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Reconstruction Submanifolds of Euclidean Space

David Letscher ∗

Abstract

A generalization of the crust algorithm is presented that
will reconstruct a smooth d-dimensional submanifold of
Rk. When the point sample meets satisfy a minimal
density requirement this reconstruction is homeomor-
phic to the original submanifold. In fact the recon-
structed manifold is ambiently isotopic to the original
via an isotopy that moves points a small distance. Also,
bounds are given comparing the metric of the source and
reconstructed manifolds.

1 Introduction

The manifold reconstruction problem consists of find-
ing a piecewise linear approximation to a smooth d-
dimensional submanifold of R

k from a set of n points
on the submanifold. Reconstructing a surface in R

3

has applications in areas including computer graphics,
medical imaging, computer vision and computer aided
design. Higher dimension applications include manifold
learning [4] and medical imaging where time is taken
into account to work in 4 dimensions.

Topologically correct algorithms for surface recon-
struction include the crust algorithm [1] and, a sim-
plified version, the cocone algorithm [3]. Both of these
algorithms return a surface that is collection of faces
in the Delaunay triangulation and return a homeomor-
phic copy of the surface when certain minimum den-
sity sampling requirements are met. More recently im-
provements on these algorithms have been made that
run in O(n log n) time [7]. In arbitrary dimensions an
algorithm with running time O(n log n) in the size of
the point samples and exponential in the dimension has
been introduced [5]. This algorithm requires an expo-
nentially dense sample of points and meet a minimum
sampling density to correctly reconstruct a submani-
fold. If the dimension of the submanifold is not known
in advance, an algorithm in [6] can provide an estimate.

In this paper we present an algorithm for reconstruct-
ing smooth submanifolds Md ⊂ R

k from an arbitrary
point sample. It generalizes the crust algorithm in [1].
For point sets that meet a minimum sample density that
is dependent on the dimension of the submanifold, the
resulting surface is an accurate reconstruction: it is both
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homeomorphic and isotopic to the original manifold,
the approximation converges pointwise to the original
manifold and induced metric approximates the Rieman-
nian metric for the original. Like the algorithm in [5],
the running time is exponential in the dimension of the
ambient spaces as the complete Delaunay triangulation
needs to be found.

In section 2 preliminary details and terminology are
introduced for the problem. Section 3 presents an al-
gorithm for estimating both the normal and tangent
planes is presented that is used in the main algorithm
in section 4. The topological guarantees on the qual-
ity of the reconstruction are given in sections 5. And
section 6 discusses the issue of the manifold extraction
problem in the main algorithm.

2 Background

Some terminology and notation needs to be established
before we can continue.

Medial axis and local feature size For any subman-
ifold M of Rk, the closure of the set of points that do
not have a unique closest point on M is referred to as
the medial axis of M . The local feature size of a point
p ∈ M is the distance from p to the medial axis and
will be denoted LFS(p). This provides a measure of
the scale on which the geometry and topology of the
manifold are interesting in a neighborhood of the point.

Restricted Delaunay triangulation For sample point
S ⊂ M , consider V or(S) ∩ M . For a dense sampling
this will be a cell decomposition of M and its dual tri-
angulation will be referred to as the restricted Delaunay

triangulation for S and M .

Sampling condition For any ǫ > 0, a set of points
S ⊂ M is called ǫ-dense if for any point p ∈ M there
exists a sample point s ∈ S such that d(p, s) ≤ ǫLFS(p).
There are no minimums on how close the points in the
sample can be to each other or other requirements on
how evenly distributed the sample points must be.

Tangent and normal planes For a smooth d-
dimensional submanifold M of R

k, then for any point
p ∈ M then tangent plane through p, denoted TpM ,
is the the d-dimensional plane though p containing all
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Figure 1: Voronoi cells for a surface and a curve in R
3.

points x such that the vector x − p is tangent to M at
the point p. Similarly, the normal plane, NpM is the
set of points x such that x− p is perpendicular to M at
p.

Other notation For any point x ∈ R
k, we will denote

the open ball of radius r centered at x by Br(x). For a
finite set of points X , PX will denote the plane spanned
by the points and P⊥

X the plane perpendicular to PX .

3 Approximating the Normal and Tangent Planes

For a dense set of sample points on a submanifold the
Voronoi cell have a large aspect ratio. They are small
in the tangential directions and large in the normal di-
rections as shown by the following theorem.

Theorem 1 Assume S is an ǫ-sample for ǫ ≤ .25 of

Md ⊂ R
k. If s ∈ S and V or(s) is the Voronoi cell

containing s then

1. V or(s) ∩ NsM ⊃ BLFS(s)(s) ∩ NsM

2. V or(s) ∩ M ⊂ B ǫ

1−ǫ

(s)

3. V or(s) ∩ TsM ⊂ B6.36LFS(s)(s)

The lemma indicates that the Voronoi cells are rel-
atively large in the normal directions and small in the
tangential directions, see figure 1. This motivates how
the tangent and normal planes can be accurately esti-
mated.

The algorithm generalize the notion of “poles” used in
the crust [1] and cocone [3] algorithms for surface recon-
struction; the vector to the pole, or furthest Voronoi ver-
tex, is close to the surface normal. By carefully choosing
k−d Voronoi vertices that are far away from the sample
point and meet an orthogonality condition we obtain an
accurate approximation to the normal.

Algorithm 1 Normal plane approximation

Input: a sample point s, the Voronoi diagram V≀∇(S)
and a dimension d

Output: a (k − d)-plane ANsM
1: X := {s}
2: while |X | < n − d + 1 do

3: Let v be the Voronoi vertex in the cell containing
s such that the projection of −→sv to P⊥

X is longest
4: X := X ∪ {v}
5: end while

6: return PX

The angle between the normal and its approximation
is O(ǫ

√
k − d) as shown by the following theorem.

Theorem 2 For an ǫ-sample S, ǫ ≤ .25
k−d

, and s ∈ S
then the angle between NsM and ANsM is at most

sin−1(2ǫ
√

k − d).

Note that both the density requirement and accuracy
are function of the co-dimension of the manifold, k − d.
This will be the case with most of the results that follow.
This implies that lower density is required for higher
dimensional submanifolds of R

k. For example, curves
in R

3 require a denser point sampling that surfaces in
R

3.

4 Reconstruction Algorithm

Using the approximate normal and tangent planes, the
reconstruction algorithm proceeds essentially the same
as the crust algorithm [1]. Algorithm 2 shows the major
steps of the algorithm. It finds a subcomplex TS of the
Delaunay triangulation and extracts a d-dimensional
manifold from it. This extracted manifold will be the
reconstruction of our original manifold and will be dis-
cussed in section 6.

Ideally, the reconstruction algorithm would always re-
turn the restricted Delaunay triangulation of the sub-
manifold. This would only happen if the only manifold
that can be extracted is the restricted Delaunay triangu-
lation. The following shows that for dense enough point
samples, the restricted Delaunay triangulation is one of
the possible reconstructions. A consequence of this is
that the manifold extraction steps always succeeds.

Theorem 3 If ǫ ≤ .25√
k−d

and S is an ǫ-sample for

Md ⊂ R
k then

1. the restricted Delaunay triangulation is contained

in TS

2. the restricted Delaunay triangulation is homeomor-

phic to M

This theorem is proved for curves in the plane for ǫ ≤
.4 in [2] and for surfaces in R

3 for ǫ ≤ .1 in [1]. Ideally,



CCCG 2007, Ottawa, Ontario, August 20–22, 2007

Algorithm 2 Submanifold reconstruction

Input: A finite set of sample points S ∈ Rk and an
integer d ∈ {1, . . . , n − 1}

Output: A triangulation of a d-manifold
1: Compute the Voronoi diagram and Delaunay trian-

gulation
2: For each s ∈ S, compute ANs(M) using algorithm 1

and calculate its perpendicular ATsM
3: Let C be the set of (k − d)-cells of the Voronoi dia-

gram such that for some sample point for an adja-
cent cell the angle between the edge and ANsM is
less than π/8

4: Let TS be the set of d simplicies of the Delaunay
triangulation so that their dual Voronoi cells in C

5: Extract a closed d-manifold, MS, from TS such that
every point in S is a vertex of MS and any two d-
simplicies of MS that intersect meet at an angle less
than π/2

6: return MS

no other triangulation would ever be returned. This is
true for curves in the plane if ǫ ≤ .25 [2]. However, it
is not true in general; so we must show any extracted
triangulation meets our needs.

5 Topological Guarantees

The first property that is desired for the reconstructed
manifold is that original manifold and the reconstructed
one are topologically identical; that is, homeomorphic.

Theorem 4 For ǫ ≤ .25√
k−d

and an ǫ-sample S for

Md ⊂ R
k the reconstructed manifold MS is homeomor-

phic to M .

Instead of proving this theorem, a stronger property
will be established. Consider the neighborhood Mǫ of
M defined as Mǫ =

⋃
x∈M BǫLFS(x)(x) For ǫ at most

1, Mǫ is disjoint from the medial axis. So the map π :
Mǫ → M taking a point z to its unique closest point on
M is well defined. And for any x ∈ M , π−1(x) ⊂ NxM .
In fact, π−1(x) is the (n− d)-ball of radius ǫLFS(x) in
NxM .

These balls in the normal planes provides Mǫ with
some additional structure as a fiber bundle, a general-
ization of a product space. See [8] for a full discussion.

Definition 5 A fiber bundle is a quadruple

(E, B, π, F ) such that

1. E, B, F are topological spaces

2. π : E → F is a continuous surjection

3. For any x ∈ B there exists an open neighborhood

U of x such that π−1(U) is homeomorphic to the

product U × F . Furthermore, π|π−1(U) is equal to

proj1 ◦ φ where proj1 : U × F is the projection to

the first coordinate and φ : π−1(U) → U × F is a

homeomorphism.

E is referred to as the total space, B the base space
and F the fiber.

Lemma 6 For ǫ ≤ 1, (Mǫ, M, π, Dn−d), with Dn−d the

n − d disk, is a fiber bundle.

When the fibers are disks these bundles are called disc

bundles. Topologically, in any fibration there are many
manifolds that could be used as a base space and it turn
out that MS is one of them.

Definition 7 A section of a fiber bundle (E, B, π, F ) is

a continuous map f : B → E such that π(f(x)) = x for

all x ∈ B.

Theorem 8 For ǫ ≤ .25√
k−d

and 2.65ǫ ≤ δ ≤ 1, MS is a

section of the fiber bundle (Mδ, M, π, Dn−d).

This follows from the fact that MS intersects each
fiber transversely in a single point. Using this fibration
allows us to prove that that M and MS are more than
just homeomorphic. See [8] for more details.

Definition 9 Subspaces X, Y of Z are ambiently iso-
topy if there exists a continuous map h : Z × [0, 1] → Z
such that

1. For every z ∈ Z, ht(z) = h(z, t) is a homeomor-

phism from Z to itself.

2. h(x, 0) = x for all x ∈ X

3. h(X, 1) = Y

This allows us to prove the main result about the
quality of the reconstruction. In particular, we can show
that the manifold and its reconstruction are equivalent
in how they are embedded in R

k and that no point in
MS is very far from its equivalent point in M .

Theorem 10 For ǫ < .25√
k−d

, M and MS are ambiently

isotopy via an isotopy, h(x, t). Furthermore, the isotopy

moves a point x ∈ M a distance at most 2.65ǫLFS(x).

The proof of this theorem follows from the fact that for
disk bundles any two sections are ambiently isotopic.

6 Manifold Extraction

A variety of strategies can be used to extract a man-
ifold in algorithm 2 and any of them will satisfy the
quality guarantees. However, there may be many pos-
sible manifolds to extract so some assistance is needed
to do it efficiently. The original crust algorithm [1] re-
lies on prior knowledge of the sample density to extract
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a manifold using the fact that the angle between adja-
cent triangles in O(ǫ) so knowing ǫ was needed for this
step to work accurately. The cocone algorithm [3] to
improve this stage of the reconstruction algorithm by
first removing “sharp edges” and performing a depth-
first search on the “outer boundary”. A similar idea can
be used in this context.

Algorithm 3 Manifold extraction

Input: A d-complex, T
Output: A triangulation of a d-manifold
1: while T is not the triangulation a closed d-manifold

do

2: Recursively remove d-simplicies from T that have
a (d− 1)-dimensional face without an adjacent d-
simplex meeting it at an angle of 3π/2 or larger.

3: Find a (d−1)-simplex τ of T such that there exist
more than two d-simplicies containing τ .

4: Let σ, σ′ be two of the faces that meet in an angle
smaller than π/2.

5: Remove all of the d-simplicies from T containing
τ except σ and σ′.

6: end while

7: return T

Theorem 3 implies that the restricted Delaunay tri-
angulation is in TS. This ensures that it is possible to
extract a closed manifold; however, we need to ensure
that this algorithm will always construct such a mani-
fold.

Theorem 11 For ǫ ≤ .25√
k−d

, when algorithm 3 is run

with input TS then it returns a closed d-manifold.

7 Conclusion

We have presented an algorithm that can reconstruct
any submanifold of Euclidean space. For sufficiently
dense set of points this algorithm will always construct
an ambiently isotopic copy of the original manifold.
This density requirement needs the minimum distance
to a sample point that is inversely proportional to the
square root of the co-dimension of the manifold. As
ǫ → 0, the manifold converges pointwise, the tangent
planes converge and the metrics converge to those of the
original manifold. All of the errors are O(ǫ) as ǫ → 0.

While this algorithm is not practical in high dimen-
sions, the density requirements do not increase quickly
with the dimensions of the spaces involved and strong
quality guarantees are provided. In the future it may be
possible to combine the O(n log n) running time of [5]
with the techniques of this paper to weaken the require-
ments on the point sample.
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