CCCG 2007, Ottawa, Ontario, August 20-22, 2007

A general and efficient representation for multiresolution meshes:
application to quad/triangle subdivision

Pierre Kraemer*

Abstract

Quad/triangle subdivision unifies triangular and
quadrilateral subdivision schemes. Despite its interest,
this scheme is rarely used in the multiresolution edition
framework, mainly because of the lack of a sufficiently
general data structure that allows a simple and efficient
implementation of multiresolution meshes built with it.
We show in this paper how multiresolution half-edges,
defined as an extension to the half-edges data struc-
ture, can uniformly and efficiently manage this kind of
multiresolution mesh.

1 Introduction

Modeling with multiresolution subdivision surfaces is
very popular among the computer graphics community
[9]. Indeed, multiresolution edition offers many advan-
tages. It combines the simplicity and topological gen-
erality of subdivision surfaces, with the possibility of
editing a mesh at different resolution levels: an edit at
some fine level leads to a small scale deformation, while
an edit at some coarse level leads to a large scale — de-
tails preserving — smooth modification of the surface.

Figure 1: Quad/triangle subdivision

A majority of works on multiresolution subdivision
surfaces are based on schemes that work on regular
meshes. For example the Loop scheme works on tri-
angular meshes and the Catmull-Clark scheme works
on quadrilateral meshes. The quad/triangle subdivision
scheme [7] (figure 1) unifies triangular and quadrilateral
subdivision. The interest of this type of subdivision
comes from two observations. First, most meshes are

*LSIIT, UMR 7005 CNRS, Université Louis Pasteur, Stras-
bourg, France, kraemer@lsiit.u-strasbg.fr

fcazier@lsiit. u-strasbg.fr

tbechmann@lsiit. u-strasbg.fr

David Cazier!

Dominique Bechmann?

composed of both areas that are more naturally quadri-
lateral and areas that are more naturally triangular.
Second, quadrilateral schemes behave poorly on trian-
gular meshes, and vice-versa. This scheme has been
studied these last years [4, 5] with the aim of improving
the quality and smoothness of the limit surface. Our
goal here is not to prove the relevance of this scheme,
but to provide an easy way to use it in the multiresolu-
tion edition framework.

Previous works

The most widely used data structure for encoding
multiresolution subdivision surfaces is the forest of
quadtrees [1], which is naturally derived from the
nested hierarchy of faces generated by the quadrisection-
based subdivision schemes. To be able to support
quad/triangle subdivision, this forest would have to mix
two kinds of quadtrees (trianglular - figure 2a - and
quadrilateral - figure 2b). In addition to the topological
cracks generated by adaptive subdivision in this kind of
structures (see figure 2b), this would lead to a tedious
development of adjacency operators.

(a) Triangular

(b) Quadrilateral

Figure 2: Quadtree structures

The Qreg data structure [6] proposes a two-layers rep-
resentation that exploits the regularity of meshes. The
mesh is separated in regions that must satisfy regular-
ity constraints (so that neighborhood is implicitely en-
coded). Each region can be subdivided regularly. It can
support quad/triangle subdivision but fine-grain adap-
tive subdivision is not easily supported, and topological
cracks problems are not avoided.

The half-edges data structure [8] is a very general
and efficient structure for the representation of arbitrary
meshes. It has already been used in a multiresolution
context, but in a decimation approach based on edge
collapses on triangular meshes [3]. There is here no

19th Canadian Conference on Computational Geometry, 2007

notion of resolution levels, and only the original mesh
and the current decimated mesh are available.

We introduced in [2] a new data structure called mul-
tiresolution half-edges, which extends the classical half-
edges with multiresolution capabilities. It has the ad-
vantage to be very general (any kind of mesh, any re-
finement operation between levels), while allowing as
simple and efficient navigation as in a standard half-
edge structure on any resolution level. It has already
been used to encode multiresolution subdivision surfaces
generated by schemes working on regular meshes (both
triangular and quadrilateral). In this context, we com-
pared it to quadtrees and showed that it is an efficient
alternative, notably when subdividing the mesh adap-
tively (maintaining the topological consistency of the
mesh). Moreover, memory requirements were shown to
be equivalent.

Contribution

We show in this paper how the generality of the mul-
tiresolution half-edges data structure allows us to use
it for the encoding of adaptive multiresolution subdi-
vision surfaces generated by quad/triangle subdivision,
bringing the advantages of this scheme to multiresolu-
tion edition. This can be achieved mainly because our
topological model is completely independant of the type
of mesh, and of the applied subdivision rules.

2 Multiresolution half-edges

Recalls

The standard half-edges data structure uses the adja-
cencies between the edges to represent the topology of
the mesh of orientable 2-manifolds. Each edge of the
mesh consists in two symmetric half-edges, each one
having pointers to its opposite, next and previous half-
edges. This structure comes in two definitions: each
half-edge is associated with either a vertex-edge pair
(primal), or a face-edge pair (dual). Even if our exten-
sion is defined for both, we will focus here on the pri-
mal version. The associated geometrical data, or em-
bedding, consists here in 3D points associated to the
vertices of the mesh. Each half-edge has a pointer to
a 3D point, and all the half-edges attached to a same
vertex share a pointer to the same point.

Definition

A multiresolution half-edge structure is a hierarchy of
half-edge structures. As shown in figure 3 the half-edges
are distributed in distinct sets corresponding to the res-
olution level in which they are introduced. The half-
edges of the starting mesh (or level 0 mesh) belong to
the set L°. On each finer level i, a set of half-edges L?
is introduced and added to the existing ones.

LO(H?)

=L0uL!

e e

H?2=LUL'UlL?
Figure 3: Successive sets of half-edges

Let call H® the set of half-edges introduced in the
levels inferior or equal to i. Obviously, we have H® =

ULj. These sets form a sequence {H'};>o such that:
j=0

H°c H'c H*>C...C H' C The total number of
half-edges is equal to the number of half-edges needed
to describe the finest resolution level.

The opposite and next links are indexed by the reso-
lution level. Each half-edge stores an array of opposite
and an array of next pointers, corresponding to the links
on different resolution levels. Let a be the introduction
level of a half-edge h, and k be the maximum resolu-
tion level of the mesh. As h cannot be linked to other
half-edges at a level which is inferior to a, its arrays
only need to store (k — a) links. Thus, the pointers to
the half-edges linked to h on resolution level ¢ can be
retrieved in the cells of index (i — a) of its arrays.

ot b Fom e Yy
e
h1 ha hi hs hy ho

(a) opposite link

A)
Bkl

Figure 4: Indexation of topological links

Figure 4(a) shows an edge at resolution levels 0 and 1.
Between these levels, a new vertex is inserted, introduc-
ing two new half-edges. h; and hgy are linked to hs and

CCCG 2007, Ottawa, Ontario, August 20-22, 2007

h4 on level 1, preserving their relation on level 0. The
array of opposite pointers of hy and ho contains now two
elements. For these two half-edges whose introduction
level is 0, the cell of index 1 contains the pointers of res-
olution level 1. For hs and h4 whose introduction level
is 1, it is the cell of index 0 that contains the pointers
of resolution level 1. Figure 4(b) illustrates a vertex at
resolution levels 0 and 1. Between these levels, a half-
edge h3 has been inserted in the vertex. Here again, we
see that the half-edges introduced on level 0 (hy and hs)
store now two pointers in their array of next links.

The embedding information is also indexed by the res-
olution level. Each half-edge stores an array of pointers
to 3D points corresponding to the embeddings of the
vertices at different resolution levels. These arrays are
managed exactly in the same way as the arrays of topo-
logical links.

The mesh of level [can be traversed as efficiently as a
classic half-edges structure by considering the half-edges
of H' and their relations and embedding on level [.

3 Application to quad/triangle subdivision

As in every subdivision scheme, two steps can be distin-
guished in a quad/triangle subdivision step: refine the
topology and compute the geometry on the new finer
mesh. The topology refinement step consists in triangle
quadrisection in the triangular areas, and square quadri-
section in the quadrilateral areas of the mesh. This does
not cause any topological problem as in both cases, face
quadrisection is achieved by cutting the edges and in-
serting new edges. Different strategies can be applied
for the geometry computation step and more details can
be found in [7, 4, 5].

Figure 5 illustrates a detail of a mesh at resolution
levels 0 and 1. The arrays of opposite pointers are il-
lustrated for two edges. The half-edges in bold orange
are those belonging to L'. The topological refinement
is executed in the same way as in a standard half-edge
structure, except that the new half-edges are introduced
and linked with the others in the new resolution level —
thus keeping available the old one.

umo) _ b o J0 L2
Qi\b --_‘ 1 3
o X
T 3
a

: _H._k

Figure 5: Quad/triangle with multiresolution half-edges

The valence of the vertices is not modified by such a
subdivision step. This means that for a multiresolution
half-edge h introduced on a resolution level [, its next

link never changes in the finer resolution levels. Thus,
it is unnecessary to redefine on each finer level that the
next link of h is the same than on level [. In this partic-
ular case, we can store a simple pointer instead of the
array of nezt pointers, and use this pointer on every res-
olution level finer than [. In a more general case, it can
be solved in the same way as adaptivity is managed.

Adaptive subdivision

Adaptivity means that starting from a given resolution
level, a face is no longer subdivided. In this kind of
subdivision, it implies that some edges of the mesh are
no longer cut. This means that for a multiresolution
half-edge h whose corresponding edge stops being sub-
divided starting from a level [, its opposite link does not
change in the finer levels. Thus, it is unnecessary to
redefine this link on each finer level.

This is managed in the following way: if a relation
does not change for a multiresolution half-edge between
two resolution levels, then its corresponding array of
pointers does not grow and no pointer is duplicated. In
consequence, the way of accessing the topological links
has to be changed: if nothing is defined on the queried
resolution level (i.e. if the the array of pointers is too
small), we pick the last pointer in the array. The same
strategy is applied to access to the embedding.

In an adaptively generated mesh, cells belonging to
different resolution depths coexist. The mesh of level [
is composed of cells of level inferior or equal to [. The
level of the different cells can be recovered without any
supplementary storage cost: the level of an edge is equal
to the maximum of the introduction levels of its two
half-edges; the level of a face is the minimum of the
levels of its edges; the level of a vertex is the maximum
of the levels of its edges.

Figure 6: Adaptive quad/triangle mesh

Figure 6 illustrates an adaptively refined
quad/triangle mesh. Thanks to the ability of mul-
tiresolution half-edges to represent arbitrary faces,
topological consistency is maintained in the mesh: no
topological crack is created at the frontier between
resolution levels. In the same time, the number of
edges of the faces that lie on this frontier is changed.
For example the face f, which was a triangle on level 1,
is now a 4-sided face on level 2. To be able to continue

19th Canadian Conference on Computational Geometry, 2007

5
et

] d
(b) After some edits (c) After some edits (wire)

Figure 7: Example of object

the subdivision properly, one must recover that this
face was originally a triangle. This can be done simply
and again without any supplementary storage cost: let
Iy be the level of a face in the mesh of level I (following
the above definition, f is a level 1 face in the mesh of
level 2); to recover its original number of edges, one
just have to count its edges in the mesh of level [f.

Implementation

This data structure has been implemented in a multires-
olution edition tool. Figure 7 shows examples of objects
obtained by adaptive quad/triangle subdivision (colors
are function of the resolution depth). Adaptivity is here
automatically driven by a local curvature criterion. The
mesh is dynamically updated during the editing to al-
ways satisfy the criterion. A restriction is introduced
to forbid adjacent faces to have more than one level of
difference: this allows to have always full subdivision
masks, and thus to avoid the temporary computation of
the eventually missing vertices.

Time complexity

In a multiresolution half-edges structure, whatever the
considered resolution level, neighborhood queries are ex-
ecuted with exactly the same efficiency. Indeed, as said
above, the mesh corresponding to every resolution level
[can be traversed as a standard half-edge structure.

Adjacency queries within a given resolution level are
thus executed as simply and efficiently as in a half-edge
data structure, i.e. in constant time, compared to the
logarithmic time needed to resolve such queries in a tree
structure. In the multiresolution subdivision surfaces
context, this is a relevant improvement, as the most
widely used operation is the traversal of the neighbor-
hood of vertices.

4 Conclusion

We have shown in this paper how the multiresolution
half-edges data structure can be used for the represen-
tation of adaptive multiresolution quad/triangle subdi-
vision surfaces. This is possible thanks to the generality
of this structure which allows the representation of any
kind of mesh and the application of any refinement op-
eration between the resolution levels. Each resolution
level is instantly available as a standard half-edge struc-
ture. Neighborhood queries are thus executed in opti-
mal time on every resolution level. Moreover, thanks
to the support of arbitrary faces, the topological consis-
tency of the mesh is always maintained.

In our future works, we are going to consider the rep-
resentation of multiresolution subdivision surfaces gen-
erated by other subdivision schemes. We will also in-
vestigate a volumetric version of the structure.

References

[1] L. DeFloriani, L. Kobbelt, and E. Puppo. A survey
on data structures for level-of-detail models. Advances
in Multiresolution for Geometric Modelling, Series in
Mathematics and Visualization, pages 49-74, 2004.

[2] P. Kraemer, D. Cazier, and D. Bechmann. Multires-
olution half-edges. In Proceedings of SCCG’07 (to be
published), 2007.

[3] R. Pajarola and C. DeCoro. Efficient implementa-
tion of real-time view-dependent multiresolution mesh-
ing. IEEE Transactions on Visualization and Computer
Graphics, 10(3):353-368, 2004.

[4] J. Peters and L.-J. Shiue. Combining 4- and 3-direction
subdivision. ACM Trans. Graph., 23(4):980-1003, 2004.

[5] S. Schaefer and J. Warren. On ¢? triangle/quad subdi-
vision. ACM Trans. Graph., 24(1):28-36, 2005.

[6] L.-J. Shiue and J. Peters. A pattern-based data structure
for manipulating meshes with regular regions. In GI ’05:
Proceedings of the 2005 conference on Graphics interface,
pages 153-160, 2005.

[7] J. Stam and C. Loop. Quad/triangle subdivision. Com-
puter Graphics Forum, 22(1):79-85, 2003.

[8] K. Weiler. Edge-based data structures for modeling in
curved-surface environments. Computer Graphics and
Applications, 5(1):21-40, 1985.

[9] D. Zorin. Modeling with multiresolution subdivision sur-
faces. Tutorial Eurographics, 2005.

