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Inverting Linkages with Stretch

Youichi Fujimoto*

Abstract

We consider inversion of linkages on 2-dimensional plane.
Inversion of a linkage is a transform by continuous moves
of vertices to its mirror image. There exist noninvertible
linkages due to fixed-length links. To invert such noninvert-
ible linkages, we have to relax some constraints. We allow
variable-length links instead of fixed-length links since any
linkage can be invertible by expanding sufficiently all links.
We introduce a notion “stretch ratio” as a measure of length
change, and analyze upper/lower bounds to invert polygons,
outerplanar graphs, and wheels.

1 Introduction

A linkage is a collection of line segments joined at their end-
points to form a graph. A segment endpoint is called joint
or vertex. The line segments are called links. In ordinary
linkage, the length of each link is fixed. While we can ig-
nore the length of edges in general graph embedding, a link-
age must be embedded with keeping the lengths of edges.
We allow self-intersection, i.e., any pair of links or vertices,
they can not only intersect each other, but locate on the same
position. In this paper, we consider linkages on Euclidean
2-dimensional plane.

A linkage is considered as a physical model which consists
of straight rigid bars and joints permitting arbitrary bend.
Linkages have a number of practical applications such as
smooth graph deformation, analysis of physical structures,
motion planning in robotics and molecular modeling.

A configuration of a linkage is a specification of the loca-
tion of all the vertices. Given an initial configuration and a
final configuration, the reconfiguration is continuous moves
of vertices from the initial configuration to the final one,
keeping all links rigid. Due to rigidity of links, there may
exist pairs of initial and final configurations without recon-
figuration. It is known that it is PSPACE hard to determine
whether there exists reconfiguration for a given initial config-
uration and final configuration of a linkage on 2-dimensional
plane [3]. Inversion of a linkage is a special reconfigura-
tion from a given configuration to its mirror-image configu-
ration. We say that a linkage is invertible if there exists the
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inversion of a given configuration. For example, any trian-
gle linkage has unique configuration, and thus noninvertible.
Lenhart and Whitesides showed it is easy to distinguish in-
vertible polygon on 2-dimensional plane [4].

It is easy to see that every linkage can be invertible if we
can change the length of links. Hence, by relaxing the con-
straints on the length of links, that is, using variable-length
links instead of fixed-length links, we can invert even non-
invertible linkages. It is practical to consider such linkages.
For example, in molecular modeling, the distances between
molecules are not strictly fixed [2]. Another example is tele-
scoping arms in robotics. We introduce a notion “stretch ra-
tio” to denote how much each link can be stretched. When
we can independently stretch any link with length [ from [/ o
to al for some constant or > 1, we say that the stretch ratio
of the linkage is o. Note that @ = 1 means ordinary linkages.

Thus the problem now is to obtain the minimum stretch
ratio to invert a given linkage, that is, we extend decision
problem to optimization problem which are more practical
problem of minimizing the stretch ratio.

We analyze upper and lower bounds of stretch ratio to in-
vert polygons, outerplanar graphs, and wheels. For poly-
gons and outerplanar graphs, we show a constant tight up-
per bound. We can also calculate the optimal stretch ratio
for each polygon or outerplanar graph. On the other hand,
we show a pessimistic results for general planar graphs. We
show there is no constant upper bound of stretch ratio to in-
vert wheels. A good news is that we can invert a wheel with
an optimal stretch ratio with few exceptions.

2 Inverting Polygons with Stretch

As mentioned before, Lenhart and Whitesides [4] proved the
necessary and sufficient condition of invertible polygon on
2-dimensional plane.

Theorem 1 [4] A polygon is invertible iff the lengths of the
second and third longest links sum to no more than the sum
of the lengths of the remaining links.

Thus we consider noninvertible polygons only. First, we
show an upper bound of stretch ratio to invert polygons.

Theorem 2 Any polygon can be invertible within stretch ra-
tio at most \/§

Proof. First we show that, for any polygon, we can divide
into two paths so that the length of the longer path is at most
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twice of the length of the shorter path. For any two ver-
tices v and u, let L;(v1,v2) (Ls(v1,v2), resp.) be the length of
the longer (shorter, resp.) path. Now suppose v; and v, be
vertices where L;(vq,v2) — Lg(v1,v2) is the minimum among
all the pairs of two distinct vertices. We can also divide the
longer path at a vertex vz so that the length Ly (v, v3) of path
between v3 and v, (or vy, but w.l.o.g. we can assume v;) is
at most half of L;(v1,v2) because of the triangle inequality.
Thus, if L;(v1,v2) > 2Ls(v1,v2), we can easily see

Li(v1,v3) — Lg(v1,v3)
= (Ls(v1,v2) + Ls(v2,v3)) — (Ly(v1,v2) — Ls(v2,v3))
= Lg(vi,v2) — Li(v1,v2) + 2Lg(v2,v3)
< Ly(vi,v2) < Li(vi,v2) — Ly(vi, v2).

This is a contradiction.

Therefore, by shortening the longer path by factor 1/ V2
and lengthening the shorter path by factor v/2, we can invert
any polygon with in stretch ratio at most v/2. O

We remark that this upper bound /2 is tight. The worst
case is an equilateral triangle. While inverting an equilateral
triangle, one vertex must cross the opposite link. Thus the
stretch ratio v/2 is necessary and sufficient.

We can also compute the optimal stretch ratio to invert a
given polygon.

Theorem 3 If a polygon with n links is not invertible, the

. . . /2+/3
optimal stretch ratio of the polygon s , / T GAh) where

l; is the length of the i-th longest link.

Proof. In the inversion procedure, we first lengthen or
shorten each link, then invert the polygon and finally restore
each link to the original length.

First, we show that we can obtain an optimal stretch ratio
by determining the second and third longest links after the
first step. Let I/ be the length of the i-th longest link after
first lengthening or shortening. Since the obtained polygon is
invertible, we have I5 + 15 = Y7, I! — (I, + ;) by Theorem 1.
We call the links with length [} and /5 by shortened links,
and the others are called lengthened links. On the inversion
with optimal stretch ratio, we can assume that we all shorten
(lengthen, resp.) the shortened (lengthened, resp.) links by
an identical ratio. Suppose links with length /; and [; are the
shorten links (1 < i < j <n). Then the stretch ratio is given

/i+/j
Yioi b=t

By considering following 3 cases, we show that 0 3 is the

minimum, which concludes the proof.

by o=

Case 1i=1and je {2,3}: Itiseasy calculation to show
01> 0p3and 03 > 0 3.

Case 2 i =3 and j >4: Inthis case, the j-th longest link
lengthen to the third longest link. This means that during
lengthening and shortening links, the lengths of links with
original length /> and /; will match. Let B = 1/I»/I; be the
stretch ratio at the moment. It is easy to see 8 > 0 3.

Case 3 otherwise: We can show similar to the case 2 by
replacing [, with /3. g

It is easy to see that we can apply these results to outer-
planar graphs. We say that a cycle in an outerplanar graph is
minimal if it does not include other cycle inside in the outer-
planar embedding of the graph. Each edge is included in at
most two minimal cycles. By constructing a dual graph and
removing a vertex corresponding to the outer plane, we have
a tree. Therefore we can invert each minimal cycle one by
one in depth-first-search order. While inverting one minimal
cycle, we stretch the other cycles similar to chords. There-
fore, we have the following corollaries.

Corollary 4 Any outerplanar graph can be invertible within
stretch ratio at most \/2.

Corollary 5 If an outerplanar graph with n vertices is not
invertible, the optimal stretch ratio is computable in O(n)
time.

3 Hardness of Inverting Wheels with Stretch

It is a natural question to ask whether any planar graph is
invertible within some constant stretch ratio. Unfortunately,
we can prove that there is no constant upper bound of the
stretch ratio to invert general planar graphs.

We show that wheels has no constant upper bound of the
stretch ratio. Let W, be a wheel with an equilateral (n — 1)-
gon v, Vi, Va,...,Vy—3,V,—2,V9 and a center vertex ¢ on the
barycenter. Let ¢; = {v;,v;y1} foreachi with 0 <i<n-—3
and e, > = {V07vn72}-

We first show that the center vertex ¢ must traverse one
edge of the outer polygon.

Lemma 6 When W, is inverted, c traverses a point on e; for
some i with 0 <i<n-—2.

Proof. We employ topological deformations. First, we re-
duce the cycle (vo,v1,...,vs—2,v0) to a closed curve and a
center vertex ¢ on the plane (Figure 1(a)(b)). Similarly, the
inverse of W, can be reduced to a closed curve and the same
center point ¢ (Figure 1(d)(c)). Then those curves are in-
verted with respect to the center ¢. That is, the winding
numbers of the curves around c are +1 and —1, respectively.
Hence, to invert the curve, the winding number has to be
changed from +1 to —1. We cannot change the number
without crossing the center ¢ over the curve. Therefore, ¢
traverses a point on the cycle. O
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Figure 1: Inverting a wheel
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Figure 2: A triangle cv;viy

Theorem 7 For any constant o > 1, a wheel W, is
not invertible within stretch ratio o, where n satisfies

. T . . 1
1/sm”T1 >a, e, n> 1+7r/a:rcsmm.

Proof. By Lemma 6, the center vertex ¢ must traverse an
edge of outer polygon. Suppose c traverses e; (Figure 2).
Thus we have to shorten links cv; and cv;1 by factor

sin %+ and to lengthen ¢; by factor 1/, /sin%;. This

stretch ratio is monotone increasing with n. a

On the other hand, we also have the following positive
result.

Theorem 8 For n =7 or n > 9, we can invert a wheel W,

within stretch ratio | /1/sin -2 with O(n) motions.

Since this upper bound is equal to the lower bound in The-
orem 7, this is the optimal stretch ratio.

The proof is constructive. Due to the page limitation,
we omit the algorithm description and proof. Hereafter, we
show an algorithm sketch only.

Let W, be a wheel with an equilateral (n — 1)-gon
VO, V1, V2, -+ Vi Vi V- (k=1) 5 - - -, V=150 and a center vertex
¢ on the barycenter, where k = [(n—1)/2| and if n is odd
v and v_; are identical. Let m be a line passes through ¢
and vp. We design an algorithm that reconfigures a wheel W,
onto the line m. In each step, we move 2 or 4 vertices onto
m. The algorithm consists of three phases.

1
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1
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Figure 3: Inversion of Wy

The first phase is used when n is even, i.e., v and v_ are
not identical. In this phase, we move v and v;_; onto m. We
remark that, if n is odd, vy is already on m.

During the second phase, we move 4 vertices on m at once.
At i-th iteration, we move v;, v_;, V_;, and V_(k=i)-

If 2 vertices remains after | k/2] iterations, i.e., if k is even,
we proceed to the third phase. In this phase we move vy, and
V_k/2 onto m.

Our algorithm, however, cannot invert neither Wy, Ws,

1/sin 2.

- For exam-

We, nor Wy within stretch ratio

ple, a lower bound of the stretch ratio to invert Wy is v/2
(> 4/1/sin%) since the outer polygon of Wy forms an equi-

lateral triangle. For Wy, we can also show the following non-
trivial upper bound (see Figure 3).

Theorem 9 W, can be invertible within stretch ratio

V143

4 Concluding Remarks

Of course, inversion linkages with stretch in 3 or higher di-
mension space is also included in future works.

Another future work is the problem to compute the opti-
mal ratio to invert a given general graph. It might be easier to
determine whether a given graph can be inverted with a given
stretch ratio. We conjecture that the problems are PSPACE-
hard in general. For example, fix the stretch ratio to 1, that
is, without stretching. Then the problem becomes the deci-
sion problem that asks if a given linkage can be inverted in
2D space. This is a special case of the usual linkage recon-
figuration problem. The linkage reconfiguration problem is
PSPACE-hard even for trees in general [1].
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