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Recognition of Largest Empty Orthoconvex Polygon in a Point Set
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Abstract

An algorithm for computing the maximum area empty
isothetic orthoconvex polygon among a set of n points
in a rectangular region, is presented. The worst case
time and space complexities of the proposed algorithm
are O(n3) and O(n2) respectively.

1 Introduction

The problem of finding an empty convex k-gon of max-
imum area or perimeter amidst a point set [4] has sev-
eral applications. A survey paper [2] has been published
very recently, which elaborates several optimization is-
sues related to this problem. In VLSI layout design,
document image processing and shape description, iso-
thetic polygons play a major role. A polygon is said to
be isothetic if its sides are parallel to coordinate axes.
The problem of identifying the largest empty isothetic
rectangle among a set of points has been studied exten-
sively. The best known algorithm for this problem runs
in O(n log2 n) time [1]. The same time complexity holds
if the obstacles are arbitrary polygons [6, 9]. Recently
it is shown that the largest isothetic rectangle inside a
simple polygon can be obtained in O(n log n) time [5].

In isothetic domain, the generalization of this problem
is recognizing the largest empty orthoconvex polygon.
An isothetic polygon is said to be orthoconvex if the
intersection of the polygon with a horizontal or a verti-
cal line is a single line segment. Orthoconvexity has
importance in robotic visibility, and also its discrete
variant appears in other areas like digital geometry [3]
and discrete tomography [8]. Datta and Ramkumar
[7] proposed algorithms for recognizing largest empty
orthoconvex polygon of some specified shapes amidst
a 2D point set. These include (i) L-shape, (ii) cross
shape, (iii) point visible, and (iv) edge visible poly-
gons. The time complexity of these algorithms are all
O(n2). Another variation in this class of problems is
recognizing the largest empty staircase polygon among
point and isothetic polygonal obstacles, which can also
be solved in O(n2) time and space [10]. But, to the
best of our knowledge, the problem of recognizing an
empty orthoconvex polygon of arbitrary shape maxi-
mizing area/perimeter is not studied yet. In this paper,
we propose an algorithm of recognizing an empty ortho-
convex polygon of maximum area, that runs in O(n3)
time using O(n2) space.
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2 Priliminaries

Let R be a rectangular region containing a set of n

points P = {p1, p2, . . . , pn}. We will assume a coordi-
nate system with bottom and left boundaries of R as
the x- and y-axes respectively. The coordinates of a
point α are denoted as (x(α), y(α)). We assume that
the points in P are in general positions, i.e., for every
two points pi and pj , x(pi) 6= x(pj) and y(pi) 6= y(pj).
Henceforth, we shall use Hi and Vi to denote a hori-
zontal and a vertical line passing through the point pi.

Definition 1 An isothetic curve is a rectilinear path
consisting of alternately horizontal and vertical line seg-
ments. An isothetic curve is a monotonically rising
staircase (R-stair) if for every pair of points α and β

on the curve, x(α) ≤ x(β) implies y(α) ≤ y(β). Sim-
ilarly, for every pair of points α and β on a monoton-
ically falling staircase (F -stair), we have x(α) ≤ x(β)
implies y(α) ≥ y(β). An isothetic polygon is a region
bounded by a closed isothetic curve.

Definition 2 An isothetic polygon Π is said to be or-
thoconvex if for any horizontal or vertical line ℓ, the in-
tersection of Π with ℓ is a line segment of length greater
than or equal to 0. In other words, ℓ either intersects
no edge or exactly two edges of Π.

An orthoconvex polygon is empty if it does not contain
any member of P in its interior. Our objective is to
identify the largest empty orthoconvex polygon in R.

Definition 3 An empty orthoconvex polygon Π is said
to be maximal empty orthoconvex polygon (MEOP ) if
there exists no other empty orthoconvex polygon Π′ that
properly encloses Π.

It is easy to observe that an MEOP is bounded by
two R-stairs Rtℓ and Rbr, and two F -stairs Ftr and
Fbℓ, where Rtℓ spans from the left boundary to the top
boundary, Rbr spans from the bottom boundary to the
right boundary, Ftr spans from the top boundary to the
right boundary and Fbℓ spans from the left boundary
to the bottom boundary of R, and each concave vertex
of these stairs must coincide with a member in P (see
Figure 1). It may be observed that an R-stair (or an
F -stair) may degenerate to a corner point of R.

The number of maximal empty staircase polygons
amidst a point set of size n may be exponential in n;
however, the maximum-area empty staircase polygon
can be computed in O(n2) time [10]. Since a maximal
empty staircase polygon is an MEOP as well, the same
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Figure 1: Orthoconvex polygons

combinatorial explosion holds for MEOP also. We now
present a polynomial time algorithm for computing the
maximum-area MEOP .

3 Algorithm

We shall consider all possible pairs of points pi, pj ∈ P ,
and identify the maximum area MEOP with pi ∈ Fbℓ

as the closest point of the bottom boundary of R, and
pj ∈ Ftr as the closest point of the top boundary of R.
The points pi and pj are said to be the bottom-pivot and
top-pivot respectively, and the corresponding MEOP is
denoted by MEOP (pi, pj). We will use S to denote the
vertical slab bounded by Vi and Vj . The projections of
a point pk ∈ S on Vi, Vj , Hi and Hj are denoted by qk,
q′k, rk and r′k respectively. We now separately consider
two cases: (i) x(pi) < x(pj), and (ii) x(pi) > x(pj).

In Case (i), the lines Vi and Vj split the point set P

into three parts, P1, P2 and P3, where P1 and P3 are
the set of points to the left of Vi and to the right of Vj

respectively, and the points in P2 lie inside the vertical
slab S. If Vi hits the top and bottom boundaries of
R at t1 and b1 respectively, and Vj hits the top and
bottom boundaries of R at t2 and b2 respectively. Now,
the portion of the MEOP inside the vertical slab S,
denoted by M2(b1, t2), is an empty staircase polygon
with diagonally opposite corners b1 and t2 among the
points in P2. The two stairs of M2(b1, t2) are parts of
the rising stairs Rbr and Rtl respectively. If Rtl hits
Vi at qα, then the portion of the MEOP to the left of
Vi, denoted by M1(qα), is an empty edge-visible polygon
with base [pi, qα] among the points in P1 such that every
point inside the polygon is visible from its base [pi, qα].
Similarly, if Rbr hits Vj at q′β then M3(q

′

β) is an empty
edge-visible polygon with base [pj, q

′

β ] among the points
in P3.

In Case (ii), Vj is to the left of Vi. Here M2 is an empty
staircase polygon from pi to pj , and these are the parts
of Fbl and Ftr of the MEOP respectively. If Fbl (resp.
Ftr) hits Vj (resp. Vi) at q′α (resp. qβ), then M1(q

′

α)
(portion to the left of Vj) is an edge-visible polygon with
base [q′α, pj ], and M3(qβ) (portion to the right of Vi) is
an edge-visible polygon with base [qβ, pi]. After fixing pi

and pj as the bottom-pivot and top-pivot respectively,
we need to choose M1, M2 and M3 such that the sum
of areas of these three polygons is maximum among all
such polygons. We shall describe our algorithm for Case
(i) only. Case (ii) can easily be handled using a similar
method. For Case (i), we explain the method of com-
puting the desired M1 and M2. The computation of M3

is the same as that of M1.

3.1 Computation of M1

Let us consider a point pi ∈ P . Let P1 = {pk|x(pk) <

x(pi)} and Q = {pk|x(pk) > x(pi) and y(pk) > y(pi)}.
Q includes the top-right corner of R, and |Q| = m +
1. Let q0, q1, q2, . . . , qm denote the projections of the
points in Q on the vertical line Vi in decreasing order
of their y-coordinates. We create an array EV L(pi)
whose elements are the maximum area empty edge-
visible polygon M1(qk) with [pi, qk] as the base for all
k = 0, 1, 2, . . . , m.

We use vertical line sweep among the points in P1 start-
ing from the position of Vi to create a height-balanced
binary tree T . Its each node v is represented as a 5-tuple
(I, x val, y val, ∆, δ). I is the base of the edge-visible
polygons attached to node v. (x val, y val) is the point
where the node v is generated, and ∆ contains the area
of the largest edge visible polygon rooted at that node.
The ∆ parameters are computed in two passes. In the
forward pass during the sweep, the ∆ parameter of a
node contains the area of the edge visible polygon that
is computed so far at that node. At the end of the
sweep, a backward pass is executed from the leaf level
of T up to its root, and ∆ value of each node is properly
set. The δ value of all nodes are 0 at the time of creation
of T ; it will be set and used during the computation of
M1(qk) for different qk.

Creation of T

The root r of T corresponds to the entire interval
I = [pi, q0]; its x val and ∆ parameters are set to
x(pi) and 0 respectively. A vertical line sweep is per-
formed from x = x(pi) towards left. When a point
p = (x(p), y(p)) ∈ P1 is faced by the sweep line, the
leaf nodes in T are searched. If y(p) lies in the inter-
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val [α, β] of a node v = ([α, β], µ, ν, ∆, δ), we compute
∆∗ = ∆+(µ−x(p))×(β−α). Next, we create two chil-
dren of v, namely va = ([α, y(p)], x(p), y(p), ∆∗, 0) and
vb = ([y(p), β], x(p), y(p), ∆∗, 0). Finally, the backward
pass is executed from leaves towards the root in post-
order manner to set the ∆ values as described above.

Computation of M1(qk)

M1(q0) = ∆ attached to the root node r. While process-
ing qk, we assume that qk−1 is already processed. We
start scaning from the root of T . At a particular node
v = ([α, β], µ, ν, ∆(v), δ(v)) on the search path, one of
the following two situations may happen: (i) ν ≥ y(qk)
and (ii) ν < y(qk).

In Case (i), we compute A = (x(pi) − µ) × (y(qk) −
y(qk−1)). The area A is to be subtracted from all the
edge-visible polygons stored in the the right-child vb of
the node v. We subtract A from ∆(vb). Without en-
tirely traversing the subtree rooted at vb, we add A in
δ(vb). The motivation is that, while processing some
other qℓ, if the subtree rooted at vb is traversed, δ(vb)
will be subtracted from the ∆ value of those nodes. The
search proceeds towards the left child of the node v. At
each move from a node v to its children v′, δ(v) is sub-
tracted from ∆(v′), and added to δ(v′), and then δ(v)
is set to 0.

In Case (ii), the edge visible polygon in the left child va

of the node v does not exist; so we delete the subtree
rooted at va and the node v also; the search proceeds
towards the right child of v. The propagation of δ is
to be performed at each step, but the computation of
excess area A is to be performed when Case (i) arises.
Next, a backward pass is needed to set the ∆ field of all
the nodes in the updated T . Finally, M1(qk) is set with
the ∆ value of the root of the updated T .

Lemma 1 The computation of M1(qk) for all k =
0, 1, . . . , m needs O(n2) time.

Proof. The creation of T needs O(n log n) time. The
lemma follows from the fact that the combinatorial com-
plexity of M1(qk) is O(n) for all k = 0, 1, . . . , m. 2

Similarly, with each point pi ∈ P , an array EV R(pi) is
attached. If the projections of the points {pk|x(pk) <

x(pi) & y(pk) < y(pi)} are denoted by q′0, q
′

1, q
′

2, . . . , q
′

m′ ,
then |EV R(pi)| = m′ +1, and the content of its k-th el-
ement is the largest empty edge-visible polygon M3(q

′

k)
with base [pi, q

′

k] among the points to the right of Vi.

Lemma 1 says that EV L(pi) and EV R(pi) for all i =
1, 2, . . . , n can be created in O(n3) time.

3.2 Computation of M2

Consider the processing of a pair of points pi, pj ∈ P

satisfying x(pi) < x(pj). Let Rij be the rectangle with
pi and pj at its diagonally opposite corner, and P ∗

2 be
the set of points in P that lie in Rij . Here M2 can be

split into three parts: the L polygons inside the slab S

below Hi and above Hj , and the empty staircase poly-
gon MESP (pi, pj) from pi to pj inside Rij . The ob-
jective is to choose the staircase polygon such that the
sum of its area along with the area of the corresponding
L polygons in S and the edge-visible polygons M1 and
M3 on two sides of S is maximum.

Computation of L-polygons

Let r1, r2, . . . , rm be the projections of the points in Rij

on Hi in the increasing order of their x-coordinates, and
rm+1 is the intersection of Hi and Vj . We execute a
horizontal line sweep among the points in S from the
floor of R up to Hi to compute the area of the maximal
empty L-polygons LB(rk) for k = 1, 2, . . . , m + 1. The
upper stair of LB(rk) is an L-path with pi at its corner,
and the lower stair is a staircase path from b1 to rk.
The L-polygons LA(rk), k = 0, 1, 2, . . . , m above Hj are
computed in an exactly similar manner; here r0 is the
intersection point of Vi and Hj . This needs O(n) time
in the worst case.

Computation of the staircase polygon

We now describe the last step of our algorithm
for computing the maximal empty staircase polygons
MESP (pi, pj) considering the area of the coresponding
L-polygons and edge-visible polygons such that the total
area of MEOP (pi, pj) is maximum. Let G be a directed
graph with vertices corresponding to the points in Rij

and edges {ekℓ = (pk, pℓ)|pk, pℓ ∈ P ∗

2 with x(pk) < x(pℓ)
and y(pk) < y(pℓ)}. Any path from pi to pj in G corre-
sponds to the lower stair of an MESP (pi, pj); but there
are different choices of the upper stairs corresponding
to the same lower stair. The problem of computing
the maximum area MESP (pi, pj) can be formulated as
finding the maximum weighted path in an weighted di-
rected graph, called the staircase graph [10],.
Definition 4 [10] Let (pa, pb) be an edge of G. The
point (x(pa), y(pb)), where the vertical line Va abuts the
horizontal line Hb, is called the footprint of pb con-
tributed by pa, and is denoted by ba. The footprint of
the point pi is pi itself. We use FP (p) to denote the set
of footprints of the point p ∈ P ∗

2 .

Definition 5 [10] The staircase graph SG = (V, E) is
a weighted digraph with nodes V = ∪pa∈P∗

2
FP (pa). A

footprint ba ∈ FP (pb) has a directed edge to a foot-
print dc ∈ FP (pd) if (pb, pd) is an edge in G, and the
upper stair of the L polygon[ba, pd] meets the horizon-
tal line Hd at the footprint dc. The weight of the edge
(ba, dc), denoted by w(ba, dc) is equal to the area of the
L polygon[ba, pd].

A path in SG corresponds to a unique staircase polygon
from pi to pj. Assuming |P ∗

2 | = m, the worst-case num-
ber of vertices and edges in SG are O(m2) and O(m3)
respectively, and the maximum weighted path in SG

can be found in O(m3) time.
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In our problem, computing the maximum area empty
staircase polygon among the points in P2 will not suffice.
Suppose MEOP (pi, pj) consists of a staircase polygon
MESP (pi, pj), that has edges (pi, qα) along Vi, (pj , qα′)
along Vj , (pi, rβ) along Hi and (pj , rβ′) along Hj , then
it includes (i) an edge-visible polygon with base (pi, q)
to the left of Vi, (ii) an edge visible polygon with base
(pj , q

′) to the right of Vj , (ii) an L-polygon with base
(pi, r) and (iv) an L-polygon with base (pj , r

′). Let q, q′,
r and r′ correspond to pα, pα′ , pβ , pβ′ ∈ P2 respectively.
Thus, in order to compute the MEOP of maximum
area, we need to modify the weight of some edges of the
graph SG as follows, and then compute the maximum
weighted path in the graph SG.

For each α such that pα ∈ P2, change the weight of its
each outgoing edge e to w(e) + area(M1(pi, qα)).

For each edge e′ = (pi, βk′), change the weight of e′ to
w(e′) + area(LB(pi, rβ)).

For each edge α′ such that pα′ ∈ P2, if there ex-
ists an edge e∗∗ from a footprint of α′ to a foot-
print of pj , then change its weight to w(e∗∗) +
area(M3(pj , q

′

α′)).

For each incoming edge e′ on jβ′), change the weight
of e′ to w(e′) + area(LA(pj , rβ′)).

Theorem 2 The largest MEOP among a set of n

points can be computed in O(n5) time and O(n2) space.

In [10], it is also shown that the geometric properties
of the problem can be exploited to design an algorithm
for computing the empty staircase polygon of maximum
area in O(|P2|

2) time and space. Here the results of pro-
cesing a point pj for computing the MESP (o, pj) are
used to compute MESP (o, pk), where x(pk) > x(pj)
and y(pk) > y(pj); The point o is the bottom left cor-
ner of the rectangular floor. We will use the same prin-
ciple to reduce the time complexity of the problem of
computing the maximum area MEOP to O(n3).

4 Further improvement

We will fix a point pi ∈ P , and consider all pj ∈ P

with x(pj) > x(pi) and y(pj) > y(pi). We also use the
the notion of complete processing of a point pj [10]. A
point pj is said to be completely processed if all the edges
incident to pj in the graph G are processed. When a
point pj is completely processed, the weights of differ-
ent paths in the staircase graph (SG) with bottom-pivot
and pi and pj respectively, are available at the foot-
prints of pj . Each of these polygons has included the
corresponding M1(pi, qα) and LB(pi, rβ) for some ap-
propriate pα, pβ ∈ S. In order to get the maximum area
MEOP with a MESP (pi, pj), we need to add the area
of the appropriate M3(pj , qα′) and LA(pj , rβ′), where
pα′ , pβ′ ∈ S. We can compute the array L containing
LA(pj , rk) for all the points pk ∈ S above Hj in O(n)
time. The values of area(M3(pj , qk)) are all available

in the array EV R(pj). Now we can use EV R(pj), L,
and the area attached to the different footprints of pj

to compute the largest MEOP (pi, pj) in O(n) time.

We process the points above Hi in S by sweeping a
horizontal line upwards. After complete processing of
pj, we compute MEOP (pi, pj) as described above, and
then process the outgoing edges of pj in G. Thus, we
have the following theorem:

Theorem 3 The largest MEOP among a set of n

points can be computed in O(n3) time and O(n2) space.

Proof. For a fixed pi, the generation of footprints for
all pj ∈ P with x(pj) > x(pi) and y(pj) > y(pi) needs
O(n2) time [10]. The additional time required to process
each pj ∈ P is O(n). Since we need to fix each pi, the
time complexity result follows.

The space complexity result follows from the fact that
the preprocessed arrays M1(pi) and M3(pi) are of size
O(n) in the worst case. Moreover while processing a
point pi, the number of footprints generated is O(n2)
in the worst case. These need to be stored during the
processing of pi. 2
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