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Improved Layouts of the Multigrid Network

Shabnam Aziza∗ Therese Biedl††

Abstract

In a previous paper, Calamoneri and Massini studied
the problem of drawing the multigrid network in “a grid
of minimum area”. In this paper we show that we can
draw the multigrid network in a smaller grid, and can
reduce the number of bends and the number of crossings
as well.

1 Introduction

The multigrid network, MN is a graph consisting of a set
of square grids (or arrays), connected to each other in a
particular way (see Sect. 2 for precise definitions). For
parallel algorithms MN is one possible architecture, and
in particular proves useful for speeding up convergence
for finite difference problems (see for example [6, p.99].)

Calamoneri and Massini studied how to embed MN

in the 2-dimensional grid, and achieve what they call
“a grid of minimum area”, which is a grid of size
(5
2N − 3) × (3N − 4) [1]. This is clearly asymptoti-

cally optimal, since MN has θ(N2) vertices, but the
factors can be improved. This is the topic of this pa-
per. We use two main changes. First, we relocated
nodes slightly; this alone removes θ(N) crossings. Then
we replace nodes with other shapes. Calamoneri and
Massini represented nodes either as points or as hori-
zontal segments of length 1. The more freedom we al-
low ourselves in node representations, the more we can
improve their bounds. By using vertical segments, the
number of bends can be cut in half and the number of
crossings can be reduced. If we allow horizontal seg-
ments of length 2, or small boxes, we can eliminate all
bends. All of our constructions have smaller grid size
than the one by Calamoneri and Massini. Table 1 gives
a summary of our results.

2 Definitions

The N -multigrid network MN , which exists for N a
power of 2, is defined as follows: there are log N + 1
2-dimensional grids or arrays. For 0 ≤ k ≤ log N , each
array is of size N/2k × N/2k.1 For 1 ≤ k ≤ log N ,

∗saziza@yahoo.com
†biedl@uwaterloo.ca. Research supported by NSERC.
1It would sometimes simplify notation to use log N grids in-

stead and denote them as 2k
× 2k arrays. However, to keep our

results comparable to those in [1], we will follow their notation.

node (i, j) of the N/2k × N/2k array is connected to
node (2i, 2j) of the N/2k−1 × N/2k−1 array for all
0 ≤ i, j ≤ N/2k − 1. See also Fig. 1.

Figure 1: A 3D view of the multigrid M8 (Viewpoint
computed by R. Webber; see also [5] and [7]).

MN has 4
3N2 −

1
3 nodes. We use the notation (i, j)k

for node (i, j) of the N/2k × N/2k array, 0 ≤ i, j ≤

N/2k − 1, 0 ≤ k ≤ log N . MN has two types of edges:
intra-edges connect nodes of the same array, inter-edges
connect nodes in different arrays.

A layout of a multigrid network is an embedding of
the graph in the 2-dimensional grid. The grid size of
the layout is denoted by (a + 1) × (b + 1) where a × b
is the dimension of the smallest axis-aligned bounding
box of the layout.2

Since every node of the grid has only 4 incident edges,
but some nodes of the multigrid network have 5 or 6 in-
cident edges, we sometimes must use segments or boxes
for nodes. We use the term dot node for a node that
is represented by a dot. Horizontal/vertical nodes are
nodes that are represented by a line segment of that
orientation and length 1. Long nodes are represented
by a horizontal segment of length 2. Finally box nodes
are nodes that are represented by a box intersecting two
rows and two columns. See also Fig. 2. We will use no
other types of segments or boxes for nodes.

MN is not planar, and hence any 2D embedding
necessarily has crossings. We distinguish two different
types of crossings. When an intra-edge of one array
crosses an intra-edge of another array, we call this an

2In our pictures, we often insert empty rows and columns to
keep the symmetry of the arrays visible. These are not counted
for the grid size.
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Approach Grid size Bends Intra-crossings Inter-crossings

[1] (5
2N−3) × (3N−4) 1

6N2−
8
3

8
3N2 − 4N log N −

8
3

5
12N2−

3
2N + 1

3

Sect. 4.2 (7
3N −

7
3 ) × (8

3N −
7
3 ) 1

12N2−
4
3

8
3N2−8N log N 1

12N2−N−
10
3

+12N−4 log N−
44
3

Sect. 4.3 (2N−1) × (3N−3) 0 8
3N2−8N log N 0

+12N−4 log N−
44
3

Sect. 4.4 (7
3N − 7

3 ) × (8
3N − 7

3 ) 0 8
3N2−8N log N 0

+12N−4 log N−
44
3

Table 1: Overview of our results. Sect. 3 explains intra-crossings and inter-crossings. Calamoneri and Massini also
bound the maximum edge length by 3

2N − 3; our layouts have the same bound.

Figure 2: Different types of nodes: dot, horizontal, ver-
tical, long and box.

intra-crossing. When an inter-edge crosses an intra-
edge, we call this an inter-crossing. No other types of
crossings occur in the layouts in this paper (they are
not principally forbidden, but do not seem to help in
improving the bounds.)

3 The layout by Calamoneri and Massini

Calamoneri and Massini [1] gave a layout of MN in a
(5
2N − 3) × (3N − 4)-grid with 1

6N2 −
8
3 bends and a

maximum edge length of 3
2N − 3. They use dot-nodes

for some of the N × N -array nodes and for the only
node in the 1×1-array, and horizontal nodes otherwise.
They generally place node (i, j)k, 1 ≤ k ≤ log N , in the
middle of the square generated by the node (2i, 2j)k−1,
(2i + 1, 2j)k−1, (2i, 2j + 1)k−1, (2i + 1, 2j + 1)k−1. See
Figure 3.
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Figure 3: The layout of M8 according to [1].

They did not analyse the number of crossings in their
layout; we give a bound here. It is quite easy to show
(and similar to the analysis in Sect. 4) that their layout
has

log N−1
∑

k=1

2
(

N/2k
− 1

)

(N/2k)
k−1
∑

ℓ=0

2k−ℓ

=
8

3
N2

− 4N log N −
8

3

intra-crossings. Every inter-edge between the N/2k−1×

N/2k−1 array and the N/2k × N/2k array has 2k − 1
inter-crossings, for 2 ≤ k ≤ log N − 1, and the inter-
edge from the 1 × 1-grid to the 2 × 2-grid has N/2 − 1
inter-crossings, yielding

N/2− 1 +

log N−1
∑

k=2

(

N/2k
)2

· (2k
− 1) =

5

12
N2

−
3

2
N +

1

3

inter-crossings.

4 Improved Layouts

Now we will show some improvement over the layout of
Calamoneri and Massini [1]. We use dot notes as they
did (i.e., for some nodes in the N ×N -grid and the node
in the 1×1-grid), but change the type of representation
and location of the other nodes.

Obviously allowing other representations of nodes
changes the model. On the other hand, no particular
reason was given in [1] for using only dot and horizon-
tal nodes, and allowing e.g. vertical nodes should have
little impact on the applications, yet allows much im-
provement in the number of bends.

4.1 Reducing crossings

We remove many of the crossings by simply relocat-
ing the nodes. We do the following two changes: (i)

Rather than placing each smaller array “at the center”
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of the previous array, we place the smaller array in such
a way that inter-edges are very short. This eliminates
many, and sometimes all, inter-crossings, (ii) Instead
of placing each smaller array “inside” the previous ar-
ray, we place the smaller array such that two of its sides
are outside the previous array. This eliminates some
intra-crossings, and some more inter-crossings.

We illustrate these changes in Fig. 4. We draw nodes
here as dots, and inter-edges as diagonals, as to not fix
yet the type of representation of nodes. The grid size of
these drawings is easily computed to be (2N−1)×(2N−

1). Note that if we allow diagonal edges, this would give
an extremely compact drawing with no bends, and no
inter-crossing. Also note that one more column can be
eliminated by moving the only node of the 1 × 1 array
to the column of its neighbours.

(a)
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(b)

Figure 4: (a) Making inter-edges shorter. (b) Moving
arrays partially to the outside.

The number of intra-crossings can be computed as
follows. Observe that the N/2k × N/2k-array has 2 ·

N/2k · (N/2k − 1) edges. Of those, the top N/2k − 1
edges and the left N/2k−1 edges don’t have any crossing
with the N/2ℓ × N/2ℓ-array, for ℓ < k. The remaining

2
(

N/2k − 1
)2

edges have 2k−ℓ crossings each with edges
of the N/2ℓ × N/2ℓ-array, for all ℓ < k. The number of
intra-crossings hence is

log N−1
∑

k=1

2 · (N/2k
− 1)2

k−1
∑

ℓ=0

2k−ℓ

=

log N−1
∑

k=1

2 · (N/2k
− 1)2(2k+1

− 2)

=
8

3
N2

− 8N log N + 12N − 4 log N −
44

3
.

4.2 Using vertical nodes

Calamoneri and Massini used only dot-nodes and hori-
zontal nodes for their layouts. In this section, we show
that by also allowing vertical nodes, we can halve the
number of bends in their layout. For 1 ≤ k ≤ log N −1,
let node (i, j)k be a vertical node if k is odd and a hor-
izontal node if k is even. Refer to Figure 5(a) of the

exact placement and routing of inter-edges.
From Section 4.1, we know that we need 2N − 1 rows

and 2N−1 columns for the intra-edges, and can save one
row or column by moving the node of the 1×1-array. For
1 ≤ k ≤ log N − 1, the nodes of the N/2k ×N/2k-array
are horizontal if k is odd and vertical if k is even, and
hence add N/2k columns if k is odd and N/2k rows if k
is even. These added rows and columns provide enough
additional space for the nodes of the N × N -grid and
the inter-edges. Hence if log N is odd, the number of
added rows and columns is

log N−1
∑

k=1
k even

N

2k
=

(log N−1)/2
∑

i=1

N

22i
=

1

3
N −

2

3

and

log N−1
∑

k=1
k odd

N

2k
=

(log N−1)/2
∑

i=1

N

22i−1
=

2

3
N −

4

3
.

We can similarly show that for even log N , the number
of added rows and columns is 1

3N − 4
3 and 2

3N − 2
3 . By

choosing appropriately whether to save a column or a
row when moving the node of the 1 × 1-array, we can
achieve a grid size of at most (7

3N − 7
3 )× (8

3N − 7
3 ) (and

one of the dimensions is in fact smaller by a constant of
1
3 ).

For 1 ≤ k ≤ log N − 2 there are (N/2k+1)2 inter-
edges between the N/2k×N/2k array and the N/2k+1×

N/2k+1 array. Each of these edges has one bend, all
other edges have no bend, and the total number of bends
is

log N−2
∑

k=1

(N/2k+1)2 =
1

12
N2

−
4

3
.

Note in particular that this is half of the number of
bends used in [1]. Almost all bends also create an inter-
crossing, except that for the N/2k × N/2k-array, there
are N/2k+1 inter-edges (at the top or the left bound-
ary) that have a bend, but no inter-crossing. Hence the
number of inter-crossings is

1

12
N2

−
4

3
−

log N−2
∑

k=1

(N/2k+1) =
1

12
N2

− N −
10

3

4.3 Using Large Segments

We can create a drawing that is entirely without bends
by using long nodes, as well as horizontal nodes and
dot nodes. For 1 ≤ k ≤ log N − 1, node (i, j)k is a long
node if both i and j are even, and a horizontal node
otherwise. Inter-edges are vertical segments of length 1.
See Figure 5(b) for the precise arrangement.

Note that this drawing is in fact a strong visibility
representation, i.e., all nodes are (possibly degenerate)
boxes and there is an edge between two nodes if and
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Figure 5: Layout with (a) vertical segments, (b) long segments and (c) box nodes. Dotted lines only exist if we are
not at the left/top end.

only if the two nodes can see each other along a hor-
izontal or vertical line. For more information on such
representations, see for example [4].

As before, we need 2N − 1 rows and columns each
for the intra-edges. To accommodate larger nodes, we
need N/2k additional columns for 1 ≤ k ≤ log N , hence

a total of
∑log N

k=1 N/2k =
∑log N−1

i=0 2i = N − 1. So the
grid size is (2N − 1) × (3N − 3). There are no bends
and no inter-crossings.

4.4 Using Box Nodes

One could criticize the drawings of the last section as
being very unbalanced, in that we use significantly more
columns than rows. This can be avoided if we allow box
nodes. We use the following types of nodes: for 1 ≤ k ≤

log N − 2, node (i, j)k is a box node. Node (i, j)log N−1

is a vertical node if log N is odd and a horizontal node
otherwise. See also Fig. 5(c).

Note the similarity of this layout with the layout with
vertical nodes (Fig. 5(a)); all that has been changed is
to stretch boxes of nodes as to cover incident bends.
Exactly as for that layout, one can show that the grid
size is (7

3N −
7
3 ) × (8

3N −
7
3 ). There are no bends and

no inter-edge crossings.

5 Conclusion

In this paper, we studied how to lay out the multi-
grid network in an area that is smaller than the lay-
out given by Calamoneri and Massini [1]. We reduced
the grid size, eliminated all bends, and all crossings be-
tween inter-edges; we also reduced crossings between
intra-edges.

The most pressing open question is lower bounds,
both for the grid size and the number of crossings. How
many crossings between intra-edges are truly needed?
Can we decrease their number if we allow more inter-
crossings?

We are also interested in 3D layouts. The one in
Figure 1 is not optimal. How small a volume can be
achieved?

Optimal layouts of other architectures for parallel
computing, as initiated for example in [3, 2], also de-
serve further study.
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