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Contraction and expansion of convex sets

Michael Langberg ∗ Leonard J. Schulman †

1 Introduction

Helly’s theorem is one of the fundamental results in
discrete geometry [9]. It states that if every 6 d+1
sets in a set system S of convex sets in Rd have
non-empty intersection then all of the sets in S have
non-empty intersection. Equivalently, if the entire
family S has empty intersection, then there is a sub-
set S ′ ⊂ S (a witness) of size 6 d+1 which also has
empty intersection. Over the years the basic Helly
theorem has spawned numerous generalizations and
variants [16]. These have the following local-global
format: If every m members of a family have prop-
erty P then the entire family has property P (or
sometimes a weaker property P ′). Equivalently, if
the entire family has property P ′c then there is a
witness subfamily of size m having the (possibly
weaker) property P c.

The conclusion of Helly’s theorem fails, of course,
if the sets in S are not convex; also if one changes
the property “empty intersection” to notions of
“small intersection”. Nevertheless, we present
Helly-type theorems that apply to cases of these
sorts. We do so by allowing in the local-global tran-
sition not a weakening of the property P , but (arbi-
trarily slight!) changes in the sets themselves. We
use a pair of operations, the contraction C−ε and
expansion Cε of a convex set C. For centrally sym-
metric convex sets these are simply homothetic scal-
ings about the center (by factor (1 + ε) and (1− ε)
respectively), but for general convex sets the def-
initions are more complicated, and the operations
appear to be new. The operations are continuous,
i.e., for small ε > 0, the contraction C−ε and the ex-
pansion Cε are close to C (in the Hausdorff metric).
Our Helly type theorems are described below.

I. Finding a witness for small intersection Con-
sider the case in which the given set system S con-
sists of convex sets, however their intersection is not
empty. In this case (as an analog to Helly’s theo-
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rem) one may seek a witness of small cardinality
S ′ ⊆ S whose intersection is contained in the in-
tersection of the sets of S. It is not hard to verify
that finite witnesses do not exist even for systems of
convex sets in R2. For example, for any unit vector
u ∈ R2, let Cu be the strip of width 2 consisting
of vectors v with 〈v, u〉 ∈ [−1, 1]. The intersection
of the family S = {Cu}u is the closed unit ball B
centered at the origin, and any finite subset S ′ of
this family has intersection which strictly includes
B. Namely, no finite witness for the intersection of
S exists. We show:

Theorem 1 Let ε > 0. Let S = {Ci}i where each
Ci is closed and convex in Rd. There exists a subset
S ′ of S of size at most s(d, ε) = (cd)d

ε
d
2

such that

∩C∈S′C
−ε ⊆ ∩C∈SC. Here c > 0 is a universal

constant.

We remark that s(d, ε) is essentially tight as a
function of ε.

II. Sets that are not necessarily convex Now,
consider the case in which the set system S does
not consist of convex sets, but rather of sets that
are the union of a bounded number of convex sets.
Does the natural analog of Helly’s theorem hold for
such systems S? Namely, if ∩C∈SC is empty, is
there a small witness S ′ ⊆ S for this fact? As be-
fore, it is not hard to verify that the answer is no —
even in the simplest case when all sets in S consist
of the union of two convex sets in R1. For example,
consider the family S = {C1, . . . , Cn−1} in which
Ci is the closure of [0, 1] \ [ i−1

n , i+1
n ]. (Set difference

is denoted “\”.) Each Ci is the union of at most 2
closed intervals, and ∩Ci = φ. However, any strict
subfamily S ′ of S has non-empty intersection.

For real f > 1, a bounded convex set C is f -
fat if the ratio between the radii of the minimum
radius ball containing C and the maximum radius
ball contained in C is at most f (see [5]; this is
essentially inverse to the earlier definition [15]). If
C is unbounded, C is not f -fat for any value f .
For a set C consisting of the union of k convex sets
{C1, . . . , Ck} define C−ε to be ∪k

i=1C
−ε
i . (Observe

that the definition depends on the constituents Ci

and not only on their union.) We show:
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Theorem 2 Let ε > 0. Let S = {Ci}i where each
Ci is the union of at most k f -fat closed convex
sets in Rd. There exists a subset S ′ of S of size

at most s(k, d, ε, f) = (4k)k−1
(

cdfk−1

εk− 1
2

)d

such that

∩C∈S′C
−ε ⊆ ∩C∈SC. Here c > 0 is a universal

constant.

A few remarks are in place. First notice that if
∩C∈SC = φ then Theorem 2 states the existence of
a small witness S ′ for empty intersection (extending
Helly’s theorem). Secondly, in R1 all bounded con-
vex sets are 1-fat, so the fatness condition is not
a restriction in d = 1. We conjecture that the
fatness condition is unnecessary also in higher di-
mension (Conjecture 1). Finally, in R1 we are able
to improve the value s(k, 1, ε, 1) to approximately
(c/ε)k/2 logk/2(1/ε) for some constant c > 0. This
value of s(k, 1, ε, 1) can be shown to be essentially
tight as a function of ε.

Conjecture 1 Let S = {Ci}i where each Ci is the
union of at most k closed convex sets in Rd. There
exists a subset S ′ of S whose size depends only on
k, d, and ε such that ∩C∈S′C

−ε ⊆ ∩C∈SC.

1.1 Related work

To the best of our knowledge, these contraction and
expansion operations for convex sets (except in the
centrally symmetric case) have not previously been
considered. (Minkowski sum with a unit ball is
an entirely different operation as discussed in Sec-
tion 2.) Also, we are not aware of other Helly-type
theorems which apply to the case of non-empty in-
tersection.

There is an interesting literature on Helly-type
theorems for unions of convex sets. (For a nice
survey on Helly type theorems in general see
Wenger [16].) Let Cd

k be the family of all sets in Rd

that are the union of at most k convex sets. The
intersection of members in Cd

k are not necessarily in
Cd

k , and in general, as we have noted, subfamilies of
Cd

k do not have finite Helly number (i.e., there is not
a finite witness for empty intersection). Neverthe-
less, it was shown independently by Matoušek [12]
and Alon and Kalai [1] that if S is a finite subfam-
ily of Cd

k such that the intersection of every subfam-
ily of S is in Cd

k , then S has finite Helly number.
Let Kd

k be the family of all sets in Rd that are the
union of at most k pairwise disjoint convex sets.
As before Kd

k does not have finite Helly number.
Helly type theorems for subfamilies S of Kd

k such
that the intersection of every subfamily of S is in
Kd

k have been studied. Grunbaum and Motzkin [8]

showed that for k = 2 the Helly number of such S
is 2(d + 1), and for general k conjectured it to be
k(d+1) (which is tight). The case k = 3 was proven
by Larman [11], and the general case by Morris [13].
An elegant proof (based on the notion of LP-type
problems) was presented by Amenta [3]. Differently
from this literature, our results do not depend on a
restriction on the intersections of subfamilies of S.

1.2 Algorithmic motivation

Jie Gao and the authors of this work have recently
used a variant of Theorem 2 in the design of an
efficient approximation algorithm for clustering [6].
Roughly speaking, approximation algorithms lend
themselves naturally to the notion of ε contraction
and expansion — namely, in both cases a quantified
slackness of ε is allowed.

More specifically, in [6] we prove a variant of The-
orem 2 for sets that consist of unions of axis-parallel
slabs. Our theorem is then applied in the design of
an efficient dynamic data structure which manages
the intersection of such sets. The data structure,
in turn, is used as a key element in a 1 + ε ap-
proximation algorithm for the k-center clustering
of incomplete data.

In general, Helly type theorems have found many
algorithmic applications. One such example is the
tight connection between the generalized linear pro-
gramming (GLP) paradigm and Helly type theo-
rems [14, 2]. It is plausible that the theorems and
definitions presented in this paper will find algorith-
mic applications other than those presented in [6].

1.3 Proof Techniques

In Theorem 1, we wish to find a small witness for
the intersection A = ∩iCi of elements in S = {Ci}.
Namely, we are interested in a subset S ′ of S such
that after its contraction, has intersection contained
in A. Roughly speaking, we show that for any point
x on the boundary of A, there exists a set Ci ∈
S such that the contraction C−ε

i of Ci does not
include x together with a significant portion of the
boundary of A. Finding such sets Ci iteratively, we
are able to cover the boundary of A, resulting in the
desired collection. As we are dealing with general
convex sets, giving a precise quantification of our
progress towards covering the boundary of A is the
major technical difficulty in our proof. The proof of
Theorem 1 somewhat resembles the proof of Dudley
for convex shape approximation by a polytope with
few vertices [4].

In Theorem 2 we wish to find a small witness for
the intersection A of S = {Ci} when the sets Ci are
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not necessarily convex, rather they are the union of
k convex sets. In a nutshell, the theorem is proven
by induction on k, where Theorem 1 acts as the base
case. The inductive step is non-trivial, and strongly
uses the fatness f of the sets in Ci.

1.4 Organization

In the remainder of the body of this extended ab-
stract (Section 2) we define the contraction and ex-
pansion of convex sets. Due to space limitations,
the proofs of Theorems 1 and 2 are omitted and
will appear in the full version of our paper.

2 The contraction and expansion of convex sets

We start with a few preliminary definitions and no-
tation. Throughout this extended abstract all sets
are subsets of Rd and the convex sets we consider
are closed and bounded (convex sets in their full
generality are considered in the full version of this
abstract). Sd−1 is the d dimensional unit sphere.
For a set A ⊆ Rd and c ∈ R the set cA is {cx|x ∈ A}.
Given two sets A and B the Minkowski sum A+B
is defined as the set {x+ y|x ∈ A, y ∈ B}.

For a unit vector u, a u-hyperplane is a d − 1
dimensional affine subspace perpendicular to u. A
slab is the Minkowski sum of a hyperplane and a
finite segment, and a u-slab is one bounded by u-
hyperplanes. The u-slab of a set A is the closed
u-slab of minimal width containing A; it is denoted
su(A) and its width is denoted wu(A).

Let us recall the standard definition of contrac-
tion and expansion for centrally symmetric sets. A
convex set C ⊆ Rd is centrally symmetric iff it has
a center p such that for any x ∈ Rd: p + x ∈ C
iff p − x ∈ C. For a centrally symmetric convex
set C let ‖x‖C be the norm of x with respect to C:
‖x‖C = inf{r > 0 | x−p

r + p ∈ C}. Now, for any
ε > −1 define Cε = {x | ‖x‖C 6 1 + ε}. Namely,
for positive ε the set Cε is a blown-up version of C
and is referred to as the expansion of C; and for
negative ε the set Cε is a shrunken version of C
and is referred to as the contraction of C (see Fig-
ure 1). When ε tends to 0, the set Cε tends to C.
It is not hard to verify that Cε is convex. Notice
the distinction between Cε and the Minkowski sum
C+εB (where B is the unit ball centered at the ori-
gin); the first definition commutes with affine linear
transformations, the second does not.

We are now ready to define contraction and ex-
pansion of general convex sets C. More specifically,
we would like to define the notion of a norm of
x ∈ Rd with respect to C. First notice that we

cannot use a direct analog to the definition for cen-
trally symmetric bodies as a general convex set lacks
a center point p. We thus consider an alternative
definition to ‖x‖C for centrally symmetric C which
is independent of p. As we will see, such a definition
generalizes naturally to convex sets which are not
necessarily centrally symmetric.

Let C be centrally symmetric around the ori-
gin. Let u be any unit vector in Rd. Consider
the u-slab su(C) of C. Clearly, it holds that
C ⊆ su(C). Moreover, it is not hard to verify that
C = ∩u∈Sd−1su(C). Now consider Cε. As Cε is
convex we have that Cε = ∩usu(Cε). However, it
also holds that su(Cε) = sε

u(C) = (1 + ε)su(C).
Thus we conclude an alternative equivalent defi-
nition for contraction and expansion of symmetric
convex sets: Cε = ∩us

ε
u(C). Namely, a definition

which relies solely on the notion of contraction and
expansion of slabs. This is the definition we would
like to use for general convex sets.

Definition 2.1 (Contraction and Expansion)
Let C be a closed and bounded convex set and let
ε be any real (positive, negative or zero). For a
slab su(C), let sε

u(C) be defined by the standard
definition of contraction and expansion for centrally
symmetric sets stated in the beginning of Section 2.
Let Cε = ∩u∈Sd−1sε

u(C). For any x ∈ Rd, let ‖x‖C
be 1 + ε for the minimum ε such that x ∈ Cε. The
definition above is depicted in Figure 2.

p C CεC−ε

x

x′

Figure 1: An illustration of the contraction and expan-

sion of a centrally symetric convex set C. The set C

with center p is given by a solid line. For positive ε, the

expansion Cε and the contraction C−ε of C are given

by dashed lines. For the point x ∈ Cε we have that

x′ = x−p
1+ε

lies on the boundary of C.

Claim 2.1 (Convexity of ‖ · ‖C) For a convex
set C, points x1 and x2 in Rd, and λ ∈ [0, 1] it holds
that ‖λx1 + (1− λ)x2‖C 6 λ‖x1‖C + (1− λ)‖x2‖C .
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C Cε C−ε

Figure 2: An illustration of Definition 2.1 applied to
a triangle C (which is not centrally symmetric). Here
ε > 0. In the presentation of Cε and C−ε, the set C is
drawn with a dotted line and its expansion/contraction
is presented as a solid line. Notice that the expansion
Cε of C is no longer a triangle.

Claim 2.2 (Continuity) Let C be a convex set.
Let ε > 0 then (Cε)−

ε
1+ε = C. Let ε > 0 be suffi-

ciently small (namely ε < 1
d) then C ⊆ (C−ε)

dε
1−dε .

Remark 2.1 The bound on ε in the second part of
Claim 2.2 may seem unnatural. However, it is nec-
essary as for certain convex sets C the contraction
C−ε is empty for ε = c

d for some small constant
c > 0. Thus, any expansion of C−ε in this case re-
mains empty. For example, consider the d dimen-
sional simplex C, it is not hard to verify that x ∈ C
implies that x is within distance approximately 1

d
from ∂C. Thus, it is not hard to verify that, for
ε > 2

d , C−ε = φ.

An alternative definition: One may consider an
alternative definition for ‖x‖C and Cε in which the
contraction and expansion are done with respect to
a center point p in C. Namely, for p ∈ C one can
define ‖x‖(C,p) = inf{r > 0 | x−p

r + p ∈ C}; and
Cε

p = {x | ‖x‖(C,p) 6 1 + ε}. Clearly, as this def-
inition depends strongly on the point p chosen, it
is not equivalent to our original definition given in
Definition 2.1. For this reason we prefer to use our
original definition which depends solely on the set
C. Nevertheless, for specific choices of p (such as
the center of mass or the point derived from John’s
theorem [10]), one can find connections between our
original definition and that given above.
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