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Realizations of hexagonal graph representations

Therese Biedl*

Abstract

A hexagonal graph representation is a description of a
drawing of a planar graph with maximum degree 6 such
every edge segment knows its direction vector, but coor-
dinates of vertices are unknown. Moreover, the angles
are such that each face and each vertex of the graph
could be realized locally.

In this paper, we study realizations of hexagonal
graph representations, i.e., the problem of finding ver-
tex coordinates such that all edge directions are realized.
We provide three results, sadly all negative: First, not
all hexagonal graph representations have a realization.
Secondly, even if one has a realization, its size may be
exponential in the number of vertices. Finally, testing
whether it has a realization is NP-hard.

1 Background

In his seminal paper on orthogonal drawings of planar
graphs, Tamassia [10] obtained bend-minimal drawings
by breaking the problem into two parts: In the first
part, he finds an orthogonal representation, which is a
description of a graph drawing that fixes the number of
bends and all angles, but not the actual drawing. Find-
ing a bend-minimal orthogonal representation can be
done via minimum cost flow in polynomial time. In the
second part, Tamassia then converts such an orthogo-
nal representation into an actual orthogonal drawing,
by assigning suitable lengths to all segments of edges
such that the resulting drawing has no crossing. This
so-called orthogonal compaction can always be done by
“cutting off an ear” from any face that is not a rectangle;
once all faces are rectangles a suitable set of edge lengths
can be found easily. (Other authors studied orthogonal
compaction with additional constraints; see Patrigni-
ani’s paper [7] and the references therein.)

Tamassia also considered k-gonal drawings, which are
drawings in which edges are routed with segments that
have slope i - 7/k for some i € {0,...,k—1}. For k =
3, k-gonal drawings are also called hexagonal drawings.
With only minor changes, his first phase works for &
slopes as well, i.e., we can find a bend-minimum k-gonal
representation of a planar graph in polynomial time.
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Tamassia does not address the issue of realizing such
a k-gonal representation. Some later works deal with
this, but they either only work for triangular graphs (all
interior faces are triangles) [2], or series-parallel graphs
[5], or prove NP-hardness for larger & [5].

In this paper, we study the problem of realizing
hexagonal (i.e., 3-gonal) representations. Not all 3-
gonal representations can be realized; see Section 3.
Even if a realization exists, we show in Section 4 that
it may require very large edge length. Finally, we show
in Section 5 that testing whether a hexagonal repre-
sentation has a realization is NP-hard. It was already
known that testing whether a planar graph with given
angles (in fact, a 12-gonal representation) has a real-
ization is NP-hard [5]. Our contribution is hence to
reduce k needed for NP-hardness. In fact, the complex-
ity of realizing hexagonal representations is explicitly
mentioned in [11].

2 Definitions

We assume familiarity with graph theory and especially
planar graphs. A (multi-line) graph drawing of a planar
graph assigns a point to each vertex, and a contiguous
sequence of line segments connecting the points of the
endpoints to each edge. A bend is the place where the
drawing of an edge changes slope. We will often identify
the graph-theoretic concept (vertex, edge) with the ge-
ometric element that represents it in its drawing (point,
sequence of line segments). For the drawing to be valid,
it must be planar, i.e., no two vertices coincide, and
edges are disjoint except at common endpoints.

We say that a graph drawing is a k-gonal drawing if
it has at most k different slopes among the segments
of edges. A 2-gonal drawing is usually called orthog-
onal drawing; a 3-gonal drawing is called a hezagonal
drawing. Such a drawing is called a grid drawing if ver-
tices and bends are placed at the intersection points of
a rectangular /hexagonal grid.

A k-gonal representation of a planar graph gives for
each edge the number of segments, and for each segment
a direction (the slope as a vector from one endpoint to
the other.) At most k different slopes are used. More-
over, the edge directions are locally correct for each ver-
tex and face, i.e., around each vertex the edge segments
(sorted by slope) correspond to the planar embedding,
and around each face with d edge segments, the edge
directions form angles that sum up to (d — 2)7 degrees.
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A k-gonal representation is called orthogonal represen-
tation for k = 2 and hexagonal representation for k = 3.
A k-gonal drawing realizes a k-gonal representation if
all the edge directions coincide.

3 Existence

In this section, we give examples of hexagonal represen-
tations that cannot be realized. Consider the represen-
tation in Figure 1(a) (only the edge slopes should be
considered, as this is a representation, not a drawing.)
The graph is essentially a “wheel”-graph, except that
one spoke of the wheel has been extended by another
edge. All but one interior face are triangles whose an-
gles are all /3, so they are equilateral, so all spokes
have the same length. However, the second edge of the
extended spoke then must have length 0 in any hexago-
nal drawing, which is not allowed. A similar argument
shows that the hexagonal representation in Figure 1(b)
also has no realization, and in addition it has maximum
degree 3.

(a) (b)

Figure 1: Hexagonal representations that have no real-
izations.

Theorem 1 There exist heragonal representations
without realizations, even if the graph has mazimum de-
gree 3.

Note that this theorem holds even if the realization is
not required to be a grid drawing; all that we have used
is that edges are drawn with non-zero length.

4 Exponential edge length

In this section, we show that even if a hexagonal rep-
resentation can be realized, it may take a lot of edge
length (hence area) to do so. In fact, rather than giving
one specific hexagonal representation, we give a planar
embedded graph and show that for any bend-minimal
hexagonal drawing of this graph, the maximum edge
length must be exponential.

Define graph G;, i > 1, as follows (see also Figure 2):

. . . . 0 1 2
e (71 is a triangle with vertices vg, vg and v§.

e For any ¢ > 1, let GG; be the graph obtained from

G,_1 by adding three more vertices vy, v}, v} in the
: 0 0_ 1
outer-face, and adding a 6-cycle v;_; — vy —v;_; —

vil — v;»z_l — v;-z — “?—1 that becomes the new outer-

face.

Figure 2: A graph for which any hexagonal drawing
without bends requires exponential area.

Note that G; has 3i vertices. Let I'y be a planar
hexagonal drawing of G'x (for some large N) that has no
bends and respects the planar embedding. I'x induces
a hexagonal drawing I'; of G; for each 1 < ¢ < N which
also has no bends. We first show that the angles in 'y
must be as in Figure 2.

Lemma 2 For any ¢ > 1, the outerface of Gi; is drawn
as an equilateral triangle in T; with corners at v}, j =

0,1,2.

Proof. Recall that the outer-face of G; is a 6-cycle
U?_l — v? — vil_l — Ul»l — Ul»z_l — vf. By the fixed planar
embedding, U‘Z_l (for j = 0, 1,2) has two more edges on
the inside. Hence the interior angle at Ug_l is at least
m. The interior angle at v‘g (7 = 1,2,3) is at least 7/3
since we have a hexagonal drawing. If any of these an-
gles is bigger than their minimum, then the 6-cycle has
angle-sum > 4w, and hence cannot be drawn as a 6-gon,
so one of the edges on it must have a bend. But I'; has
no bend. So the angles are all at their minimum, which
means that the 6-cycle is drawn as a triangle with all
angles 7/3, i.e., it is equilateral. O

I'; also must be an equilateral triangle, for any other
hexagonal drawing of a 3-cycle has at least one bend .
From this, and the details of the above proof, we deduce
that all angles must be as in Figure 2. With that, we
can now easily prove the claim about the edge length.

Lemma 3 Assume the edges of I'y have length a.. Then
the edges on the outerface of T; have length 2°=2a for
1> 1.

Proof. We proceed by induction on :. The base case
(i = 2) holds because v9,v9 and v} form an equilateral
triangle, so edges (v9,v9) and (v9,v]) have length o =
2=2¢ as well, and similarly one shows the claim for
all other edges on the outer-face of I';. For ¢ > 2, we
know that the path v?_l, vl-l_2, vl-l_l forms a straight line
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segment, and by induction it has length 2 . 2073a =
2i=2q. This path forms an equilateral triangle with the
edges (v9_;,v?) and (v?,v} ), so they too must have
length 2~ 2a, which proves the claim. a

Theorem 4 There exists a planar graph G with maxi-
mum degree 4 such that any hexagonal grid drawing of
G that respects the planar embedding and has the mini-
mum number of bends has mazimum edge length at least
2713=2 times the minimum edge length.

The above theorem requires that the planar embed-
ding is fixed, but even if we allow arbitrary planar em-
beddings, we still get an exponential lower bound. Note
that Gy would be 3-connected if the degree-2 vertices
were replaced by edges. Therefore, Gx has only one
combinatorial embedding, and the only way to draw it
differently is to choose a different outer-face. For any
choice of the outer-face, there is a still a copy of G2
(possibly with three edges subdivided) that is drawn in
the correct planar embedding. Hence there is an edge
of length 2NV/2-2¢ = 27/6-24,

5 NP-hardness

In this section, we prove that testing whether a given
hexagonal representation can be realized is NP-hard.
Note that we do not know whether this problem is NP
(and since exponential edge length may be required, it
is non-trivial to argue that it should be.)

We know of multiple ways of proving NP-hardness
of this problem, but have chosen here one that relates
to another graph drawing problem, namely, orthogonal
compaction with minimal maximum edge length. In this
problem we are given an orthogonal representation and
a constant K, and we want to find an orthogonal draw-
ing that realizes the representation and has edge length
at most K. Patrignani [7] showed that this problem is
NP-hard even for a connected graph, and even if the
graph has no bends at all.

For our reduction, it will be convenient to represent
hexagonal representations and drawings on a grid that
has vertical, horizontal, and diagonal grid lines; note
that this is the same as a hexagonal grid after a hori-
zontal shear. The horizontal and vertical grid-lines are
used to copy (with some duplication) the given orthog-
onal representation, while the diagonals are used to en-
force distance constraints.

So given an orthogonal representation of a connected
graph, we construct a hexagonal representation as fol-
lows:! Replace every vertex by a rectangle with a di-
agonal in it. The diagonal forces the rectangle to be
a square in any hexagonal drawing. Replace each edge

1Qur reduction is loosely inspired by the reduction in [9], which
converted a polygon into a hexagonal graph drawing, but proved
NP-hardness of morphing such graph drawings instead.

(v, w) by a rectangle connecting the squares for v and
w. There are no diagonals here, so the rectangle can be
arbitrarily long. See also Figure 3. Note that connect-
edness of the graph forces squares to have the same side
length in any hexagonal realization.

Figure 3: Replacing each vertex by a square, and each
edge by a rectangle.

With this reduction, any realization of the represen-
tation orthogonal is easily converted into a realization
of the corresponding hexagonal representation. To en-
force edge length constraints, we modify the reduction
further. For each edge, we thus far used a rectangle.
We now add a belt by subdividing the two edges of the
rectangle that are incident to vertices, and inserting a
sequence of 2K + 1 squares with diagonals. (Recall that
K is the upper bound on the maximum edge length.)
See Figure 4.

vertex-square edge-rectangle vertex-square

belt

Figure 4: Adding belts to edge-rectangles.

Note that while all vertex-squares still must have the
same height and width, the size of the belt is quite flex-
ible: its height (for a horizontal edge) can be as little as
one unit (but then the edge has to be fairly short), or
it can be almost the height of the vertex-squares (but
then the edge has to be very long.)

Lemma 5 The orthogonal representation has a realiza-
tion (on the rectangular grid) with mazimum edge length
at most K if and only if the hexagonal representation
has a realization (on the hexagonal grid).

Proof. Assume first we have a realization of the or-
thogonal representation with maximum edge length K.
Scale the drawing by a factor of £ = 4K + 2, i.e., make
all edges ¢ times as long. Then replace each vertex with
a square of side length 2K + 1 centered at that ver-
tex. Replace each edge with a rectangle connecting the
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squares at its endpoints. We want to place the belt in-
side this rectangle, but for this, need to show that if we
scale the belt as to fit the edge length, then it is neither
too small (it fits on a grid) nor too big (its height is less
than the edge-rectangle’s height.)

Consider one edge of the orthogonal drawing (we as-
sume that it is horizontal for ease of description), and
let its length be L, 1 < L < K. After scaling the draw-
ing this edge has length £- L, and after inserting squares
for vertices (which cuts off half a square at each end),
the edge-rectangle has width

Wi=0-L— (2K +1) = (4K +2)L — 2K +1).

Note that W is also the width of the belt for this edge.
Since the belt has 2K + 1 squares, the height of the belt
hence is 2L — 1. By L > 1, the height of the belt is
2L — 1> 1, so the edges of the belt have length at least
1. Also, 2L — 1 is an integer, so the belt itself can be
drawn on the grid. Finally by L < K, the height of the
belt is 2L — 1 < 2K — 1 = (2K 4 1) — 2, so the height
of the belt leaves two units space at the sides of the
vertex-squares, and the belt hence can be placed inside
the edge-rectangle on grid points.

For the other direction, given the hexagonal drawing,
we can place each vertex at the center of the correspond-
ing square and route the edge correspondingly. Clearly
this gives an orthogonal drawing. With similar compu-
tations as above one can show that after scaling it down
by a factor of 4K + 2, the maximum edge length is at
most K and the drawing can be realized on a grid. O

Theorem 6 Testing whether a hexagonal representa-
tion can be realized in a grid drawing is NP-hard.

We note here that “grid drawing” is not an essen-
tial part of the NP-hardness. As long as edges have to
be drawn with non-zero length, the NP-hardness proof
(with a slightly different scale factor) still holds.

Our NP-hardness result (and in fact, all of this paper)
was about planar graphs with planar representations.
However, the idea of converting an orthogonal represen-
tation into a hexagonal representation works similarly
even if the graph is not planar; one can hence prove
NP-hardness of realizations of (similarly defined) non-
planar hexagonal drawings, using e.g. the NP-hardness
of minimizing the area of orthogonal drawings [4].

6 Conclusion

For hexagonal representations, the case is mostly closed:
There is not always a drawing for a representation; even
if there is one, it may have exponential edge length;
and testing whether there is one is NP-hard. k-gonal
drawings for k£ > 4 cannot be any easier than hexagonal
drawings.

One remaining open problem is to ask similar ques-
tions in 3D. Here testing whether a realization exists
is NP-hard even for orthogonal realizations [8]. Special
cases that can be solved are paths [1, 6] and 3-connected
planar graphs that are graphs of convex polyhedra [3].
Another special case that we are interested in is poly-
hedra. Thus, given a graph with orthogonal edge di-
rections in 3D, is there an orthogonal polyhedron for
which this is the graph? Is there an orthgonally convex
polyhedron for which this is the graph? It is easy to see
that the answer is sometimes “no”, but is it NP-hard
to test whether there is one? (The proof of [8] does not
cover this case.)
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