?) mini-
mum area triangles, which is asymptotically tight, and
that there exist n-element point sets that span Q(n*/?)
triangles of maximum area.

Results. We present the following results in R3. (i)
For computing the farthest line segment spanned by
S from a query point ¢ that is part of the input we
prove that a key property in [6] can be extended to R3
and give an O(nlogn) time, O(n) space algorithm for
the 3-dimensional version of the problem, matching the
time and space complexities of the planar version [2].
The algorithm is optimal in the algebraic decision tree
model. (ii) We prove that the minimum area triangle
spanned by S can be found in O(n2'4logo(1) n) time
and space, and the maximum area triangle spanned by
S can be found in O(h2'4logo(1) h 4+ nlogn) time and
O(h2'4logo(1) h + n) space, where h is the number of
vertices of the convex hull of S.

Definitions and terminology. For a set of points S,
we use C'H (S) to denote the convex hull of S. We define
the distance between a point ¢ and a line segment s to
be the minimum distance between ¢ and any point on
s. The triangle defined by the points p;, p;, and py is
denoted as Ajjp.
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Given a line segment gp and a plane II orthogonal
to qp at ¢, the proper halfspace for p is that halfspace
bounded by II that does not contain p. We use the
notation H; to denote a halfspace bounded by a plane
that contains the point p;.

2 Finding the Farthest Line Segment

Lemma 1 The farthest line segment from q spanned by
S has at least one endpoint at a vertex of CH(S). More-
over, (i) if both endpoints are vertices of CH(S) then
the line segment is an edge of CH(S) and (it) if only
one endpoint is a verter of CH(S) then the other end-
point p s the farthest point from q among those points
in S that are not vertices of CH(S); in this case the
distance from q to p is also the distance from q to the

line segment.

Proof. We make the proof by contradiction on various
cases that do not satisfy the conditions in the lemma.
Let p;p; be the farthest line segment from ¢, for some
i,7€{1,2,...,n},i# j. Without loss of generality, to
simplify the exposition, we assume that one endpoint,
say p;, of pip; is further from ¢ than the other one.
Assume the endpoints of the farthest line segment do
not satisfy the conditions in the lemma. There are a few
choices for p; and p;: (1) both are interior to C'H(S);
(2) one is interior and one is on a face of the convex
hull; (3) one is interior and one is on an edge of the
convex hull; (4) each one is on a face of the convex hull
(possibly the same); (5) each one is on an edge of the
convex hull (possibly the same); (6) one is on an edge
of the convex hull and one is on a face of the convex
hull; (7) each one is a vertex of the convex hull, but the
two vertices do not define an edge of CH(S). All these
cases can be proved false following the same strategy,
which we only illustrate for case (1) and case (7). For
case (1), refer to Figure 1.

Consider the plane orthogonal to gp; at p;. By con-
vexity of C'H(S), the proper halfspace for ¢ defined by

this plane must contain a vertex py of C'H(S) and thus

p;pr is further from ¢ than p;p;, a contradiction.

Consider now case (7). Assume first that 7;p; inter-
sects the interior of the convex hull. If one of p; or
pj, say p;, gives the distance from ¢ to p;p; then we
take the plane IT orthogonal to gp; at p; and notice that
the proper halfspace for ¢ defined by this plane contains
p:p;- The proper halfspace for ¢ defined by Il must con-
tain another vertex py of CH(S) (else, Fip; is an edge
of CH(S)). Then, py and p; define a line segment prp;
that is further from ¢ than p;p;, a contradiction. If the
distance from ¢ to p;p; is given by a point p interior
to P;p; then we take the plane II orthogonal to gp at
p and notice that p;p; € II. By convexity of C'H(S),
the proper halfspace for ¢ defined by this plane must
contain a vertex py of CH(S) and thus F;pr and Fipx

are further from ¢ than p;p;, a contradiction.

Assume now that p;p; is on a face of the convex hull.
Again, we have two possibilities, as above. In the second
case however, it may be possible that the face contain-
ing p;p; is included in II. If this is the case, it is easy
to see that any vertex pi of CH(S) on that face, that
forms and edge of C'H(S) with p; (or p;), defines a line
segment B;pr (resp., p;px) that is farther from ¢ than

Pip;, leading again to a contradiction.

Thus, we are in one of the two cases in the lemma:
either p;p; is an edge of C'H(S), or one of p;, p; is a
vertex of C'H(S) and the other one is not. To finish
the proof of the lemma we need to consider the second
situation. Recall that we assumed p; is farther from ¢
than p;. If p; is the endpoint that is not a vertex of
CH(S) then from the proof by contradiction for case
(1) it follows p;p; is not the farthest segment. Thus, p;
must be the vertex of CH(S). On the other hand, the
distance from ¢ to p;p; must be given by the distance
from ¢ to p;, or otherwise we can apply the proof for
case (1) with p; replaced by p;, obtaining that p;p; is
not the farthest line segment. Finally, if p; is not the
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Figure 1: Violation of farthest segment.

farthest point from ¢ among those points in S that are
not vertices of C'H(S), then let py be the farthest point.
We can apply the proof for case (1) with p; replaced by
pr and obtain that p;p; is not the farthest line segment,
again a contradiction. ad

Using Lemma 1, we have the following simple algo-
rithm. Start by computing the convex hull CH(S) of
S, in O(nlogn) time and O(n) space. From the edges
of CH(S), select the farthest one, e;. This is one of
the two possible candidates for the farthest line seg-
ment, according to Lemma 1, and can be found in O(n)
time. Let V denote the set of points that are vertices
of CH(S) and let S = S\ V. Find the farthest point
from ¢ in S, which takes O(n) time. Let this point be
pi, where 1 < ¢ < n. If p; is closer to ¢ than e; then
report e as the farthest line segment. Else, find the
farthest line segment from ¢ with an endpoint at p; and
the other endpoint in V, which can be done in O(n)
time, and report this segment, ey, as the farthest line

segment. The optimality follows from [2].

Theorem 2 Given a set S of n points in R3, and a
query point ¢ € R3, the farthest line segment from q
spanned by S can be found in O(nlogn) time and O(n)

space, which is optimal.
3 Minimum and maximum area triangles

Our results for finding the minimum and maximum area

triangles spanned by a set S of n points in R® make use

of a data structure in [3], that uses the fact that in
B3 the Euclidean distance between a point and a line,
as a function of the line, admits a linearization into a
space of dimension 9. With s a parameter that controls
the trade-off between the query time and the space and
preprocessing time, n < s < n%/? they [3] show that S
can be preprocessed with O(5~logo(1) n) space and time
such that given a query line L the farthest (or closest)
point of S from L can be found in O(nlogn/s'/19/2])

time. We use this data structure in the theorem below.

Theorem 3 Given a set S of n points in R3, a min-
tmum area triangle spanned by S can be computed in

O(n2'4logo(1) n) time and space.

Proof. For each pair of points p;,p; € S, ¢ # j, the
minimum area triangle defined by the line segment p;p;
with the points in S\ {pi, p;} can be found by finding
the point with minimum distance to the line supporting
pipj. Thus, over all pairs p;,p; € S we have O(n?)
such queries. Balancing the preprocessing time with
the query time leads to the claimed bounds. a

For the maximum area triangle we have:

Lemma 4 The vertices of the marimum area triangle

spanned by S are among the vertices of CH(S).

Proof. Let p;, p;, and pi be the vertices of the maxi-
mum area triangle. Assume one or more vertices of Ay
are not among the vertices of CH(S). Let py be one of
the vertices of A;j; that is not a vertex of CH(S), and
assume py is interior to C'H(S). Let p be the point
on the line supporting p;p; that defines the distance
d(pr,Pip;), from pg to that line. Let II be the plane
through pg, that is orthogonal to ppr (see Figure 2).
Notice that a vertex p) of CH(S) must lie in the proper
halfspace for p defined by II. Moreover, the points p;
and p; are not contained in that halfspace.

Notice also that the distance from pj, to the line sup-

porting p;p; is greater than the distance from p;, to that
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Figure 2: The area of Ajji, can be increased by extend-
ing the height away from the base

line. Since we did not change the length of the base p;p;
of the resulting triangle, but only increased the height
by finding a point pj, of S that is farther from the line
supporting p;p;, the area of this new triangle must be
greater than that of Ajj, thus a contradiction.
Assume now that py, is interior to a face of CH(S). If
that face is not in II then the proof above applies result-
ing in a triangle of larger area. Let the face containing
pg be in II. Take the line L through pg and parallel to
P:p;- This line is orthogonal to ppr at pi. The line L
intersects the face of the convex hull at two points. If
one of the intersection points is on an edge e of CH(S),
then one of the end vertices pj, of e, together with p;
and p;, defines a triangle of larger area than A, If
both intersection points are vertices of the convex hull,
then any other convex hull vertex pj on that face, to-
gether with p; and p;, defines a triangle of larger area

than A”k O

Theorem 5 Given a set S of n points in R3, a maz-
tmum area triangle spanned by S can be found in
O(h2'4logo(1) n+nlogn) time and O(h2'4logo(1) n+n)
space, where h is the number of vertices of CH(S).

Proof. Find CH(S) in O(nlogn) time and use the
approach in Theorem 3 on the vertices of CH(S). DO

4 Conclusion

In this paper we discussed finding the farthest line seg-
ment spanned by S from a query point ¢ given as part
of the input, and finding the minimum and maximum
area triangles spanned by S. For each of these problems
we described efficient, exact algorithms for finding the
corresponding geometric structure.

A number of open problems remain with respect to
computing closely related geometric structures. One in-
teresting problem is to answer whether it is possible to
find the farthest line spanned by .S from a query point ¢,
given as part of the input, in subquadratic time. While
we can prove interesting properties for this problem, we
have not been able to find a subquadratic time algo-
rithm for i1t. We notice that in some sense the problem
seems harder than the problem of finding the farthest
plane spanned by S.

Finally, there are the problems of finding the closest
line segment and the closest line spanned by S from q.
It would be interesting to see whether either of these

two problems can be solved in subquadratic time.
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