
CCCG 2008, Montr�eal, Qu�ebec, August 13{15, 2008A generalization of Apollonian packing of circlesGerhard Guettler� Colin MallowsyAbstractThree circles touching one another at distinct pointsform two curvilinear triangles. Into one of these wecan pack three new circles, touching each other, witheach new circle touching two of the original circles. Insuch a sextuple of circles there are three pairs of cir-cles, with each of the circles in a pair touching all fourcircles in the other two pairs. Repeating the construc-tion in each curvilinear triangle that is formed resultsin a generalized Apollonian packing. We can invert thewhole packing in every circle in it, getting a \general-ized Apollonian super-packing". Many of the propertiesof the Descartes con�guration and the standard Apol-lonian packing carry over to this case. In particular,there is an equation of degree 2 connecting the bends(curvatures) of a sextuple; all the bends can be integers;and if they are, the packing can be placed in the planeso that for each circle with bend b and center (x; y), thequantities bx=p2 and by are integers.Recently there has been renewed interest in a veryold idea, that of Apollonian packing of circles, in whichan initial con�guration of three mutually tangent circlesis augmented by repeatedly drawing new circles in eachcurvilinear gap. See for example Mumford et al [8]. Wecan also study \super-Apollonian" packings which areobtained by repeatedly inverting an Apollonian packingin every circle in it. It is a remarkable fact that Apol-lonian and super-Apollonian packings exist in which allthe bends (curvatures) are integers. This property wasstudied in detail by Graham et al [3], and the group the-ory associated with these packings has been studied bythe same authors [4-6]. Also, if all the bends are inte-gers, the super-Apollonian packing can be placed in theplane so that all the \bend times center" quantities areintegers. Several extensions of the Apollonian idea havebeen studied, for example Mauldon [7] studied con�gu-rations in which adjacent circles do not touch but haveconstant \separation".Our own interest lies in extending these ideas in newdirections, particularly by packing not one but threecircles within each triangular gap, thus forming sextu-�University of Applied Sciences Giessen Friedberg (Germany),dr.gerhard.guettler@swd-servotech.deyAvaya Labs, Basking Ridge NJ USA 07920,colinm@research.avayalabs.com

ples of circles, and in exploring the degree to which thetheory associated with the classical packings can be ex-tended to cover this case. We �nd that all the bendsin such a generalized packing can be integers; and thereare results relating to the positions of the centers of thecircles that directly generalize those found by Lagariaset al [2] in the classical Descartes-Apollonian case.Figure 1 shows the four possible con�gurations of asextuple. There can be zero, one, or two circles wthbend zero (i.e. straight lines), and at most one bendcan be negative, as in case (a).
(a) (b)

(c) (d)

1

Figure 1: Sextuple con�gurationsThese con�gurations generalize the classicalDescartes con�guration, in which just one circle isplaced in a curvilinear triangle. Such a sextuple ofcircles forms an n = 4 example of what we call a\ball-bearing" con�guration, in which a ring of ncircles (each touching two others) have the propertythat there are \inner" and \outer" circles that eachtouch all n circles in the ring. The n=3 case reproducesthe classical Descartes con�guration. With n = 4 thecircles come in three pairs, with each of the circles ina pair touching all four circles in the other two pairs.The circles of a pair do not touch one another. Thesextuple thus has the symmetry of the vertices of anoctahedron (or of the faces of a cube), rather than thesymmetry of a tetrahedron as in the Descartes case.



20th Canadian Conference on Computational Geometry, 2008Repeating the construction in each curvilinear trianglethat is formed results in a \generalized Apollonianpacking". See Figures 2 (based on Figure 1(a)) and3 (based on Figure 1(c)). Here, and in subsequent�gures, we include only circles with bend less than 100.
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Figure 2: A generalized Apollonian packing
Figure 3: Another generalized Apollonian packingMany of the properties of the Descartes con�gurationand the standard Apollonian packing carry over to thiscase. In particular:(i) Given a ring of four circles, formed by two pairs ofcircles in a sextuple, there is a quadratic equation whosecoe�cients involve the bends of these four circles, theroots of which are the bends of the other pair of circlesin the set. Explicitly,2x2 � x� + � � 38�2 = 0 (1)where � = b1+b01+b2+b02; � = b12+b012+b22+b022 Thisgeneralizes the classical Descartes equation. Replacingeach bend by the corresponding bend*(complex) cen-ter gives another result which generalizes the \ComplexDescartes Theorem" of [2].(ii) There is an analog of \Descartes reection" (see[2]) in which three circles (one from each pair in a sex-tuple, these three circles occupying a curvilinear trian-gle formed by the other three circles of the sextuple)

are replaced by three circles occupying the other trian-gle formed by these three circles, thus forming anothersextuple. Given a sextuple, this operation can be per-formed in eight di�erent ways. Iteration of this opera-tion creates a generalized Apollonian packing in whichthe interiors of all circles are disjoint. A packing is de-termined by any three touching circles within it.(iii) all six bends of the circles in a sextuple can beintegers. Examples: in Figure 1(c), the bends are (0,2;0,2; 1,1); in Figure 1(a) they are (-1,7; 2,4; 2,4). Thisproperty is inherited by all derived circles.(iv) if all bends of a sextuple are integers, the sextuplecan be placed in the plane so that for each circle withbend b and center (x; y), the \bend times center" quan-tities (bx; by) have both bx=p2 and by integers. Thisproperty is inherited by the generalized packing basedon this sextuple.(v) The construction of the generalized packing canbe realised by integral linear operations acting on ma-trices representing the sextuples. These matrices couldbe 6 x 4 matrices with each row containing the \abbc"or \augmented bend, bend times center" coordinatesintroduced in [2]. The abbc coordinates of a circle Cwith bend ( = 1/radius) b and center (x; y) is the vec-tor a(C) = (�b; b; bx; by) where �b is the bend of the circlethat is the inverse of C in the unit circle, namely�b = b(x2 + y2)� 1=b (2)However it is convenient to represent a sextuple by a 4 x4 matrix that we call F(C) in which the �rst three rowscontain the abbc coordinates of three of the circles inthe sextuple (one from each pair) and the fourth row isthe average of two rows that represent a pair of circlesin the sextuple (this average is the same for each of thethree pairs). This row does not represent a circle.(vi) There are dual operations acting on the right,which represent Mobius transformations.(vii) Among the sextuples with integer bends, thereare \root" sextuples (see [3] and [5]) having the prop-erty that any application of the reection operation in(ii) results in circles with larger bends. These root sex-tuples can be found by applying a reduction algorithm,just as in the Descartes case. Except for the specialsextuple with bends (0,2; 0,2; 1,1) (Figure 1(a)), eachroot sextuple has exactly one circle with negative bend.We have a conjecture as to the number of root sextupleswith smallest bend �n.(viii) By inverting a generalized Apollonian packingin each circle in the packing, and then again in everycircle, and so on, we obtain a \generalized Apolloniansuper-packing", directly analogous to the Apolloniansuper-packing studied in [5]. There is essentially justone super-packing in which all bends are integral. Thissuper-packing can be placed in the plane, in exactly fourways, so that each bx=p2; by is integral. In each version



CCCG 2008, Montr�eal, Qu�ebec, August 13{15, 2008of this super-packing, there is a basic rectangle (0;p2)x (0; 1) which repeats by translation and reection tocover the whole plane. See Figure 4.
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Figure 4: A generalized Apollonian super-packing(ix) Each primitive integral sextuple appears exactlyonce in the basic (0;p2) x (0; 1) rectangle of the super-packing. Computation suggests that there are somesymmetries within the basic rectangle, like those shownin [5].(x) One can consider \ball-bearing" structures of cir-cles, in which a ring of n balls (each touching two neigh-bors) have the property that there exist \inner" and\outer" circles that each touch each of the \balls" inthe ring. The case n = 3 reproduces the Descartes con-�guration; the case n = 4 gives the sextuples studied inthis paper. The bends of all n+2 circles can be integralonly when n = 3; 4; 6. There is a quadratic equationwhose roots are the bends of the \inner" and \outer"circles, and whose coe�cients involve the bends of thecircles in the ring.(xi) There is an analog of the Farey series and the as-sociated Ford circles, in which at every stage we inserttwo new fractions (and two new touching circles) in-stead of just one, between every existing adjacent pairof fractions. See Figure 5.There are several open questions.Is the conjectured formula for the number ofroot sextuples correct?Are the conjectured symmetries within the ba-sic cell of the super-packing valid?Do all integers arise as bends of circles in gen-eralized Apollonian packings?Is the Hausdor� dimension of our generalizedsuper-packing the same as in the Apollo-nian case?Are there other ways to generalize the classicalApollonian packing?

Are there other ways to pack integer-bend cir-cles?What about higher dimensions?References[1] Aharonov, D. and Stephenson, K. Geometricsequences of discs in the Apollonian packing.Algebra i Analiz. 3:104-140, 1997[2] Lagarias, J.C., Mallows, C.L., and Wilks, A.RBeyond the Descartes circle theorem. Amer.Math. Monthly 109:338-361, 2002.[3] Graham, R.L., Lagarias, J.C., Mallows, C.L.,Wilks, A.R., and Yan, C. Apollonian circlepackings: number theory. J. Number Theory100:1-45, 2003.[4] Graham, R.L., Lagarias, J.C., Mallows, C.L.,Wilks, A.R., and Yan, C. Apollonian circlepackings: Geometry and Group Theory I. TheApollonian Group . Discrete and Computa-tional Geometry 34:547-585, 2005.[5] Graham, R.L., Lagarias, J.C., Mallows, C.L.,Wilks, A.R., and Yan, C. Apollonian circlepackings: Geometry and Group Theory II.Super-Apollonian Group and Integral Pack-ings. Discrete and Computational Geometry35:1-36, 2006.[6] Graham, R.L., Lagarias, J.C., Mallows, C.L.,Wilks, A.R., and Yan, C. Apollonian circlepackings: Geometry and Group Theory III.Higher Dimensions. Discrete and Computa-tional Geometry 35:37-72, 2006.
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