
CCCG 2007, Ottawa, Ontario, August 20–22, 2007

Distance Preserving Terrain Simplification —
An Experimental Study

Boaz Ben-Moshe∗ Matthew J. Katz† Igor Zaslavsky†

Abstract

The terrain surface simplification problem has been
studied extensively, as it has important applications in
geographic information systems and computer graph-
ics. The goal is to obtain a new surface that is com-
binatorially as simple as possible, while maintaining a
prescribed degree of similarity with the original input
surface. In this paper, we propose new algorithms for
simplifying terrain surfaces, designed specifically for a
new measure of quality based on preserving inter-point
(geodesic) distances. We are motivated by various geo-
graphic information system and mapping applications.

We have implemented the suggested algorithms and
give experimental evidence of their effectiveness in sim-
plifying terrains according to the suggested measure of
quality. We experimentally compare their performance
with that of another leading simplification method.
1 Introduction

There are numerous papers dealing with terrain and sur-
face simplification. A terrain can be modeled as a trian-
gulation (e.g., of a rectangular region R), with a height
(z-coordinate) assigned to each triangle vertex. Terrain
models are commonly used to represent the surface of
the earth.

Since terrain models can be huge, in particular when
the resolution is high, it is often necessary to simplify
them prior to using them for analysis or visualization.
Methods for terrain simplification have been devised
that transform a detailed terrain into a less detailed
terrain, having fewer triangles, in such a way that the
simplified terrain is “similar” to the original terrain in
some sense. There are many possible ways to measure
the degree of similarity between the original and simpli-
fied terrains; some are exact (e.g., specifying an exact
numerical error tolerance ε such that the simplified ter-
rain must lie within vertical distance ε of the original,
at every point (x, y) ∈ R), while other methods rely on
qualitative notions of similarity (e.g., based on human
perception of similarity).

In this paper we propose a new way to measure qual-
ity of simplification that is especially appropriate for
applications that compute and use geodesic distances

∗Department of Computer Science, College of Judea and
Samaria, Ariel 44837, Israel, benmo@yosh.ac.il

†Department of Computer Science, Ben-Gurion University,
Beer-Sheva 84105, Israel, {matya,igorz}@cs.bgu.ac.il

between terrain points. Informally, a simplification (of
the desired size) is considered “good” by this measure
if for any random set X of pairs of points from the un-
derlying rectangular region R, most of the distance in-
formation is preserved with respect to X . That is, for
most pairs {p, q} ∈ X , the distance between p and q on
the simplified terrain is not significantly different from
the corresponding distance on the original terrain.

This criterion is quite different from the commonly
used criteria, since, for example, we do not care if a
very high and detailed mountain is replaced by a much
lower and less detailed mountain, as long as this change
is not expected to have a significant effect on the dis-
tances computed for a random set X of pairs of points.
The distance-based quality of simplification measure
suggested here is motivated by GIS and mapping ap-
plications, where often a requirement for dramatic sim-
plification and a requirement for realistic distances come
together. GPS devices are a typical example.
Related work. Extensive work has been done on many
aspects of terrain approximation; see Heckbert and Gar-
land [9] for a survey. Most papers dealing with terrain
simplification consider error norms such as maximum
vertical distance, Hausdorff distance, etc. Ben-Moshe
et al. [2] suggested a quality measure based on pre-
serving inter-point visibility. Gudmundsson et al. [8]
considered the problem studied in this paper for polyg-
onal paths. Bose et al. [4] study the area-preserving
simplification problem for x-monotone polygonal paths
in the plane. In general, much work has been done
on distance-preserving simplification from a theoretical
point of view; see the new book by Narasimhan and
Smid [10] on geometric spanner networks, and, e.g., pa-
pers [1, 6] that consider general graphs and are some-
what related to the problem studied in this paper.
2 A Distance-Based Simplification Measure

Let T (resp., T ′) be a terrain model consisting of n
(resp., m) triangles, with n > m. We assume that T and
T ′ are defined over a common underlying rectangular
region, R, in the (x, y)-plane. For a point p ∈ R, let
pT (resp., pT ′) denote the point in R3 that is obtained
by lifting p onto the surface of T (resp., T ′). Given two
points p, q ∈ R, let GDT (p, q) be the geodesic distance
between pT and qT (i.e., the length of a shortest path
on the surface of T between pT and qT).

Let X be a finite set of pairs of points in R. (One

19th Canadian Conference on Computational Geometry, 2007

can think of X as the set of edges of a graph defined on
a discrete set of points of R.) We define the similarity,
in terms of geodesic distances, between T and T ′ with
respect to X . For each pair {p, q} ∈ X , compute the
ratio GDT (p,q)

GDT ′ (p,q) . Let V be the set of all these ratios.
Then the similarity τX between T and T ′ with respect
to X (or, alternatively, the quality of simplification T ′

of T with respect to X) is τX = 1
|V| · Σv∈V |1− v|.

In practice we prefer to approximate the geodesic dis-
tances GDT (p, q) and GDT ′(p, q), as described below.
Approximating geodesic distances. It is common
to use a graph G in order to approximate the geodesic
distance between two points a and b on T . We define
G as follows. Let δ be a parameter that depends on the
average length of an edge of T and on the desired degree
of accuracy. For each edge e of T , place blen(e)/δc
vertices in the interior of e. Now, for each triangle t of
T , draw an edge for each pair of vertices on t’s boundary
(including the original 3 vertices).

Let a, b be two points on T . We use G to approx-
imate GDT (a, b) as follows. If a and b happen to
be vertices of G, then the distance between a and b
is approximated by the length of a shortest path in
G between a and b; denote this length by ΠG(a, b).
Otherwise, let t1 (resp. t2) be the triangle to which
a (resp. b) belongs. (If a (resp. b) is on an edge
of T , then pick any one of the two possible trian-
gles.) The distance between a and b is approximated by
minu1∈V (t1),u2∈V (t2){d(a, u1) + ΠG(u1, u2) + d(u2, b)},
where V (ti) is the set of vertices on ti’s boundary,
i = 1, 2, and d(a, u1) (resp., d(u2, b)) is the Euclidean
distance between a and u1 (resp. u2 and b).
3 General Methods for Terrain Simplification

In Section 4 we present two algorithms (PLD and VP)
that are based on one of the standard methods for ter-
rain simplification — the elimination method. This
method is described in Subsection 3.1. Next, in Sub-
section 3.2, we describe a meta method that applies the
elimination method in a sophisticated way. We use the
meta method to obtain two variants PLD’ and VP’ of
algorithms PLD and VP, respectively.

In general, we deal with Delaunay triangulations.
Thus, when a vertex v is removed from the current tri-
angulation, it is done by calling the Delaunay delete
operation, that updates the current triangulation. The
set, Av, of vertices that are affected by v’s deletion, con-
sists of all vertices whose set of neighbors has changed
as a result of v’s removal.
3.1 The elimination method
Algorithms PLD and VP are based on the well-known
elimination method.
1. Start from the original triangulation T .
2. For each vertex v ∈ V (T), compute its importance.
3. While T is not yet simplified enough

(i) Find a vertex v ∈ V (T) with lowest importance.

(ii) Remove v from T .
(iii) Update T and the importance of the affected

vertices.
In practice the vertices of T are stored in a priority

queue H, where the priority of a vertex is its impor-
tance. In order to obtain an actual algorithm, one needs
to define the importance of a vertex, the simplified
enough condition, and the update operation after re-
moving a single vertex from the current triangulation.

3.2 The meta method

The meta method first divides the input triangulation
into rectangular pieces, each with more or less the same
number of vertices. It then applies the above simplifi-
cation method (or any other simplification method) to
each of the pieces separately. Finally, it combines the
simplified pieces into a single simplified triangulation.

More precisely, one can think of the division stage as
a preprocessing stage. In this stage, the original tri-
angulation T is first divided into m rectangular pieces
T1, . . . , Tm, each with roughly |V (T)|/m vertices. Next,
for each rectangular piece Ti a value is computed, tak-
ing into consideration the measure of quality of simpli-
fication that is being used. This value indicates how
aggressive one can be when simplifying Ti. Now given a
simplification algorithm such as PLD or VP, and param-
eter P2L (percent to leave) that tells us what percent
of the vertices should remain in the output (simplified
triangulation), the simplification algorithm is applied to
each of the rectangular pieces separately. When apply-
ing the simplification algorithm to a rectangular piece
Ti, P2L is adjusted according to the value that was com-
puted for Ti. Finally, the simplified pieces are combined
into a single triangulation with the desired number of
vertices.

4 Distance-Preserving Terrain Simplification Algo-
rithms

Let T be a Delaunay triangulation representing a rect-
angular terrain (i.e., a height value is associated with
each vertex of T), and let P2L (percent to leave) be a
parameter that tells us what percent of the vertices of T
should remain in the output (simplified triangulation).
We begin this section with a detailed description of the
preserving local distances algorithm (PLD) and the vol-
ume preserving algorithm (VP), that are based on the
elimination method mentioned in Section 3. Next we
describe our implementation of the meta method (de-
scribed in Section 3) that yields algorithm PLD’, if PLD
is applied, and algorithm VP’, if VP is applied.

4.1 PLD

It remains to define the importance of a vertex, which is
a value between 0 and 1. The importance of a vertex u is
computed right at the beginning, and is updated when-
ever u belongs to the set of vertices that are affected by
the deletion of a vertex (see above).

CCCG 2007, Ottawa, Ontario, August 20–22, 2007

We use the following notation. N [u] is the set of
neighbors of vertex u in T , ED(v, w) is the Euclidean
distance (in 3-space) between v and w, and GDT (v, w)
is the geodesic distance between v and w (i.e., the length
of a shortest path on the surface of T between v and w).
Importance(T, u)
1. if u lies on the boundary of T then return 1
2. r ← 1
3. for each v, w ∈ N [u] do
4. if r > ED(v, w)/GDT (v, w) then
5. r ← ED(v, w)/GDT (v, w)
6. return (1− r)

In words, the importance of u is high (i.e., close to
1), if u has a pair of neighbors, such that the geodesic
distance between them is large with respect to the Eu-
clidean distance between them. In this case, u will not
be deleted, i.e., local distances are preserved.

4.2 VP

This algorithm attempts to preserve the volume in the
sense defined below. It is therefore reasonable to ex-
pect that it would also perform well with respect to our
quality of simplification measure.

The importance of a vertex u in this algorithm is pro-
portional to the volume of the set of all points that lie
between the current triangulation T and the triangula-
tion that is obtained by (Delaunay) deleting u from T .
That is, let T ′ be the triangulation obtained by deleting
u from T . A point p (in 3-space) lies between T and T ′

if and only if it is either above T and below T ′ or above
T ′ and below T . In order to determine the importance
of u (in T), we approximate the volume of the set X of
all such points. We now describe how this is done.

Let Au be the set of vertices that are affected by the
deletion of u (see above). Ignoring the third dimension,
let R be the (axis-aligned) bounding rectangle of Au.
Let B be the 3-dimensional box bounding both T and
T ′ over R. We approximate the volume of X as follows.
Volume(X)
1. Let P be a random sample of l points in B
2. Count ← 0
3. for each p ∈ P do
4. a ← pT ; b ← pT ′

5. if (a.z < p.z < b.z) or (b.z < p.z < a.z) then
6. Count ← Count + 1
7. return (Count/l) ∗ volume(B)

Importance(T, u): return Volume(X)

4.3 PLD’ and VP’

We need to describe the division stage (see Section 3.2),
and, in particular, we need to define the value of a rect-
angular piece.

The division itself is standard; it is similar to the di-
vision corresponding to a (2-dimensional) k-d tree [3],
except that we limit the number of levels by a small

constant c. That is, we divide the rectangle underly-
ing T into two subrectangles by a horizontal or vertical
line, such that the number of vertices of T in each of
the resulting subrectangles is roughly the same. Next
we divide each of these two subrectangles, etc. At the
end of this process we obtain a division of the rectangle
underlying T into m = 2c rectangles, where each rect-
angle underlies a rectangular piece Ti of T with roughly
|V (T)|/m vertices.

We now define the value of a rectangular piece Ti.
Informally, this value is equal to the average ratio be-
tween the Euclidean distance between two points on Ti

and the geodesic distance between these points. The
value is computed as follows, where R is the rectangle
underlying Ti.
CalcPieceValue(Ti)
1. Let P be a random sample of l points in R
2. val ← 0
3. for each p ∈ P do
4. for each q ∈ P , q 6= p do
5. a ← pTi ; b ← qTi

6. val ← val + ED(a, b)/GDTi
(a, b)

7. val ← val/
(

l
2

)
We now apply either PLD or VP to each of the m

rectangular pieces. The value of a rectangular piece Ti

(together with the overall percent-to-leave requirement)
tells us how aggressive we can be when applying the
simplification algorithm to Ti; that is, it determines the
parameter P2L with which PLD/VP is applied to Ti.
More precisely, P2L (for Ti) is calculated as follows.
P2L ← 100− val(Ti)

2

S ∗m(100−overall percent-to-leave) ,
where S is the sum, over all rectangular pieces Tj , of
val(Tj)2.
Running time. The expected running time of all
the suggested algorithms (PLD, PLD’, VP, VP’) is
O(|V | log |V |) — the proof is omitted for lack of space.

5 Experimental Results

In this section we report on some of our experiments
with algorithms PLD, VP, PLD’, VP’, including com-
parisons with the well-known software package — QS-
lim [7]. Tables 1-3 summarize our results.
Working environment. Our software package,
DPTS, was developed in C++, under Windows XP, us-
ing the Computational Geometry Algorithms Library
CGAL-3.2 [5].
Terrain datasets. Three input terrains representing
three different and varied geographic regions were used.
Each input terrain covers a rectangular area of 40–6,000
square kilometers and consists of 5,000-15,000 vertices1,
representing interesting geographic elements, such as,
craters, canyons, dunes, and lakes.

1Relatively small terrains were used, since the quality of sim-
plification computation is extremely time consuming. We note
though that all our simplification algorithms are quite efficient
and can handle terrains with hundreds of thousands of vertices.

19th Canadian Conference on Computational Geometry, 2007

Size PLD’ PLD VP’ VP QSlim

10% 0.04527 0.09155 0.02865 0.02643 0.02929
30% 0.02554 0.03274 0.01687 0.01821 0.01849
50% 0.01580 0.01612 0.01080 0.01184 0.01112
70% 0.00882 0.00870 0.00621 0.00581 0.00627

Table 1: Southern Israel map.

Size PLD’ PLD VP’ VP QSlim

10% 0.04852 0.12361 0.02809 0.02619 0.02400
30% 0.02304 0.03039 0.01835 0.01779 0.01777
50% 0.01589 0.01551 0.01247 0.01361 0.01372
70% 0.0086 0.00802 0.00736 0.00815 0.00884

Table 2: Crater map.

Size PLD’ PLD VP’ VP QSlim

10% 0.08840 0.10136 0.06509 0.04529 0.04283
30% 0.03686 0.04650 0.02709 0.02762 0.02724
50% 0.02497 0.0296 0.01752 0.01829 0.01673
70% 0.01487 0.01616 0.01015 0.00836 0.01133

Table 3: Northern California map.

5.1 Experiments using the distance-based measure

For each input terrain T , 4 simplifications were com-
puted of sizes 70%, 50%, 30%, and 10%, respectively,
using each of the 5 simplification algorithms. (That is,
for each input terrain T , 20 different simplifications were
computed). 3 sample sets, labeled A1, A2, A3 and con-
sisting of 100 points each, were generated by randomly
selecting points in the rectangle R underlying T .

The quality of simplification T ′ of T with respect to
sample set A is computed as follows (see also Section 2).
For each of the

(|A|
2

)
pairs (p, q) of points in A, we com-

pute the ratio |GDT (p,q)−GDT ′ (p,q)|
GDT (p,q) , where GDT (p, q) is

the geodesic distance on T between pT and qT . The er-
ror of T ′ with respect to A, denoted ErrT ′(A), is the av-
erage over all these

(|A|
2

)
ratios. The distance-preserving

error of T ′ is ErrT ′ (A1)+ErrT ′ (A2)+ErrT ′ (A3)
3 .

Our results are presented in Tables 1–3. Consider,
e.g., Table 1. This table summarizes our results for an
input terrain representing a region in southern Israel
and consisting of roughly 13,000 vertices. The first line
of the table refers to the 5 simplifications, each con-
sisting of roughly 1,300 vertices, that were computed
using algorithms PLD’, PLD, VP’, VP, and QSlim, re-
spectively. For each of these simplifications, the table
shows its error (see above). For example, the distance-
preserving error of the 10% simplification obtained by
applying VP’ is 0.028649. Figure 1 corresponds to the
second line of Table 1. Tables 1–3 lead us to the
following conclusions (some of which may require ad-
ditional experiments in order to fully validate them).
As expected, the error decreases as the size of the sim-
plification increases. That is, each of the columns is
decreasing. VP is significantly better than PLD. (The
latter is slightly better only in one case — Table 2, last
line.) In general, a dramatic improvement is achieved by
replacing PLD by PLD’, especially when the simplifica-

tion size decreases. The differences between the errors
obtained for VP and VP’ are small, where each wins
1/2 of the times. The error obtained for VP’ is usually
slightly smaller than that for QSlim; VP’ wins 2/3 of
the times. The advantage of VP’ over QSlim increases
when the simplification is not too small.

Figure 1: The input terrain of southern Israel (the
brighter the higher), and the 5 simplifications, each of
roughly 3900 vertices, that were computed; see Table 1,
second line. Top left: input terrain. Top middle: VP.
Top right: PLD. Bottom left: QSlim. Bottom middle:
VP’. Bottom right: PLD’.

Figure 1 suggests an explanation for the inferiority
of PLD. As can be seen, PLD tends to leave too many
vertices in “abnormal” regions with sharp geographic
features, and therefore too few vertices in “normal”
regions. Since usually a large portion of the terrain
consists of “normal” regions, and since the sample
points are chosen randomly, geodesic distances are
not well preserved for many of the pairs of sample
points. By replacing PLD by PLD’, we introduce a
global consideration, which explains the significant
improvement that is achieved.

References
[1] I. Abraham, Y. Bartal, H. T-H. Chan, K. Dhamdhere, A. Gupta,

J. M. Kleinberg, O. Neiman, and A. Slivkins. Metric embeddings with re-
laxed guarantees. In Proc. 46th IEEE Symp. Foundations Computer Science, pages
83–100, 2005.

[2] B. Ben-Moshe, M. J. Katz, J. S. B. Mitchell, and Y. Nir. Visibility preserv-
ing terrain simplification — An experimental study. Comput. Geom. Theory
Appl. 28(2-3) (June 2004), 175–190.

[3] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computa-
tional Geometry: Algorithms and Applications, Second Edition. Springer-Verlag,
2000.

[4] P. Bose, S. Cabello, O. Cheong, J. Gudmundsson, M. van Kreveld, and
B. Speckmann. Area-preserving approximations of polygonal paths. Journal
of Discrete Algorithms, 4 (2006), 554–566.

[5] CGAL Editorial Board. CGAL-3.2 User and Reference Manual. 2006.
http://www.cgal.org/

[6] D. Coppersmith and M. Elkin. Sparse source-wise and pair-wise distance
preservers. In Proc. ACM-SIAM Symp. Discrete Algorithms, pages 660–669, 2005.

[7] M. Garland and P. S. Heckbert. Surface simplification using quadric error
metrics. In Proc. SIGGRAPH’97, pages 209–216, 1997.

[8] J. Gudmundsson, G. Narasimhan, and M. Smid. Distance-preserving ap-
proximations of polygonal paths. Comput. Geom. Theory Appl. 36 (2007), 183–
196.

[9] P. S. Heckbert and M. Garland. Survey of polygonal surface simplification
algorithms. Manuscript.

[10] G. Narasimhan and M. Smid. Geometric Spanner Networks. Cambridge Uni-
versity Press, 2007.

