
Searching for Frequent Colors in Rectangles

Marek Karpinski∗ Yakov Nekrich†

Abstract

We study a new variant of colored orthogonal range
searching problem: given a query rectangle Q all col-
ors c, such that at least a fraction τ of all points in Q
are of color c, must be reported. We describe several
data structures for that problem that use pseudo-linear
space and answer queries in poly-logarithmic time.

1 Introduction

The colored range reporting problem is a variant of the
range searching problem in which every point p ∈ P
is assigned a color c ∈ C. The set of points P is pre-
processed in the data structure so that for any given
rectangle Q all distinct colors of points in Q can be
reported efficiently. In this paper we consider a vari-
ant of this extensively studied problem in which only
frequently occurring colors must be reported.

We say that a color c ∈ C τ -dominates rectangle Q
if at least a τ -fraction of points in Q are of that color:
|{ p ∈ P ∩ Q | col(p) = c }| ≤ τ |P ∩ Q|, where col(p)
denotes the color of point p. We consider several data
structures that allow us to report colors that dominate
Q 1.
Motivation Standard colored range reporting problem
arises in many applications. Consider a database in
which every object is characterized by several numerical
values (point coordinates) and some attribute (color).
For instance the company database may contain infor-
mation about age and salary of each employee. The
attribute associated with each employee is her position.
The query consists in reporting all different job types
for all employees with salary between 40.000 and 60.000
who are older than 40 and younger than 60 years old.
Colored range reporting also occurs naturally in com-
putational biology applications: each amino acid is as-
sociated with certain attributes (hydrophobic, charged,
etc.). We may want to report different attributes asso-
ciated with amino acids in certain range [8].

However, in certain applications we are not interested
in all attributes that occur in the query range. Instead,

∗Dept. of Computer Science, University of Bonn. Email
marek@cs.uni-bonn.de.
†Dept. of Computer Science, University of Bonn. Email

yasha@cs.uni-bonn.de.
1Further we will assume that parameter τ is fixed and simply

say that a color c dominates rectangle Q .

we may be interested in reporting the typical attributes.
For instance, in the first example above we may wish to
know all job types, such that at least a fraction τ of all
employees with a given salary and age range have a job
of this type. In this paper we describe data structures
that support such and similar queries.
Related Work. Traditional colored range reported
queries can be efficiently answered in one, two, and three
dimensions. There are data structures that use pseudo-
linear space and answer one- and two-dimensional col-
ored range reporting queries in O(log n+k) time [6], [7]
and three-dimensional colored queries in O(log2 n + k)
time [6], where k is the number of colors. A semi-
dynamic data structure of Gupta et al. [6] supports
two-dimensional queries in O(log2 n+k) time and inser-
tions in O(log3 n) amortized time. Colored orthogonal
range reporting queries in d dimensions can be answered
in O(log n + k) time with a data structure that uses
O((n1+ε)) space [1], but no efficient pseudo-linear space
data structure is known for d > 3.

De Berg and Haverkort [4] consider a variant of the
colored range searching in which only significant colors
must be reported. A color c is significant in rectangle Q
if at least a fraction τ of points of that color belong to
Q, |{ p ∈ Q∩P | col(p) = c }| ≥ τ |{p ∈ P | col(p) = c }|.
For d = 1, de Berg and Haverkort [4] describe a linear
space data structure that answers queries in O(log n+k)
time, where k is the number of signficant colors. For
d ≥ 2 signficant queries can be answered approximately:
in O(log n + k) time we can report all a set of colors
such that each color is (1 − ε)τ -significant for a fixed
constant ε and all τ -significant colors are reported. The
only known data structure that efficiently answers exact
significance queries uses cubic space [4].
Our Results In this paper we show that we can find
domination colors in an arbitrary d-dimensional rectan-
gle in poly-logarithmic time using a pseudo-linear space
data structure.
• We describe a static O(τn) space data struc-

ture that supports one-dimensional queries in
O(τ log n log log n) time. A static O(τn log log n)
space data structure supports one-dimensional
domination queries in O(τ log n) time.
• In the case when all coordinates are integers

bounded by U , there is a O(τn) space static data
structure that supports one-dimensional domina-
tion queries in O(τ log log n log logU) time
• There is a dynamic O(τn) space data structure

that supports one-dimensional domination queries
and insertions in O(τ log n) time and deletions in
O(τ log n) amortized time. We can reduce the up-
date time to (amortized) O(log n) by increasing the
space usage to O(τn log n)
• There is a data structure that supports domination

queries in d dimensions in O(τ logd n) time and uses
O(τn logd−1 n) space

• There is a dynamic data structure that an-
swers domination queries in d dimensions in
O(τ logd+1 n) time, uses O(τn logd−1 n) space, and
supports insertions in O(τ logd+1 n) time and dele-
tions in O(τ logd+1 n) amortized time

We describe static and dynamic data structures for
one-dimensional domination queries in sections 2 and
3. Data structures for multi-dimensional domination
queries are described in section 4.

2 Static Domination Queries in One Dimension

The following simple property plays an important role
in all data structures for domination queries.

Observation 1 If Q = Q1 ∪ Q2, Q1 ∩ Q2 = ∅, and
color c is dominant in Q, then either c is dominant in
Q1 or c is dominant in Q2.

Due to this property a query on a set Q can be de-
composed into queries on some disjoint sets Q1, . . . , Qp
such that ∪Qi = Q and p is a constant: we find the
dominating colors for each Qi and for each color c that
dominates some Qi we determine whether c dominates
Q by a range counting query.

Our data structure is based on the same approach
as exponential search trees [2]. Let P be the set of all
points. In one-dimensional case we do not distinguish
between a point and its coordinate. P is divided into βn
intervals I1, . . . , Iβn so that each Pi = P ∩ Ii contains
between n2/3/2 and 2n2/3 points and βn = Θ(n1/3). Let
li and ri denote the left and right bounds of interval Ii.
For each 1 ≤ i ≤ j ≤ β, the list Lij contains the set of
colors that dominate [li, rj]. We denote by nij the total
number of points in [li, rj].

Each interval Ii is recursively subdivided in the same
manner: an interval that contains m points is divided
into βm subintervals and each subinterval contains be-
tween m2/3/2 and 2m2/3 points. If some interval Ij is
divided into Ij,1, . . . , Ij,β, then we say that Ij is a par-
ent of Ij,i (Ij,i is a child of Ij). The tree T reflects the
division of intervals into sub-intervals: each tree node
u corresponds to an interval Iu and a node u is a child
of v if and only if Iu is a child of Iv. The root of T
corresponds to P and leaves of T correspond to points
of P . The height of T is O(log log n). For every color
c, we also store all points of color c in a data structure
that supports range counting queries.

Consider a query Q = [a, b]. Let la and lb be the
leaves of T in which a and b are stored, and let q be
the lowest common ancestor of la and lb. The search
procedure visits all nodes on the path from la to q (lb to
q); for each visited node u we construct the set of colors
Su, such that every c ∈ Su dominates Iu∩[a, b]. We also
compute the total number of points in Iu ∩ [a, b]. Let u
be the currently visited node of T situated between lb
and q, and suppose that the node v visited immediately
before u is the (i+1)-st child of u. Due to Observation 1
only colors stored in L1i and Sv may dominate Iu ∩Q.
For each color c in L1i∪Sv we count how many times it
occurs in Iu∩Q using the range counting data structure
for that color. Thus we can construct Su by answering
at most 2τ counting queries. Nodes between la and q
are processed in the same way. Finally, we examine
all colors in sets Sp and Sr and list Lij of the node q,
where p and r are nodes on the paths from q to la and lb
respectively, p is the i-th child of q, and r is the j-th child
of q. The search procedure visits O(log log n) nodes and
answers O(τ log log n) counting queries. Hence, queries
can be answered in O(log n log log n) time.

If an interval I contains m points, then all lists Lij
contain O(m2/3) elements. Data structures for range
counting queries use O(n) space. Therefore the space
usage of our data structure is O(n).

We can reduce the query time to O(log n) by storing
range counting data structures for each interval: for ev-
ery interval Iu and every color c, such that { p ∈ P ∩Iu |
col(p) = c } 6= ∅, we store a data structure that sup-
ports range counting queries in time O(log |Iu|). The
total number of colors in all intervals Iu for all nodes
u situated on the same level of tree T does not ex-
ceed the number of points in P . Therefore the total
number of elements in all range counting data struc-
tures is O(n log log n). The query is processed in the
same way as described above. We must answer O(τ)
counting queries on Iq, O(τ) range counting queries
on children of Iq, O(τ) range counting queries on chil-
dren of children of Iq, etc. Therefore the query time
is O(τ(log(|Iq|) + log(|Iq|2/3) + log(|Iq|4/9) + . . .)) =
O(τ

∑
(2/3)i log n) = O(τ log n).

We obtain the following result

Theorem 1 There exists a O(τn log log n) space data
structure that supports one-dimensional domination
queries in O(τ log n) time. There exists a O(τn) space
data structure that supports one-dimensional domina-
tion queries in O(τ log n log log n) time.

In the case when all point coordinates are integers
bounded by a parameter U we can easily answer one-
dimensional counting queries in O(log logU) time. As
shown above, a domination query can be answered by
answering O(τ log log n) counting queries; hence, the
query time is O(τ log log n log logU). Since it is not nec-
essary to store range counting data structures for each

interval, all range counting data structures use O(n)
space.

Theorem 2 There exists a O(τn) space data struc-
ture that supports one-dimensional domination queries
in O(τ log logU log log n) time.

3 Dynamic Domination Queries in One Dimension

Let T be a binary tree on the set of all p ∈ P . With
every internal node v we associate a range rng(v) =
[lv, rv), where lv is the leftmost leaf descendant of v and
rv is the leaf that follows the rightmost leaf descendant
of v. T is implemented as a balanced binary tree, so
that insertions and deletions are supported in O(log n)
time and the tree height is O(log n). In each node v we
store the number of its leaf descendants, and the list Lv;
Lv contains all colors that dominate rng(v). For every
color c in Lv we also maintain the number of points of
color c that belong to rng(v). For each color c there is
also a data structure that stores all points of color c and
supports one-dimensional range counting queries.

A query Q = [a, b] is answered by traversing the paths
from la to q and from lb to q, where la and lb are the
leaves that contain a and b respectively, and q is the
lowest common ancestor of a and b. As in the previous
section, in every visited node u the search procedure
constructs the set of colors Su, such that every c ∈ Su
dominates rng(v) ∩ [a, b]. Suppose that a node v on
the path from lb to q is visited and let u be the child
of v that is also on the path from lb to q. If u is the
left child of v, then rng(v) ∩ [a, b] = rng(u) ∩ [a, b] and
Sv = Su. If u is the right child of v, then rng(v)∩[a, b] =
rng(w)∪(rng(u)∩[a, b]) where w is a sibling of u. Colors
that dominate rng(w) are stored in Lw; we know colors
that dominate (rng(u) ∩ [a, b]) because u was visited
before v and Su is already constructed. Hence, we can
construct Sv by examining each color c ∈ Lw ∪ Su and
answering the counting query for each color. Since one-
dimensional dynamic range counting can be answered
in O(log n) time, we spend O(τ log n) time in each tree
node. Nodes on the path from la to q are processed in a
symmetric way. Finally we examine the colors stored in
Sq1 and Sq2 , where q1 and q2 are the children of q, and
find the colors that dominate rng(q) ∩ [a, b] = [a, b].

When a new element is inserted(deleted), we insert a
new leaf l into T (remove l from T). For every ancestor
v of l, the list Lv is updated.

After a new point of the color cp is inserted, the color
cp may dominate rng(v) and colors in Lv may cease
to dominate rng(v). We may check whether cp must
be inserted into Lv and whether some colors c ∈ Lv
must be removed from Lv by performing at most τ + 1
range counting queries. Since a new point has O(log n)
ancestors, insertions are supported in O(τ log2 n) time.

When a point of color cp is deleted, we may have
to delete the color cp from Lv. We can test this by
performing one counting query. However, we may also
have to insert some new color c into Lv because the
number of points stored in descendants of the node v
decreased by one. To implement this, we store the set
of candidate colors L′v; L

′
v contains all colors that (τ/2)-

dominate rng(v). For each color c ∈ L′v we test whether
c became a τ -dominating color after deletion. When the
number of leaf descendants of the node v decreased by
a factor 2, we re-build the list L′v. If Pv is the set of leaf
descendants of v (that is, points that belong to rng(v)),
then we can construct the set of distinct colors that
occur in Pv in O(|Pv| log(|Pv|)) time. We can also find
the sets of colors that τ -dominate and (τ/2)-dominate
rng(v) in O(|Pv| log(|Pv|)) time. Since we re-build L′v
after a sequence of at least |Pv/2| deletions, re-build
of some L′v incurs an amortized cost O(log n). Every
deletions may affect O(log n) ancestors; hence, deletions
are supported in O(log2 n) amortized time.

We can speed-up the update operations by storing in
each tree node u the set of distinct colors in Pu, denoted
by Cu. For each color c ∈ Cu, we store how many times
points with color c occur in Pu. When a new point p is
inserted/deleted, we can update Cv for each ancestor v
of p in O(1) time. Using Cv, we can decide whether a
given new color must be inserted into Lv in O(1) time.
Using Cv we can also re-build L′v in O(|Cv|) = O(|Pv|)
time. Hence, we can support insertions in O(τ log n)
time and deletions in O(log n) time with help of lists Cv.
The total number of elements in all Cv is O(τn log n).

Thus we obtain the following

Theorem 3 There exists a O(τn) space data struc-
ture that supports one-dimensional domination queries
and insertions in O(τ log2 n) time and deletions in
O(τ log2 n) amortized time. There exists a O(τn log n)
space data structure that supports one-dimensional dom-
ination queries and insertions in O(τ log n) time and
deletions in O(τ log n) amortized time.

4 Multi-Dimensional Domination Queries

We can extend our data structures to support d-
dimensional queries for an arbitrary constant d using
the standard range trees [3] approach.

Theorem 4 There exists a O(n logd n) space data
structure that supports d-dimensional orthogonal range
domination queries in O(logd−1 n(log log n)2) time.

We describe how we can construct a d-dimensional
data structure if we know how to construct a (d − 1)-
dimensional data structure. A range tree Td is con-
structed on the set of d-th coordinates of all points.
An arbitrary interval [ad, bd] can be represented as a

union of O(log n) node ranges. Hence, an arbitrary d-
dimensional query Q = Qd−1 × [ad, bd] can be repre-
sented as a union of O(log n) queries Q1, . . . , Qt, where
t = O(log n) and Qi = Qd−1 × rng(vi) for some node
vi of T . In each node v of T we store a (d − 1)-
dimensional data structure Dv that contains the first
d − 1 coordinates of all points whose d-th coordinates
belong to rng(v). Dv supports modified domination
queries in d − 1 dimensions: for a (d − 1)-dimensional
query rectangle Q, Dv outputs all colors that dominate
Q × rng(v). Using Dvi we can find (at most τ) colors
that dominate Qi = Q′ × rng(v). Since Q is a union of
O(log n) ranges Qi, we can identify a set C that contains
O(τ log n) candidate colors by answering O(log n) mod-
ified (d−1)-dimensional domination queries. As follows
from Observation 1, only a color from C can dominate
Q. Hence, we can identify all colors that τ -dominate
Q by answering O(τ log n) d-dimensional range count-
ing queries. Thus the query time for d-dimensional
queries can be computed with the formula q(n, d) =
O(log n)q(n, d− 1) +O(τ log n)c(n, d− 1), where q(n, d)
is the query time for d-dimensional domination queries
and c(n, d) is the query time for d-dimensional counting
queries. We can answer d-dimensional range counting
queries in O(logd−1 n) time and O(n logd−1 n) space [5].
We can answer one-dimensional domination queries in
O(log n) time by Theorem 1. Therefore d-dimensional
domination queries can answered in O(τ logd n) time.

We can apply the reduction to rank space tech-
nique [9], [5] and replace all point coordinates with la-
bels from [1, n]. This will increase the query time by
an additive term O(log n). Since point coordinates are
bounded by n, we can apply Theorem 2 and answer one-
dimensional domination queries in O((log log n)2) time
using a O(n) space data structure. Since the space us-
age grows by a O(log n) factor with each dimension, our
data structure uses O(n logd−1 n) space.

Theorem 5 There exists a data structure that supports
domination queries in d dimensions in O(τ logd n) time
and uses O(n logd−1 n) space.

The same range trees approach can be also applied to
the dynamic one-dimensional data structure for domi-
nation queries. Since one-dimensional dynamic domi-
nation queries can be answered in O(τ log2 n) time and
dynamic range counting queries can be answered in
O(logd n) time and O(n logd−1 n) space, d-dimensional
domination queries can be answered in O(logd+1 n)
time, and the space usage is O(τn logd−1 n). Since up-
dates are supported in O(log2 n) (amortized) time in
one-dimensional case and update times grow byO(log n)
factor with each dimension, d-dimensional data struc-
ture supports updates in O(logd+1 n) (amortized) time.

Theorem 6 There is a dynamic data structure that
answers domination queries in d dimensions in

O(τ logd+1 n) time, uses O(τn logd−1 n) space, and sup-
ports insertions in O(τ logd+1 n) time and deletions in
O(τ logd+1 n) amortized time.

Conclusion

We presented data structures for a new variant of col-
ored range reporting problem. Our data structures use
pseudo-linear space and report all τ -dominating colors
in poly-logarithmic time in the case when the param-
eter τ is small, i.e. constant or poly-logarithmic in n.
It would be interesting to construct efficient data struc-
tures for larger values of τ .

Acknowledgment

We would like to thank Mark de Berg and Herman
Haverkort for stimulating discussions and for sugges-
tions concerning the new variant of colored range search-
ing problem.

References

[1] P. K. Agarwal, S. Govindarajan, S. Muthukrish-
nan, Range Searching in Categorical Data: Colored
Range Searching on Grid, Proc. ESA 2002, pp. 17-
28.

[2] A. Andersson, M. Thorup, Dynamic Ordered
Sets with Exponential Search Trees, J. ACM 54(3):
13(2007).

[3] J. L. Bentley, Multidimensional Divide-and-
Conquer, Commun. ACM 23(1980), 214-229.

[4] M. de Berg, H. J. Haverkort, Significant-Presence
Range Queries in Categorical Data, Proc. WADS
2003, pp. 462-473.

[5] B. Chazelle, A Functional Approach to Data Struc-
tures and its Use in Multidimensional Searching,
SIAM J. on Computing 17(1988), 427-462.

[6] D. Gupta, R. Janardan and M. Smid, Further Re-
sults on Generalized Intersection Problems: Count-
ing, Reporting, and Dynamization, J. of Algorithms
19(1995), 282-317.

[7] R. Janardan, M. Lopez, Generalized Intersection
Searching Problems, Internat. J. Comput. Geom.
Appl. 3 (1993), 39-69.

[8] N. Madhusudhanan, P. Gupta, A. Mitra, Efficient
Algorithms for Range Queries in Protein Sequence
Analysis, Proc. CCCG 2005, pp. 146-149.

[9] M. H. Overmars, Efficient Data Structures for
Range Searching on a Grid, J. Algorithms 9(1988),
254-275.

