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Abstract

We introduce a weighting scheme for Voronoi diagrams
that has preferred directions. This generalizes the
concept of weighted Delaunay triangulations and over-
comes some of the difficulties of using multiplicative
anisotropic weight systems. We discuss properties that
make these weighting schemes attractive.

1 Introduction

A variety of ideas have been used to generalize Voronoi
diagrams and Delaunay triangulations. This include us-
ing non-Euclidean metrics; for example L, norms [5].
While arbitrary Riemannian metrics may be consid-
ered [4], they cannot be dealt with exactly. It is far
more practical to have, possibly different, metrics de-
fined for each of the sample points. This can be done by
introducing a weight to the “distance” to a point. These
weighting systems can either be isotropic, where direc-
tion does not influence the metric, or anisotropic where
points in some directions appear closer than others. De-
pending on how the weighting is done, the properties of
the corresponding Voronoi diagram and Delaunay tri-
angulation may vary.

In this paper, we introduce an anisotropic weighting
scheme that uses vectors as weights and, in some sense,
generalizes additive isotropic weights. The triangula-
tions obtained will satisfy some, but not all, of the prop-
erties that regular triangulations satisfy [1]. In section 2
existing weighting schemes are discussed with the new
anisotropic weighting scheme introduced in section 3.
In section 4, properties of the cell decomposition and
triangulations obtained will be given. The weighting
systems introduced have several generalizations shown
in section 5.

2 Weighting Systems

There are a several ways that weighting systems have
been used to generalize Voronoi diagrams. Each has
advantages and disadvantages. Multiplicative schemes
tend to be better motivated and additive schemes have
better properties.
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If we have a set of points X = {z1,...,2,} and “met-
rics” {d1,...,d,}, then we can use each metric to define
how close a point in R? is to the corresponding point
in X. Specifically, the Voronoi diagram will consist of a
region R; for each point z; defined to be

R; = {p € RYdi(p,z:) < d;(p. a;) ¥}

In the unweighted Voronoi diagram, these regions are
convex polyhedra and the dual of the Voronoi diagram
is the Delaunay triangulation. When the Voronoi di-
agram is a cell decomposition, the weighted Delaunay
triangulation will be the dual of the Voronoi diagram.

Figure 1 has Voronoi diagrams for unweighted points,
three existing weighting schemes and the proposed
anisotropic weighting. In addition to shown the Voronoi
regions, the figures show “circles” of integral radii to il-
lustrate the “metric” for each sample point.

Multiplicative Weights

Given a point p and a weight w > 0 then

dw(p,z) = w d(p, x)

This defines a metric on R? and has a natural interpre-
tation: w uniformly scales all distances to the sample
point. The intersection of two regions of a Voronoi di-
agram consists of the points where the distance to one
sample point is a multiple of the distance to the other;
for example the points that are twice as far from p as
they are from ¢. Notice that the faces of the Voronoi di-
agram with multiplicative weights are non-linear. There
are several difficulties with using this weighting system.
In particular, the Voronoi diagram for a set of sample
points using this weighting system does not necessarily
have regions that are simply connected. So the Voronoi
diagram may not be cell decomposition as it is in the
case of a Euclidean metric. See figure 1(b) for an exam-
ple.

“Additive” Weights

Power diagrams provide a form of an additive weighting
scheme that addresses some of the issues of multiplica-
tive schemes using the follow notion of “distance”:

dw(p,I) =V dz(p,x) —w
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Note that this is not a metric however it can still be
used to construct Voronoi diagrams. The motivation
is not as obvious in this situation; however, there are
several nice properties. For example, points equidistant
from two sample points is always a plane. This gives
these Voronoi diagrams many of the same properties
as standard Voronoi diagrams. Note that some sample
points may have empty cells and some points might not
be inside of their Voronoi cells. See figure 1(c) for an
example.

(Multiplicative) Anisotropic Weights

Over very small neighborhoods, a good way to approx-
imate an anisotropic metric is using a quadratic form.
Given a positive definite matrix Q:

do(p.7) = \/(z — P)Q(z — )T

This defines a metric on R? and if Q is the identity ma-
trix then this is the usual Euclidean metric. This has
been studied by [3]. This metric is similar to using an
isotropic multiplicative weighting scheme; the distance
is scaled by a constant that depends on direction. “Cir-
cle” in this metric are ellipses in the Euclidean metric.

Since multiplicative isotropic weighting is a special
case of the anisotropic one, it shares many of the same
difficulties. Regions in the Voronoi diagram are some
times disconnected and/or not simply connected. This
comes from the fact that in this metric the set of points
equidistant between two sample points is a conic sec-
tion, see figure 1(d) for an example. Note that the in-
tersection of two Voronoi cells can be a hyperbola, which
forces a region to be disconnected. This problem occur
when the metric differs too much between nearby sam-
ple points. Points that satisfy extra visibility conditions
do not have this difficulty [3].

3 Additive Anisotropic Weights

For our weighting scheme every sample point will have
an associated vector. This vector essentially forces
points along the direction of the vector, and its negative,
to be closer than in perpendicular directions. Formally,
given a point p and a vector v, we define the weighted
distance from a point x € R" to p as

du, (0,7) = \/ Il = pII2 + vy - (= — p)

Note that in directions perpendicular to v, this is the
Euclidean metric. In directions parallel to v,, points
that are close in Euclidean space are farther away using
this metric. This results in a metric where distance are
“squashed” in the direction of vp,.

To illustrate the metric, figure 2 show “circles” of var-
ious radii centered at the point p with specified weight-
ing vector v,. Notice that each circle in this metric is a

@)=

Figure 2: Circles of radius 1,2,3 and 4 centered at p
using the metric d,, with |[v,|| = 1 and [|v,|| = 2, re-
spectively.

|

Figure 3: Circles (using weighted anisotropic metrics
centered two points and the set of points equidistant
from them.

combination of two Euclidean circles that intersect on
the axis perpendicular to the weighting vector. As the
radius grows larger relative to the length of the vector
vp they get closer to Euclidean circles. It is the fact
that this distortion of the circles reduces as the radius
increases that will guarantee several nice properties of
this weighting system.

Figure 3 shows how two Voronoi regions intersect.
The boundary is piecewise linear with “turns” when it
crosses the perpendicular to the weighting vector. It
turns out that it crosses one axis at most once which
ensures that each Voronoi region is simply connected.
Figure 1(d) shows the Voronoi diagram. Note that it
has many similarities to the multiplicative anisotropic
case with the same sample points and similar weight-
ings. However, each region is connected and simply
connect.

4 Properties

Voronoi diagrams for Euclidean metrics have many de-
sirable properties. These include having convex regions;
which implies that the Voronoi cells are connected and
simply connected. Voronoi cells all contain their sample
points. And since the set of points equidistant from two
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Figure 1: Voronoi diagrams for a set of sample point with (a) no weighting (b) multiplicative weights, (¢) “additive”
weights, (d) multiplicative anisotropic weights, and (e) vector weights.

sample points is a straight line, the dual of the Voronoi
diagram is a triangulation and there is a unique point
that is equidistant from three sample points.

Not all of these properties hold for vector weightings.
However, d,, is a metric.

Lemma 1 If v is a vector in the plane then d, is a
metric. In other words,

x,y) > 0 (non-negativity)
»(z,y) =0 if and only if x =y (identity)
) =

1. dy(
2. dy(
3. dy(z,y) = dy(y,x) (symmetry)

4. dy(z,z) < dy(z,y) + dy(y, z) (triangle inequality)

When either the Euclidean metric or this “vector”
metric is used to find the set of points equidistant from
a pair of sample points, the quadratic terms cancel out.
So solutions to the equation d,(p,x) = dy(g,x) are
piecewise linear; it involves linear terms in the coor-
dinates and absolute values of linear terms.

As you move further away from a sample point, the
quadratic terms in the metric dominate the term in-

volving the vector. This causes larger “circles” in this
metric to be more “round”.

Lemma 2 Using the metric d,,, the ball of radius r has

/ 2 2__
an aspect ratio of VlvlP+ar? o] J;;lr lell
Note that as r goes to infinity this aspect ratio ap-
proaches 1. This property is one of the reasons that
the metric works well.

For standard Voronoi diagrams and ones that use ad-
ditive weights the set of points equidistant from two
sample points is a plane that is perpendicular to the
line going through the two points. For multiplicative
weights this is a conic section intersecting this line.

When using vector weightings, the dual to the
Voronoi diagram will always be a non-Euclidean trian-
gulation, a union of, possibly non-Euclidean, triangles.
We will refer to this triangulation as the vector weighted
Delaunay triangulation.

Proposition 3 The Voronoi diagram for a set of points
i the plane with vector weights is a cell decomposition
and it is dual to a non-Fuclidean triangulation.

One common situation where the dual fails to be a tri-
angulation can be seen in figure 1. There are a pair
of Voronoi vertices that are equidistant from the same
three sample points. The dual “triangulation” to the
Voronoi diagram in figure 1(c) in shown in figure 4. No-
tice that it has two triangles that are glued together
along two edges. This cannot occur for Euclidean tri-
angulations.

An overview of the properties for the various weight-
ing schemes is shown in figure 5. The vector weightings
compare well to all of the other methods. The least
desirable property that it has is that it can be dual to
triangulations that are not realizable as Euclidean ones.

To construct these vector weighted Voronoi diagrams,
Fortune’s sweepline algorithm [2] can be modified to find
these weighted anisotropic Delaunay triangulation by
adding a new event type corresponding to the sweepline
hitting “bend” and crosses the axis perpendicular to one
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Euclidean Multiplicative Additive Multiplicative Vector
Metric Weight Weight Anisotropic Weighted

“Metric” Il — ull Clle - yl| Vie—wii2-c | Je-wee-oT Vil —uli2 + v (= — vl
Connected Cells Yes No Yes No Yes
Convex Cells Yes No No No No, Star Convex
Simply Connected Cells Yes No Yes No Yes
Sample Point In cell In cell Anywhere In cell In cell
Vertices Unique Multiple Unique Multiple Unique
Dual Triangulation Arbitrary Arbitrary Arbitrary Non-Euclidean triangulation

Figure 5: Property comparison for different metrics for Voronoi diagrams.

Figure 4: The non-Euclidean triangulation dual to the
vector weighted Voronoi diagram in figure 1(e).

of the weight vectors.. Since the separator between two
sample points has at most two bends, the number of
this new event type is a constant factor of the existing
events. This can be used to show that the triangulation
can be found in O(nlogn) time, the same as unweighted
Voronoi diagrams.

5 Generalizations

There are several ways these weighting schemes can be
further generalized. For example multiple vectors can
be using in the weighting:

l
dion,wy (@:0) = | [l& = pI2+ Y Jvi - (x = p)|
i=1

This will still yield a metric, however, regions of the
Voronoi diagram may no longer be connected or simply
connected.

Another option would be to incorporate both
isotropic and anisotropic weighting simultaneously. A
point would then have a pair of a vector and a constant
as its weight and the “metric” would be of the form:

dio,o)(@,y) = Vllz —ylP +]v- (z —y)[+c

This is not guaranteed to be a cell decomposition and
some of the Voronoi regions corresponding to a sample
point might be empty.

6 Conclusion

We have proposed an anisotropic weighting scheme for
Voronoi diagrams and Delaunay triangulations that are
easily to calculate and have nice properties for arbi-
trary point sets. In particular, the Voronoi diagram
is always a cell decomposition that is dual to (possibly
non-Euclidean) triangulation. The asymptotic running
time of the algorithms to construct the diagrams are
the same as for ordinary Voronoi diagrams and Delau-
nay triangulations.

This weighting scheme could be used in anisotropic
mesh generation similar to the idea in [3]. The could
also have applications in situations were a single vec-
tor of information is provided, e.g. the gradient of a
function.
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