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Monochromatic simplices of any volume

Adrian Dumitrescu∗ Minghui Jiang†

Abstract

We give a very short proof of the following result of
Graham from 1980: For any finite coloring of Rd, d ≥ 2,
and for any α > 0, there is a monochromatic (d + 1)-
tuple that spans a simplex of volume α. Our proof also
yields new estimates on the number A = A(r) defined
as the minimum positive value A such that, in any r-
coloring of the grid points Z2 of the plane, there is a
monochromatic triangle of area exactly A.

1 Introduction

The classical theorem of Van der Waerden states that if
the set of integers Z is partitioned into two classes then
at least one of the classes must contain an arbitrarily
long arithmetic progression [20]. The result holds for
any fixed number of classes [17]. Let W (k, r) denote the
Van der Waerden numbers: W = W (k, r) is the least
integer such that for any r-coloring of [1,W ], there is a
monochromatic arithmetic progression of length k. The
following generalization of Van der Waerden’s theorem
to two dimensions is given by Gallai’s theorem [17]: If
the grid points Z2 of the plane are finitely colored, then
for any t ∈ N, there exist x0, y0, h ∈ Z such that the t2

points {(x0 + ih, y0 + jh) | 0 ≤ i, j ≤ t − 1} are of the
same color.

Many extensions of these Ramsey type problems to
the Euclidean space have been investigated in a series of
papers by Erdős et al. [9, 10, 11] in the early 1970s, and
by Graham [12, 13, 14]. See also Ch. 6.3 in the problem
collection by Braß, Moser and Pach [4], and the recent
survey articles by Braß and Pach [3] and by Graham
[15, 16]. For a related coloring problem on the integer
grid, see [6].

In 1980, answering a question of Gurevich, Graham
[12] proved that for any finite coloring of the plane, and
for any α > 0, there is a monochromatic triangle of area
α. In their survey article, Braß and Pach [3] observed
that for any 2-coloring of the plane there is a monochro-
matic triple that spans a triangle of unit area, and asked
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whether this holds for any finite coloring, apparently un-
aware of Graham’s solution [12]. This also brought the
problem to our attention. Graham’s proof was quite in-
volved, and was later simplified by Adhikari [1] using
the same main idea. Adhikari and Rath [2] have subse-
quently obtained a similar result for trapezoids. See also
[8] for discussions on this and other related problems.
Here we present a very short proof of Graham’s result
[12] in the following theorem, which gives new insight
into the problem and also has quantitative implications
(see Theorem 4).

Theorem 1 (Graham [12]). For any finite coloring of
the plane, and for any α > 0, there is a monochromatic
triangle of area α.

As a corollary of the planar result, one obtains a sim-
ilar result concerning simplices in d-space for all d ≥ 2.
This was pointed out by Graham [12] without giving
details. For completeness, we include our short proof of
the following theorem.

Theorem 2 (Graham [12]). Let d ≥ 2. For any finite
coloring of Rd, and for any α > 0, there is a monochro-
matic (d + 1)-tuple that spans a simplex of volume α.

Using a general “product” theorem for Ramsey sets
[12, Theorem 3], Graham extended Theorem 2 to the
following much stronger result that accommodates all
values of α in the same color class. Theorem 3 below
can also be obtained using the same “product” theorem
in conjunction with our short proof of Theorem 2.

Theorem 3 (Graham [12]). Let d ≥ 2. For any finite
coloring of Rd, some color class has the property that,
for any α > 0, it contains a monochromatic (d+1)-tuple
that spans a simplex of volume α.

Let r ≥ 2. Graham [12] defined the number T = T (r)
as the minimum value T > 0 such that, in any r-coloring
of the grid points Z2 of the plane, there is a monochro-
matic right triangle of area exactly T . We now define
A(r) for arbitrary triangles. Let A = A(r) be the mini-
mum value A > 0 such that, in any r-coloring of the grid
points Z2 of the plane, there is a monochromatic grid
triangle of area exactly A. Graham’s proof of Theorem
1 [12] shows that T (r) exists, which obviously implies
the existence of A(r). We clearly have A(r) ≤ T (r).



20th Canadian Conference on Computational Geometry, 2008

Graham [12] obtained an upper bound T (r) ≤ T̂ (r) =
S1 · S2 · · ·Sr, where

S1 = 1, Si+1 = (Si + 1)! ·W (2(Si + 1)! + 1, i + 1)! .

In Theorem 4 below, we derive an upper bound A(r) ≤
Â(r), and show that Â(r) � T̂ (r). While Graham [12]
finds a right monochromatic grid triangle of area ex-
actly T̂ (r), we find an arbitrary monochromatic grid
triangle of area exactly Â(r). However, as far as we are
concerned in answering the original question of Gure-
vich, or the question of Braß and Pach [3], this aspect
is irrelevant.

For the lower bound, we clearly have A(r) ≥ 1/2
because the triangles are spanned by grid points. Let
l.c.m. denote the least common multiple of a set of num-
bers. Graham [12] notes the following lower bound for
T (r) based on cyclic colorings of Z2 (without giving de-
tails):

T (r) ≥ 1
2
× l.c.m. (2, 3, . . . , r) = e(1+o(1))r.

We will show that the same lower bound holds for A(r)
as well.

Theorem 4 Let A = A(r) be the minimum value A > 0
such that, in any r-coloring of the grid points Z2 of the
plane, there is a monochromatic triangle of area exactly
A. Let

H =
⌊

W (r! + 1, 2r − 1)− 1
r!

⌋
, and Â(r) = H! · r!.

Then 1
2 × l.c.m. (2, 3, . . . , r) ≤ A(r) ≤ Â(r), where

Â(r) � T̂ (r) for sufficiently large r.

It is worth noting the connection between the prob-
lems we discussed here and the following old and proba-
bly difficult problem of Erdős [7, 8]: Does there exist an
absolute constant B such that any measurable plane set
E of area B contains the vertices of a unit-area trian-
gle? The answer is known only in certain special cases:
if E has infinite area, or even if E has positive area but
is unbounded, then E has the desired property; see [5,
Problem G13, pp. 182] and [19]. It follows that if in a fi-
nite coloring of the plane each color class is measurable,
then the largest color class, say E, has infinite area, and
hence there is a monochromatic triple that spans a tri-
angle of unit area. But of course, this case is already
covered by Theorem 1.

2 Proof of Theorem 1

Let R = {1, 2, . . . , r} be the set of colors. Pick a Carte-
sian coordinate system (x, y). Consider the finite col-
oring of the lines induced by the coloring of the points:

each line is colored (labeled) by the subset of colors
R′ ⊆ R used in coloring its points. Note that this is a
(2r − 1)-coloring of the lines.

Set N = W (r!+1, 2r−1). By Van der Waerden’s theo-
rem, any (2r−1)-coloring of the N horizontal lines y = i,
i = 0, 1, . . . , N−1, contains a monochromatic arithmetic
progression of length r!+ 1: y0, y0 + k, . . . , y0 + r!k. Let
L = {`i | 0 ≤ i ≤ r!}, where `i : y = y0 + ik for some
integers y0 ≥ 0, k ≥ 1. Each of these lines is colored by
the same set of colors, say R′ ⊆ R.

Set x = 2α/r!k. Consider the r + 1 points of `0 with
x-coordinates 0, x, . . . , rx. By the pigeon-hole principle,
two of these points, say a and b, share the same color,
and their distance is jx for some j ∈ R. Pick any point
c of the same color on the line `r!/j (note that r!/j is
a valid integer index, and this is possible by construc-
tion!). The three points a, b, c span a monochromatic
triangle ∆abc of area

1
2
· jx · r!k

j
=

1
2
· 2jα

r!k
· r!k

j
= α,

as required.

3 Proof of Theorem 2

We proceed by induction on d. The basis d = 2 is
verified in Theorem 1. Let now d ≥ 3. Assume that the
statement holds for dimension d−1, and we prove it for
dimension d.

Consider the finite coloring of the hyperplanes in-
duced by the coloring of the points by a set R of r
colors: each hyperplane is colored (labeled) by the sub-
set of colors R′ ⊆ R used in coloring its points. We
thus get a (2r − 1)-coloring of the hyperplanes. Pick a
Cartesian coordinate system (x1, . . . , xd), and consider
the set of parallel hyperplanes xd = i, i ∈ N. Let π1 and
π2 be two parallel hyperplanes colored by the same set
of colors, say R′ ⊆ R. Let h be the distance between π1

and π2. By induction, π1 has a monochromatic d-tuple
that spans a simplex of volume αd/h. Pick a point of
the same color in π2, and note that together they form
a (d + 1)-tuple that spans a simplex of volume

1
d
· αd

h
· h = α,

as required.

4 Proof of Theorem 4

We note that our short proof of Theorem 1 does not
imply the existence of A(r), since the triangle found
there is not necessarily a grid triangle. We proceed as
in the proof of Theorem 1, but with different settings
for the parameters. Set α = Â(r). We will show that
there is a grid triangle of area exactly α.
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Let R = {1, 2, . . . , r} be the set of colors. Pick a
Cartesian coordinate system (x, y). Consider the finite
coloring of the lines induced by the coloring of the grid
points on the lines: each line is colored (labeled) by the
subset of colors R′ ⊆ R used in coloring its grid points.
Note that this is a (2r − 1)-coloring of the lines.

Set N = W (r! + 1, 2r − 1). By Van der Waer-
den’s theorem, any (2r − 1)-coloring of the N horizon-
tal grid lines y = i, i = 0, 1, . . . , N − 1, contains a
monochromatic arithmetic progression of length r! + 1:
y0, y0 + k, . . . , y0 + r!k. Let L = {`i | 0 ≤ i ≤ r!}, where
`i : y = y0 + ik for some integers y0 ≥ 0, k ≥ 1. Each
of these grid lines is colored by the same set of colors,
say R′ ⊆ R. The common difference of this arithmetic
progression is

k ≤
⌊

W (r! + 1, 2r − 1)− 1
r!

⌋
= H.

Set x = 2α/r!k. Since α = Â(r) = H! · r!, we have
x = 2H!/k ∈ N. Consider the r + 1 grid points on
`0 with x-coordinates 0, x, . . . , rx. By the pigeon-hole
principle, two of these points, say a and b, share the
same color, and their distance is jx for some j ∈ R. Pick
any grid point c of the same color on the line `r!/j (note
that r!/j is a valid integer index, and this is possible
by construction!). The three grid points a, b, c span a
monochromatic triangle ∆abc of area

1
2
· jx · r!k

j
=

1
2
· 2jα

r!k
· r!k

j
= α,

as required. This completes the proof of the existence
of A(r) and the upper bound A(r) ≤ Â(r).

We next show the lower bound for A(r). Consider
(independently) the following r − 1 colorings λj , j =
2, . . . , r. The coloring λj colors grid point (x, y) with
color (y mod j). Observe that the area of a triangle
with vertices (xi, yi), i = 1, 2, 3, is

|x1y2 − x2y1 + x2y3 − x3y2 + x3y1 − x1y3|
2

.

Let ∆ be a monochromatic grid triangle of area A(r)
in this coloring. By symmetry, there is a congru-
ent triangle ∆0 of color 0, whose y-coordinates satisfy
y1 ≡ y2 ≡ y3 ≡ 0 (mod j). Hence 2A(r) is a nonzero
multiple of j. By repeating this argument for each j,
we get that 2A(r) is a nonzero multiple of all numbers
2, . . . , r, hence also of l.c.m. (2, 3, . . . , r). This completes
the proof of the lower bound.

We now prove that Â(r) � T̂ (r). Although our esti-
mates Â(r) also depend on the Van der Waerden num-
bers W (k, r), the dependence shows a much more mod-
est growth rate for Â(r) than for T̂ (r). For instance,
since W (3, 3) = 27, we have Â(2) ≤ 13! ·2! ≈ 1010, while
T̂ (2) ≤ 2W (5, 2)! = 2 · 178! ≈ 10325. We have only very

imprecise estimates on Van der Waerden numbers avail-
able. The current best upper bound, due to Gowers [18],
gives

W (k, r) ≤ 22f(k,r)
, where f(k, r) = r22k+9

.

In particular,

W (7, 7) ≤ 2272
216

, and Â(3) =
⌊

W (7, 7)− 1
6

⌋
! · 6 .

On the other hand, Graham’s estimate

T̂ (3) = 2 · 178!(2 · 178! + 1) ·W (2 · (2 · 178! + 1)! + 1, 3)!

appears to be much larger.
The ratio between the two estimates amplifies even

more for larger values of r. Let now r ≥ 4. We have

Â(r) = H! · r! =
⌊

W (r! + 1, 2r − 1)− 1
r!

⌋
! · r!

≤ W (r! + 1, 2r − 1)! .

Write log(i) x for the ith iterated binary logarithm of x.
Using again very rough approximations such as

r! + 10 ≤ 22r−1
and 2222

r−1

· r ≤ 2222
r

,

we obtain

log(2) Â(r) ≤ W (r! + 1, 2r − 1),

log(2) W (r! + 1, 2r − 1) ≤ f(r! + 1, 2r − 1),

log(1) f(r! + 1, 2r − 1) ≤ 22r!+10
log(2r − 1) ≤ 2222

r

,

log(4) 2222
r

= r.

It follows that
log(9) Â(r) ≤ r. (1)

On the other hand, even if we ignore the predominant
factor W (2(Si +1)!+ 1, i+1)! in the expression of Si+1

when estimating T̂ (r), the inequality Si+1 ≥ (Si +1)! ≥
2Si still implies that

T̂ (r) ≥ 222·
··
2

, a tower of r 2s. (2)

By comparing the two inequalities (1) and (2), we
conclude that Â(r) ≤ T̂ (r) for r ≥ 12, and that Â(r) �
T̂ (r) for sufficiently large r. This gives a partial answer
to Graham’s question1 raised in the conclusion of his
paper [12], and completes the proof of Theorem 4.

Finally, observe that we can replace H! and
r! with the smaller numbers l.c.m. (2, 3, . . . ,H) and
l.c.m. (2, 3, . . . , r), respectively, and thereby obtain:

1The proof by Adhikari [1] gives an alternative upper bound

T (r) ≤ cT ′(r). The reader can check that the same tower of 2s

expression in (2) is also a lower bound on his estimate cT ′(r) for
r ≥ 2.
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Corollary 5 Let

H ′ =
⌊

W (l.c.m. (2, 3, . . . , r) + 1, 2r − 1)− 1
l.c.m. (2, 3, . . . , r)

⌋
.

Then

A(r) ≥ 1
2
× l.c.m. (2, 3, . . . , r) = e(1+o(1))r, and

A(r) ≤ l.c.m. (2, 3, . . . ,H ′)× l.c.m. (2, 3, . . . , r).

It is an easy exercise to show that the above lower
bound is tight for r = 2, that is, A(2) = 1. Consider
two cases:

1. If the 2-coloring of Z2 follows a chess-board pat-
tern, say point (x, y) is colored (x+y) mod 2, then
clearly there is a monochromatic triangle of area 1,
for example the triangle with vertices (0, 0), (1, 1),
and (0, 2).

2. Otherwise, there are two adjacent points of the
same color, say (0, 0) and (1, 0) of color 0. Sup-
pose there is no monochromatic triangle of area 1.
Then (0, 2) and (2, 2) would have color 1. Then
(0, 1) and (2, 1) would have color 0. Then the tri-
angle with vertices (0, 0), (0, 1), and (2, 1) would
have color 0 and area 1, a contradiction.
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