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Abstract

We prove a tight asymptotic bound of Θ(δ log(n/δ)) on
the worst case computational complexity of the convex
hull of the union of two convex objects of sizes summing
to n requiring δ orientation tests to certify the answer.
For more convex objects, we prove a (non optimal)

asymptotic bound of O(δ
∑k

i=1
log(ni/δ)) on the worst

case computational complexity of the convex hull of the
union of k convex objects of respective sizes (n1, . . . , nk)
requiring δ orientation tests to certify the answer. Our
algorithms are deterministic, they use portions of the
convex hull of input objects to describe the final convex
hull, and take advantage of easy instances, such as those
where large parts of two objects are horizontally or
vertically separated.

1 Introduction

An adaptive analysis of the computational complexity
of a problem considers more parameters than the mere
size n of the instance to be solved, such as the size of the
result, or more sophisticated measures of the difficulty
of the instance. A particular case of this approach
has been applied to some fundamental problems in
computational geometry, under the name of “output-
sensitive” complexity analysis, where instances with
a small output are considered easier, such as for the
computation of the intersection points of a set of line
segments [1, 2, 6, 7], or of the convex hull, discussed
here.

The computational complexity of the convex hull has
been studied in the worst case over instances of size
n [13], over instances of size n and output size h [9],
and over instances formed by polygonal chains with a
parameterized number of self intersections [11]. Nielsen
and Yvinec [12] studied the computation of the convex
hull of the union of convex objects in the plane such that
the convex hull of any pair of objects can be computed in
constant time (such as discs or simple convex objects).
Under those conditions, they proposed an algorithm
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which complexity is expressed as a function of the
output size and of the maximum number of intersections
of each object with others [12, page 4].

We also consider the computational worst case
complexity of the convex hull of the union of convex
objects in the plane, but in a different context than
Nielson and Yvinec, where the convex hull of any pair
of objects can be much more difficult to compute,
sometime as much as to require linear time. Since the
computation of the planar convex hull can be reduced
to the computation of the lower and upper hulls, which
can then be merged in constant time, we focus on the
computation of the planar upper hull of the convex hull
of the union of upper hulls. Let I = {A1, . . . , Ak} be a
set of k upper hulls in the Euclidean plane, of respective
sizes n1, . . . , nk and each given as an array containing
the coordinates of its points, ordered in clockwise order:
we consider the problem of computing the upper hull of
the minimal convex hull containing every point from the
instance I, which we call the merged hull of I for short.

We express the asymptotic performance of our
algorithms in the worst case over instances composed
of k hulls of sizes (n1, . . . , nk), but also for a particular
measure (defined in Section 2.1) of the difficulty δ of
the instance: as the asymptotic worst case complexity
for parameters k and (n1, . . . , nk) is easily obtained
by taking the worst value for δ, our analysis can
only be more precise. In particular, our algorithms
compute the merged hull of a finite number of hulls
(k ∈ O(1)) in linear time in the worst case over δ,
and in sublinear time for many instances. On the other
hand, on instances with many objects of finite size (i.e.
k = Θ(n)) our algorithm for general k can perform up
to O(nh) operations, which is worse than previously
known algorithms [4], which compute the convex hull in
time O(n log h).

In this paper, we describe our algorithms, the
adaptive analysis of their complexity and one matching
adaptive computational lower bound, all in a model
where only orientation tests (testing which side of a
line is a point, in clockwise order) are allowed on
the input. Our first algorithm (Section 3) computes
optimally the merged hull of two convex hulls, and our
second algorithm (Section 4) computes the merged hull
of k convex hulls. Both algorithms are taking advantage
of the ordered representation of the upper hulls in
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sorted arrays, and their analysis introduces the notion
of certificate of an instance, from which we define our
measure of difficulty over the instances. We highlight
other application of our techniques in Section 5.

2 Convex Hull Problem

Before introducing our algorithm and its analysis, we
introduce the concept of certificate of an instance, and
some basic techniques on upper hulls.

2.1 Notion of Certificate

An orientation test is a constant time operation,
which can determine which side a point lies to a line.
Whereas an algorithm will perform many orientation
tests to solve an instance, only a few are required to
check that the result is correct. There is a similar
situation in the comparison model: the binary search
algorithm performs ⌈lg n⌉+1 comparisons to search for
the insertion rank of an element in a sorted array,
whereas at most two comparisons are required to check
the validity of the answer.

Given two upper hulls A and B, the merged hull
is easier to compute for some instances than for some
others. For example, Figure 1 show two instances, each
composed of two hulls A and B at various distances
from each other. The two instances have exactly the
same input size n, and exactly the same output (the
hull A), but they are much different in difficulty: one
can verify that the edges of A exactly form the merged
hull in two orientation steps in the first case, while n
orientation steps are required in the second case.

We define the notion of certificate of an instance as
a set of orientation tests which permit to check the
validity of the result of the algorithm, not only justifying
the presence of each point of the output, but also the
exclusion of the other points:

Definition 1 Consider k upper hulls A1, . . . , Ak of
respective sizes n1, . . . , nk and their merged hull A,
expressed as intervals on A1, . . . , Ak. A certificate
of A is a set of orientation tests “Ai[p] is right to

the line
−−−−−−−→
Aj [q]Aj [k]”, such that the convex hull of any

instance satisfying those orientation tests is given by
the description of A. The size δ of a certificate is the
number of orientation tests composing it.

2.2 Basic Operations

An easy type of instances (i.e. of small size of
certificate δ) is one where a large section of one of
the components of the instance can be “eliminated”
by a simple orientation test, in the sense that the
corresponding points will not contribute to the merged
hull.

δ = 2 δ = O(n)

Figure 1: The same output, different difficulty

Observation 1 Given a line
−→
l and an upper hull A, if

the point A[p] is right to
−→
l and the slope of A[p]A[p+1]

is smaller than the slope of
−→
l , then all points right of

A[p] are right to
−→
l ; if the point A[p] is right to

−→
l and

the slope of A[p−1]A[p] is greater than the slope of
−→
l ,

then all points left of A[p] are right to
−→
l .

Another characteristic which can make instances
easier, is that it is not necessary to perform a binary
search for the two edges of a hull intersecting a line on
the whole upper hull at each search: a doubling search
algorithm [3] permits to amortize the cost of each search
over the whole hull:

Observation 2 Given a line
−→
l and an upper hull A,

the edge (A[p], A[p+1]) which intersects
−→
l , if any, can

be found in O(log p) orientation tests.

The same holds when searching for the tangent of a
hull passing by a specific point: once again a doubling
search [3] algorithm permits to amortize the costs of
each search over the whole hull.

Observation 3 The tangent (x, A[p]) of a point x with
an upper hull A, if any, can be found in O(log p)
orientation tests.

Many convex hull algorithms depend on computing
the common tangent between two convex hulls in linear
time. Using the previous observations, we show that if
the upper hulls are horizontally separated, this common
tangent can be found in time logarithmic not only in the
size of the convex hulls [10], but even in time adaptive
in the positions of the endpoints of the common tangent
(e.g. closer to the left extremity is easier).

Lemma 2 Given upper hulls A and B of respective
sizes n and m, horizontally separated by a vertical line
l, the common tangent (A[p], B[q]) from A to B can be
computed in O(log p + log q) orientation steps.

Proof. This idea is inspired by the prune-and-search
method proposed by Kirkpatrick and Snoeyink [10],
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where the common tangent between two non-
intersecting hulls can be computed in O(log n1 +log n2)
time.

Without loss of generality, suppose that A is to
the left of l and that B is to its right. The basic
operation performed by the algorithm considers the
edge in clockwise order (a, a′) ∈ A and an edge (b, b′) ∈
B:

1. If both a′ and b′ are left of the line
−→
ab, then the

points of B at the left of b (inside points of B) can
be ignored.

2. Symmetrically, if both a′ and b′ are right the line
−→
ab, then the points of A at the right of a (inside
points of A) can be ignored.

3. If a′ is right to
−→
ab and b′ is left to it, then the points

of A at the right of a and the points of B at the
left of b (inside points) can be ignored.

4. If a′ is left to
−→
ab and b′ is right to it, which hull

gets reduced depends of the slopes of (a, a′) and
(b, b′). If the line (a, a′) cuts l above the line (b′, b)
then the points of A at the left of a can be ignored.
Otherwise, the points of B at the right of b′ can be
ignored.

�

The result of Lemma 2 is still useful when only
large parts of the upper hulls (and not the upper hulls
themselves) are horizontally separated. Such parts
which are separated from each other can be found using
Observations 2 and 3.

3 Convex Hull of the Union of two objects

Before presenting our general algorithm in Section 4,
we present a simpler version to compute the union
of two convex objects (case where k = 2). Beside
the pedagogical interest to expose a simpler algorithm
before the more complicated one, the algorithm for the
union of two convex objects is of independent interest:

• We prove that the certificate it finds is always
optimal (which is not the case for the more general
algorithm).

• It can be used as a building block for other union
algorithms.

3.1 Adaptive Algorithm

Theorem 3 The description of the merged hull of two
upper hulls of respective sizes n1 and n2 can be computed
in O(δ(log(n1/δ)+ log(n2/δ))) orientation tests, for an
instance of certificate size δ.

Proof. Let be A and B the two hulls forming the
instance, of respective sizes n1 and n2. Without loss
of generality, we prolongate each hull at each extremity
by one vertical edge going to −∞: hence all lines
intersecting exactly once a hull are tangents to it, and
other lines intersecting a hull once will intersect it a
second time.

The algorithm 1 computes a description of the merged
hull as a sequence of intervals over 1, . . . , n1 and
1, . . . , n2, representing consecutive points in A and B.
To compute this description, the algorithm traverses
the two hulls from left to right through doubling
searches, searching for crossing points and discarding
whole intervals of points in each hull, after certifying
that they cannot contribute to the merged hull.

The invariant is quite simple: each iteration of the
loop reduces the instance by discarding more points in
each hull, and identifies the rightmost point yet certified
to be in the merged hull, a, and its hull of origin A. In
particular, all the points on the left of a in A which
have not been output yet are certified to be part of
the merged hull. Figures 2, 3 and 4 illustrate how
the algorithm reduces the instance depending on the
position of the intersection of A with the tangent from
a to B:

Algorithm 1 Convex Upper Hull of Two Objects

Identify the starting point a, and its hull A.
repeat

Search in the other hull B for the tangent (a, b).
Search in the hull A for its rightmost intersection
a′ with the line (a, b).
if a = a′ then

Output and further ignore points of A left of a.
Switch (a, A) to (b, B).

else if a′ is on the right of b then

Further ignore points of B left of b (including b).
Update a to a′ (not ignoring its predecessor on
A).

else

Find the common tangent (c, d) between the
points of A left of a′ and the points of B right of
b, separated by the vertical line passing by b.
Output and further ignore points of A left of c.
Switch (a, A) to (d, B).

end if

until no point is left in any other hull than A.
Output all remaining points of A.

• If a = a′, as all the points left of a in A are
certified to be in the merged hull, and the points

immediately on the right of a in A are right to
−→
ab,

the next point confirmed to be in the merged hull
is b, hence reducing the instance by one point.
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b

Figure 2: a = a′
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Figure 3: a′ is on the right of b
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Figure 4: a′ is on the left of b

• If a′ is on the right of b, as B is right to its tangent
−→
ab, it is below the arc from A between a and a′:
the points of B between a and a′ (or at least
those between a and b, which have already been
identified) can be further ignored, and all points
on the left of a′ (included) are certified to be part
of the merging hull.

• If a′ is on the left of b, A crosses and goes to

the right of
−→
ab before potentially crossing B: some

points in the right of b in B will contribute to the
merged hull, and Lemma 2 indicates how to find
them.

The algorithm outputs intervals of points from the
input hulls to describe the merged hull, performing
exactly δ iterations as it computes the shortest
certificate.

Each iteration corresponds to at most two doubling
searches in each hull. As none of the δ doubling searches
ever overlaps, the number of orientation test in each hull
of size n sums up to less than δ log(n/δ) (by concavity
of the log) hence the result. �

3.2 Optimality of the Certificate Computed

Lemma 4 To determine the upper hull of two upper
hulls, Ω(δ) orientation tests are required.

Proof. The certificate used in algorithm 1 contains δ
orientation tests, one from each iteration. We proof that
any certificate verifying the merged upper hull requires
Ω(δ) orientation tests.

The proof is by adversary strategy. Consider the three
cases in algorithm 1. In first case, the orientation test is
defined by a tangent from one hull to the other. In the
second case, it is defined by an arc on the outer hull.
In the third case, it is defined by a common tangents
between two hulls. By each of them, we can march a
vertical range on each hull. We group every 4 adjacent
orientation tests, which defines a vertical strip over two
hulls. Among the 4 orientation tests in one strip, we
consider the third orientation test. The relationship
of this part of the hulls cannot be determined by
orientation tests outside the vertical strip. Without any
of these δ/4 orientation tests, we can force the output
wrong. Therefore, we need Ω(δ) orientation tests. �

4 Convex Hull of the Union of k objects

4.1 Adaptive Algorithm

Using the techniques described in the Section 2.2,
our algorithm can take advantage of the order of the
representation of the hulls to compute the description
of the merged hull.

Theorem 5 The description of the merged hull of
k upper hulls of respective sizes n1, . . . , nk can be
computed in O(δ

∑
log(ni/δ)) orientation tests (i.e.

O(δk log(n/δk)) when n =
∑

i ni, by concavity of the
log), for an instance of certificate size δ.

Proof. Similar to Jarvis’s march, Algorithm 2 finds in
k orientation tests the first point a of the desired upper
hull, and “wraps around” the objects to find the other
points. The successors of a in its hull of origin A are
then candidates to contribute to the final upper hull.

The convexity of the objects yields two major
improvements. First, using Observations 2 and 3, the
algorithm can identify a whole range of consecutive
edges in the hull A which will contribute to the final
upper hull, in logarithmic time. Second, using Lemma 2,
the algorithm can identify where the hull A ceases to
contribute to the final upper hull, again in logarithmic
time.

The technical difficulty of optimally merging k >
2 upper hulls is to perform only sequential doubling
searches in A, rather than many doubling searches over
the same elements of A. This is first achieved by sorting
the tangent points of a with other hulls by slope in order
to search for the corresponding intersection points in A
in sequence, which cost can be amortized. Then, for the
hulls which intersect A, it is achieved by performing a
single doubling search in A while searching the other
hulls for a common tangent, stopping the doubling
search in A as soon as a doubling search in another
hull B ends, in a way similar to Demaine et al. [8]’s
intersection algorithm. Even though all the tangents are
not computed, the elements covered by doubling search
in each hull are covered by some tangent, and can be
further ignored, hence the amortization of the cost of
those searches.

Once both the leftmost leftend of a common tangent
c and the leftmost certified point a′ of A have been
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computed, the leftmost of those is taken as the last point
of A known to be in the final upper hull, and a new
iteration can begin.

The complexity of the algorithm is amortized over
the δ doubling searches in each upper hull: in a hull of
size ni the algorithm performs at most O(δ) doubling
searches, of total cost O(δ log(ni/δ)) (by concavity of
the logarithm). Summing over the k hulls yields the
result. �

5 Conclusion

Convex hull instances with a very large set of points
will not appear “out of nowhere”: most likely, they
will be formed of several objects from a library, for
each of which a convex hull can be precomputed. In
this context, we have given an algorithm to compute a
description of the convex hull of the union of two convex
objects, which can be used by itself recursively to merge

Algorithm 2 Convex Upper Hull of k Objects

Identify the starting point a of the merged hull, and
its hull A.
repeat

for each other hull B do

Search in B for the tangent (a, b).
Add b to a Max-heap H1, ordered by the slope
of (a, b).

end for

for each point b of H1 (in order) do

Search in A for its rightmost intersection a′ with
(a, b), starting from where the last search in A
ended.
if a′ is on the segment [a, b] then

Add B to a queue Q.
else

Add a′ to a Min-heap H2, ordered by the x-
coordinate of a′.

end if

end for

Search in A and in parallel in all the hulls which
are in Q for the common tangent (c, d) with the
leftmost point c in A, of right extremity named d
in hull B.
if c is to the left of the leftmost point a′ of H2

then

Output and further ignore points of A left of c.
Switch (a, A) to (d, B).

else

Update a to a′ (but do not ignore its
predecessors).

end if

until no point is left in any other hull than A
Output all remaining points of A.

k convex objects, and one algorithm to compute the
description of the convex hull of the union of k convex
objects in a more holistic way. Both our algorithms take
advantage of the relative positions of the objects.

One could also to consider the intermediate relaxation
of those problems: given k convex objects and a
parameter t ≤ k, describe the region covered by at least
t of those objects (clearly this is the intersection for
t = k and the union for t = 1, and a relaxation in
between).

As the basic operations are clearly identified in
each algorithm, our results are easily generalizable
to the transdichotomous computational model as
well: each of the basic operation can be supported
in time O(log n/ log log n) using a precomputed
index [5], changing the complexity of the algorithm to
O(δk log n/ log log n).
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[8] E. D. Demaine, A. López-Ortiz, and J. I. Munro.
Adaptive set intersections, unions, and differences.
In Proceedings of the 11th ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 743–752,
2000.

[9] D. G. Kirkpatrick and R. Seidel. The ultimate
planar convex hull algorithm? SIAM J. Comput.,
1986. 15(1):287–299.

[10] D. G. Kirkpatrick and J. Snoeyink. Computing
common tangents without a separating line. In
WADS ’95: Proceedings of the 4th International
Workshop on Algorithms and Data Structures,
pages 183–193, London, UK, 1995. Springer-
Verlag.

[11] C. Levcopoulos, A. Lingas, and J. S. B. Mitchell.
Adaptive algorithms for constructing convex hulls
and triangulations of polygonal chains. In SWAT
’02: Proceedings of the 8th Scandinavian Workshop
on Algorithm Theory, pages 80–89, 2002.

[12] F. Nielsen and M. Yvinec. Output-sensitive
convex hull algorithms of planar convex objects.
International Journal of Computational Geometry
and Applications, 8(1):39–66, 1998.

[13] F. P. Preparata and S. J. Hong. Convex hulls of
finite sets of points in two and three dimensions.
Commun. ACM, 20:87–93, 1977.


