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On distinct distances among points in general position
and other related problems

Adrian Dumitrescu∗

Abstract

A set of points in the plane is said to be in general
position if no three of them are collinear and no four
of them are cocircular. If a point set determines only
distinct vectors, it is called parallelogram free. We show
that there exist n-element point sets in the plane in
general position, and parallelogram free, that determine
only O(n2/

√
log n) distinct distances. This answers a

question of Erdős, Hickerson and Pach. We then revisit
an old problem of Erdős : given any n points in the
plane (or in d dimensions), how many of them can one
select so that the distances which are determined are
all distinct? — and provide (make explicit) some new
bounds in one and two dimensions.

1 Introduction

In 1946, in his classical paper [7] published in the Amer-
ican Mathematical Monthly, Erdős raised the following
question: What is the minimum number of distinct dis-
tances determined by n points in the plane? Denoting
this number by g(n), he proved that g(n) = Ω(

√
n),

and showed that g(n) = O(n/
√

log n) by estimating
the number of distinct distances in a

√
n ×

√
n piece

of the integer grid. He also went further to conjec-
ture that the upper bound is best possible, in other
words g(n) = Ω(n/

√
log n). The lower bound estimates

have been successively raised by Moser (1952), Chung
(1984), Beck (1983), Clarkson, Edelsbrunner, Guibas,
Sharir and Welzl (1990), Chung, Szemerédi and Trotter
(1992), Székely (1997), Solymosi and C. Tóth (2001),
Tardos (2003), Katz and Tardos (2004), with the cur-
rent best lower bound standing at g(n) ≈ Ω(n0.8641).
This question has lead to many other variants, some of
which we discuss here.

Throughout this paper, we say that a set S of points
in the plane is in general position if no three of them
are collinear and no four of them are on a circle.1 In

∗Department of Computer Science, University of Wisconsin-
Milwaukee, WI 53201-0784, USA. E-mail: ad@cs.uwm.edu. Sup-
ported in part by NSF CAREER grant CCF-0444188.

1It is not uncommon to find this qualification attached to sets
satisfying only one of the two restrictions. Alternatively, one can
use the term strong general position for sets satisfying both re-
strictions.

our bounds, we denote by c possibly different absolute
constants.

Erdős asked in 1985 whether there exist n points in
general position that determine only o(n2) distinct dis-
tances [9]. Erdős, Hickerson and Pach [13] constructed
such point sets with O(nlog 3/ log 2) distinct distances, a
bound that was later improved by Erdős, Füredi, Pach
and Ruzsa [11] to n2c

√
log n (for some constant c); see

also [25]. It is still an open question whether this num-
ber can be linear in n. These constructions use many du-
plicate vectors, which motivates the further restriction
of no parallelogram—equivalently, that no two vectors
determined by the point set are the same. Erdős, Hick-
erson and Pach [13] raised the following question: Does
there exist a set S of n points in the plane in general po-
sition, such that S does not contain all four vertices of
a parallelogram, but g(S), the number of distinct dis-
tances determined by S, is o(n2)? The question also
appears in a paper [10] from 1988, as well as in the re-
cent collection of open problems [5] (Problem 3, Section
5.5, pp. 215). Here we give a positive answer and thus
show that the above (three) conditions are not enough
to force a quadratic number of distinct distances.

For a prime p, and x ∈ Z, let x̂ := x mod p (we
view x̂ as an element of Zp = {0, 1, . . . , p− 1}). An old
construction of Erdős described below (see also [3, pp.
28–29], and [5, pp. 417]) has proved to be instrumental
in answering several different questions in combinatorial
geometry. Let n be a prime and consider the n-element
point set En = {(i, î2) | i = 0, 1, . . . , n − 1}. En is a
subset of Gn = {0, 1, . . . , n − 1} × {0, 1, . . . , n − 1}}.
An old (still unsolved) question asks how many points
can be selected from the n × n grid Gn so that no
three are collinear. Erdős has shown that En has no
three collinear points, so this gives a first large set with
n points; more complicated constructions approach 2n
from below (obviously 2n is an upper bound). The set
En gives also a first partial answer in the old Heilbronn
problem: What is the smallest a(n) such that any set of
n points in the unit square determines a triangle whose
area is at most a(n)? Using the fact that the minimum
nonzero area of a triangle in Gn is 1/2, after suitable
scaling En to the unit square, one gets the estimate
a(n) ≥ 1

2(n−1)2 , i.e., half of the area of a scaled lattice
square; see [3, 5]. A more complicated construction due
to Komlós, Pintz and Szemerédi [20] yields the current
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best lower bound a(n) = Ω( log n
n2 ).

Here we use the Erdős construction yet one more
time, and show that a suitably large subset Sn ⊂ En is
in general position and parallelogram-free (|Sn| = (n−
1)/4). The fact that Sn determines only o(n2) distinct
distances comes out easily from the old Erdős upper
bound of g(n) = O(n/

√
log n). Let v(n) = min g(S),

where the minimum is taken over all n-element point
sets in the plane in general position, and parallelogram
free.

Theorem 1 For every natural number n, v(n) =
O(n2/

√
log n).

In the second part we discuss another old problem
of Erdős on distinct distances [8, 12, 14]: What is the
largest number h(n) so that any set of n points in the
plane (or in d dimensions) has an h(n)-element subset
in which all

(
h(n)

2

)
distances are distinct? Denote this

number by hd(n), and also write h(n) for h2(n).
The problem on the line (d = 1) turns out to be

related to the classical Sidon sequences [28]. Erdős con-
jectured that h1(n) = (1 + o(1))n1/2 [14], and observed
that the upper bound follows from his 1941 result with
Turán [16] on Sidon sequences. By combining various
number theoretical results (some of them quite old and
possibly forgotten), in particular a powerful result of
Komlós et al. [21], one can show:

Theorem 2 Given a set P of n points in the line, one
can select a subset X ⊆ S of size |X| = Ω(n1/2) in
which all pairwise distances are distinct. This bound is
best possible apart from a constant factor. Thus h1(n) =
Θ(n1/2); more precisely: (0.0805+o(1))·n1/2 ≤ h1(n) ≤
(1 + o(1)) · n1/2.

For the planar variant, a
√

n×
√

n section of the in-
teger grid yields h(n) = O(n1/2(log n)−1/4); see also [5].
From the results in [2], it follows that h(n) = Ω(n1/5).
The lower bound has been subsequently raised by Lef-
mann and Thiele [22] to h(n) = Ω(n1/4). By using their
method in combination with recent results of Pach and
Tardos [26] on the maximum number of isosceles trian-
gles determined by a planar point set, a better bound
can be derived. We have included a short outline of the
argument in Section 3. Letting α = 234−68e

110−32e , where
e is the base of the natural logarithm (α < 2.136),
Pach and Tardos proved that the number of isosce-
les triangles determined by a planar set of n points is
O(nα+ε) = O(n2.136), for any ε > 0; see [5, 19]. Put
now β = 1− α

3 > 0.288. The improved lower bound on
h(n) is:

Theorem 3 For any ε > 0, out of any set P of n points
in the plane, one can select a subset X ⊆ S of size |X| =
Ω(nβ−ε) = Ω(n0.288) in which all pairwise distances are
distinct. Thus h(n) = Ω(nβ−ε) = Ω(n0.288).

For d ≥ 3, the lower bound hd(n) = Ω(n1/(3d−2)) is
known, cf. [22, 30]; see also [5].

2 Proof of Theorem 1

Assume first that n is a prime. Let Sn = {(i, î2) | i =
0, 1, . . . , (n − 1)/4}. Recall that a

√
n ×

√
n piece of

the integer lattice determines O(n/
√

log n) distances
(cf. Erdős, this leads to the upper bound g(n) =
O(n/

√
log n)). Therefore Gn determines O(n2/

√
log n)

distinct distances; obviously this upper bound also holds
for any subset of Gn, En or Sn in particular. Clearly
Sn has no three collinear points (as a subset of En).
Moreover, Thiele has shown that Sn has no four points
cocircular [31]. His result was in the context of finding
large subsets of the n × n grid without four cocircular
points in response to a problem raised by Erdős and
Purdy; see [5, pp. 418].

To conclude our result in Theorem 1 it remains to be
shown that Sn determines no parallelogram. Then the
result follows from standard facts about the distribution
of primes [18], e.g., that there is a prime between k and
2k for any integer k ≥ 1.

Lemma 4 Sn determines no parallelogram.

Proof. Assume (for contradiction) that ABCD is a
parallelogram whose vertices are in Sn. Let A = (a, â2),
B = (b, b̂2), C = (c, ĉ2), D = (d, d̂2). We may assume
that 0 ≤ a < b < c < d ≤ (n − 1)/4. Observe that AD
must be a diagonal, henceforth BC is the other diago-
nal. Denote by x(p) and y(p) the x- and y-coordinates
of a point p. Since the midpoints of the diagonals coin-
cide, we have

x(A) + x(D)
2

=
x(B) + x(C)

2
, and

y(A) + y(D)
2

=
y(B) + y(C)

2
.

The first equality yields a + d = b + c, or equivalently
b−a = d− c, and note that b−a is a nonzero invertible
element of Zn (since n is prime). The second equality
yields â2+ d̂2 = b̂2+ ĉ2, or equivalently b̂2− â2 = d̂2− ĉ2.
Taking this equality modulo n we get

(b− a)(b + a) ≡ (d− c)(d + c) (mod n).

After simplifying by b − a, we obtain a + b = c + d,
obviously a contradiction, since 1 ≤ a + b < 2b < 2c <
c + d < (n− 1)/2. �

3 Further connections and related problems

A Sidon sequence of integers 1 ≤ a1 < a2 < · · · < as ≤ n
is one in which the sums of all pairs, ai+aj , for i ≤ j, are
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all different [15, 17, 27]. Suppose that we were to find a
large subset A ⊆ {1, 2, . . . , n} in which all distances are
distinct. It is easy to see that this amounts to finding
a large Sidon sequence in {1, 2, . . . , n}: that is, A is a
Sidon sequence if and only if the differences (distances)
between any two elements are distinct. Indeed, if ai <
aj ≤ ak < al, then aj − ai = al − ak if and only if
ai + al = aj + ak (the case of overlapping intervals is
similar).

Denote by s = s(n) the maximum number of elements
in a Sidon sequence with elements not greater than n.
By a packing argument, it follows that s < 2n1/2, see
[15], and this implies the same upper bound on h1(n):
therefore h1(n) = O(n1/2) (for the moment, we do not
insist on the constant). Sharper bounds (with a better
constant) have been obtained by Erdős and Turán [16]
and Lindström [23]: s(n) ≤ n1/2 + n1/4 + 1. From the
other direction, the existence of perfect difference sets
[29] shows that s(n) ≥ (1− ε)n1/2 [12]. The reader can
find more details in [15]. Let S : 1 ≤ a1 < a2 < · · · < an

be any sequence of n integers. By extending the previ-
ous lower bound (in a very broad setting), Komlós et al.
[21] have proved that S always contains a Sidon subse-
quence of size Ω(n1/2). From their very general theo-
rem, the resulting constant factor is quite small, about
2−15, but this has been later raised by Abbott [1] to
about 0.0805 ' 2/25. Therefore, out of a set of n inte-
ger points, one can always find a subset of size Ω(n1/2),
with all distinct distances, and this is best possible.

3.1 All distinct distances on the line: proof of The-
orem 2

It only remains to show that given n points on the line,
one can select a subset of size Ω(n1/2), with all distinct
distances. Let A = {a1 < . . . < an} be a set of n
points on the line. Using simultaneous approximation
[18] (see other applications in [6, 24]), construct a set
of n rational points A′ = {a′1 < . . . < a′n}, and then
a set of integer points A′′ = {a′′1 < . . . < a′′n}, so that
a′′j − a′′i = a′′l − a′′k holds whenever aj − ai = al − ak

holds. For any positive integer m, there exist n rational
points A′ = {a′1 < . . . < a′n} = {r1/m, . . . , rn/m},
where ri,m ∈ N, and∣∣∣ai −

ri

m

∣∣∣ ≤ 1
m1+1/n

, 1 ≤ i ≤ n.

One can also ensure that the order of the points in A′

is r1/m < . . . < rn/m (i.e., a′i = ri/m, for all i). It
can be shown there exists an m large enough such that
the structure of distinct distances is preserved, and in
particular we have g(A′′) = g(A′) = g(A).

Now select a large Sidon subsequence from A′′ (cf.
with the above result of [21], of size Ω(n1/2)), and con-
struct a subset B ⊂ A by including all corresponding
points from A into B. By the properties of A′′, all

pairwise distances in B are distinct, as desired. Taking
now into account the best constants available, one has
(0.0805 + o(1)) · n1/2 ≤ h1(n) ≤ (1 + o(1)) · n1/2.

3.2 All distinct distances in the plane: proof of The-
orem 3

The method of proof is due to Lefmann and Thiele [22];
see also [25]. Denote by I(P ) the number of isosceles
triangles spanned by triples of P , where each equilateral
triangle is counted three times (this is the same as the
number of weighted incidences between perpendicular
bisectors determined by P and points of P , where the
weight of a bisector is the number of pairs of points for
which it is common).

Lemma 5 (Lefmann and Thiele [22]). Let P be a set
of n points in the plane, which determine t distinct dis-
tances d1, d2, . . . , dt, where di occurs with multiplicity
mi for i = 1, 2, . . . , t. Then

t∑
i=1

m2
i ≤

n

2

(
I(P ) +

(
n

2

))
.

Using the upper bound I(P ) = O(nα+ε) = O(n2.136)
from [26], one obtains from Lemma 5:

t∑
i=1

m2
i = O(n1+α+ε) = O(n3.136). (1)

Let P = {p1, p2, . . . , pn} be a set of n points
in the plane, which determine t distinct distances
d1, d2, . . . , dt, where di occurs with multiplicity mi for
i = 1, 2, . . . , t. Now define a hypergraphH = (P, E3∪E4)
as follows:

Let {pi, pj , pk} ∈ E3 ⊆ [P ]3 if and only if |pi − pj | =
|pi − pk|, that is, ∆pipjpk is an isosceles triangle. Let
{pi, pj , pk, pl} ∈ E4 ⊆ [P ]4 if and only if |pi − pj | =
|pk−pl|, that is, the two segments have the same length.
Let ε > 0 be arbitrary small (but fixed). Clearly, |E3| ≤
c3 · nα+ε, and |E4| ≤

∑t
i=1

(
mi

2

)
≤ c4 · n1+α+ε, for some

constants c3, c4 > 0.
To conclude the proof, one makes an experiment con-

sisting of two steps: random sampling followed by the
deletion method. In the first step, a random subset
X ⊂ P is chosen by selecting points independently
with probability p = c · n−α/3−ε/3, for some constant
c > 0 to be specified later. In the second step, one
point from each “surviving” edge in E ′3 = [X]3 ∩ E3 and
E ′4 = [X]4 ∩ E4 is deleted. It results in an independent
set Y of H with average size

E[|Y |] ≥ (c− c4c4)n1−α/3−ε/3 − c3c3,

see [22] for details. By choosing c sufficiently small, and
after relabeling ε, one gets E[|Y |] = Ω(nβ−ε), where
β = 1− α

3 , as claimed.
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ear problems in combinatorial number theory, Acta
Mathematica Academiae Scientiarum Hungaricae,
26(1-2) (1975), 113–121.

[22] H. Lefmann and T. Thiele: Point sets with distinct
distances, Combinatorica, 15(3) (1995), 379–408.

[23] B. Lindström: An inequality for B2-sequences,
Journal of Combinatorial Theory, 6 (1969), 211–
212.

[24] J. Pach: Midpoints of segments induced by a point
set, Geombinatorics, 13 (2003), 98–105.

[25] J. Pach and P. K. Agarwal: Combinatorial Geom-
etry, Wiley-Interscience, New York, 1995.

[26] J. Pach and G. Tardos: Isosceles triangles deter-
mined by a planar point set, Graphs and Combina-
torics, 18 (2002), 769–779.

[27] C. Pomerance and A. Sárközy: Combinatorial
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