
CCCG 2008, Montréal, Québec, August 13–15, 2008

Maximal Covering by Two Isothetic Unit Squares

Priya Ranjan Sinha Mahapatra ∗ Partha P. Goswami ∗ Sandip Das †

Abstract

Let P be the point set in two dimensional plane. In
this paper, we consider the problem of locating two iso-
thetic unit squares such that together they cover maxi-
mum number of points from P . In case of overlapping,
the points in their common zone are counted once. To
solve the problem, we propose an algorithm that runs
in O(n2 log2 n) time using O(n log n) space.

1 Introduction

Encloser problems of many variations involving a point
set P = {p1, p2, . . . , pn} have been extensively studied in
computational geometry. Problems of computing small-
est enclosing circle [15], triangle [4, 11, 14], square and
rectangle [17] are well known. The problem of find-
ing the smallest enclosing convex polygon is the famous
convex hull problem.

Finding the smallest region of given type that contains k
points of P , that is, the problem of computing smallest
k enclosing region is an important variation of enclo-
sure problem. Efrat et al. [9, 12] studied the problem
of computing smallest k-enclosing circle and k-enclosing
homothetic copy of a given convex polygon. Eppstein
and Erickson [10] studied a number of extensions in-
cluding finding subsets of size k from the given set P
that minimize area, perimeter, diameter, and circumra-
dius. Problems of computing k-enclosing rectangles and
squares are also studied [1, 5, 8, 10, 16] extensively.

A closely related problem is to find the placement of
one or more copies of a given region to maximize the
size k of the subset covered. In other words, instead
of fixing k and computing an optimal enclosing region,
the problem is to maximize the number of points cov-
ered by the given region(s) of fixed size and shape. This
type of problem has similar applications as the problems
mentioned above. These so called problems of maximal
covering by convex objects has also received attention of
many researchers. Barequet et al. [2] proposed an algo-
rithm to cover maximum number of points from a planar
point set P by a given convex polygon with m vertices
in O(nk log(mk) + m) time using O(m + n) space. In
the context of bichromatic planar point set, Diaz-Banez
et al. [7] proposed algorithms for maximal covering by
two disjoint isothetic unit squares and circles in O(n2)

∗University of Kalyani, Kalyani, India
†Indian Statistical Institute, Kolkata, India

and O(n3 log n) time respectively. They later improved
the complexities to O(n log n) and O(n8/3log2n) time
respectively [6]. The optimal O(n log n) time algorithm
for the maximal covering by two disjoint isothetic unit
squares was proposed by Mahapatra et al. [13].

In this paper we consider another natural variation of
the maximal covering problem. We study the problem of
computing two isothetic unit squares, which may not be
disjoint, such that together they cover maximum num-
ber of points from P . In case they are overlapping,
points in their common zone are counted once. Our
proposed algorithm for the problem runs in O(n2 log2 n)
time and uses O(n log n) space.

2 Overview

Let P be the set of n points in two dimensional plane
and R1 and R2 be two isothetic unit squares. Our objec-
tive is to compute placement of R1 and R2 such that the
number of points in the region R1 ∪ R2 is maximized.
Number of points contained by a region R is denoted
by |R|. In the optimal placement, following cases may
occur.

• The squares are disjoint.

• The squares are overlapping and the common zone
is empty.

• The squares are overlapping and the common zone
is nonempty.

In case the optimal solution belongs to first two cases,
the solution can be reported using the algorithms pro-
posed by Mahapatra et al. [13]. When the optimal so-
lution is overlapping, our proposed algorithm returns
the optimal pair. We must concentrate in locating the
optimal pair of squares on the region where there is a
possibility of overlap between two squares. Note that, a
pair of squares having same top boundary or same left
boundary cannot be the optimal pair. In case R1 and
R2 have an overlapping region, then depending upon
the position of the overlapped region, the placement of
R1 and R2 can be classified into two types as depicted
in Figure 1. We tackle each case separately.

3 Characterization

Consider two arrays Lx and Ly containing the points
of P in ascending order with respect to their x- and
y-coordinates respectively. Let the x-coordinate of the
i-th entry of Lx be xi and similarly the y-coordinate of

20th Canadian Conference on Computational Geometry, 2008

R1

R2

R1

R2

(b) Type2(a) Type1

Figure 1: Placement of R1 and R2

the i-th entry of Ly be yi, 1 ≤ i ≤ n. We use the implicit
grid obtained by drawing vertical and horizontal lines
through each point of the given set P . The grid point
(xi, yj), (1 ≤ i, j ≤ n) is generated by the intersection
of the vertical line through the point in the i-th entry
of Lx and the horizontal line through the point in the
j-th entry of Ly. The coordinate of a generic point p is
denoted by (px, py).

A square can be specified using its top left corner. Here,
S(i, j) denotes a square whose top left corner is at
(xi, yj). Consider a horizontal line lα on the grid hav-
ing y-coordinate yα above the square S(i, j) for some
i, j, 1 ≤ i, j ≤ n. Initially we are trying to identify a
square S′ whose top boundary is aligned with lα such
that the square S′ together with S(i, j) cover maximum
number of points and whenever they overlap, configu-
ration of overlapping region is of Type-1 (See Figure
1(a)). Hence we can obtain the optimal pair by choos-
ing all possible S(i, j) and α. Note that, the placement
of the upper square S′ depends upon the choice of α
and the lower square S(i, j). Upper square S′ has the
following characteristics.

(1) Given α and a lower square S(i, j), the upper
square S′ belongs to the set
{S(1, α), S(2, α), . . . , S(i, α)}

(2) If |S(a, α)| ≥ |S(b, α)| where a < b ≤ i then
|S(a, α) ∪ S(i, j)| ≥ |S(b, α) ∪ S(i, j)|.

3.1 Matching

Given an index α, the matching of S(i, j) with respect
to α (α ≥ j) is defined as a square S(k, α) such that
|S(k, α)∪S(i, j)| > |S(k′, α)∪S(i, j)| for k′ = 1, 2, . . . k−
1 and |S(k, α) ∪ S(i, j)| ≥ |S(k′, α) ∪ S(i, j)| for k′ =
k + 1, k + 2, . . . i.

Lemma 1 For a given α and j, α ≥ j, let the matching
of S(b, j) be S(k, α) and the matching of S(c, j), b < c ≤
n be S(k′, α). Then k ≤ k′.

Proof. As the matching of S(b, j) is S(k, α), |S(t, α)−
S(b, j)| < |S(k, α)−S(b, j)| for t = 1, 2, . . . , k−1. Again
(S(b, j)−S(c, j)) ∩ S(t, α)⊆ (S(b, j)−S(c, j)) ∩ S(k, α).
This implies |S(t, α) − S(c, j)| = |S(t, α) − S(b, j)| +
|(S(b, j) − S(c, j)) ∩ S(t, α)| < |S(k, α) − S(b, j)| +
|(S(b, j) − S(c, j)) ∩ S(k, α)| = |S(k, α) − S(c, j)| for
t = 1, 2, . . . , k − 1. Hence the result follows. ¤

Lemma 2 Given indices α and j, α ≥ j, let the match-
ing of both S(a, j) and S(b, j) be S(k, α), 1 ≤ a, b ≤ n.
If a < b then the matching of each S(i, j), a ≤ i ≤ b is
S(k, α).

Proof. Let the matching of S(i, j) be S(k′, α) for some
i, a < i < b. Since the matching of S(a, j) is S(k, α)
and a < i, from Lemma 1, we get k ≤ k′. Similarly, as
the matching of S(b, j) is S(k, α) and i < b so k′ ≤ k.
This implies k = k′. ¤

Given α and j (α > j), for computing matching of all
S(i, j), 1 ≤ i ≤ n, we can reduce the search space from
the fact stated in Lemma 1. Observe that the matching
of S(i, j), for all i can be computed in O(n log n) time.
This implies, for a given α, the matching of all S(i, j)’s,
1 ≤ i ≤ n and α > j, can be computed in O(n2 log n)
time. Hence the matching of all S(i, j)’s, 1 ≤ i ≤ n and
1 ≤ j ≤ n, can be computed in O(n3 log n) time. In this
paper, we propose an algorithm to compute the match-
ing of all possible squares in O(n2 log2 n) time. Below
we describe some more characterizations to achieve the
sub-cubic complexity of the proposed algorithm.

From Lemma 2, we conclude that for given α and j
(α ≥ j), there exists an interval [a, b] such that all
S(i, j)’s for a ≤ i ≤ b are matched with S(k, α) and
the matching of each S(i, j) for b < i ≤ n or 1 ≤ i < a
is different from S(k, α). Here we denote such an in-
terval [a, b] using notation F(S(k, α), j). An interval
F(S(k, α), j) is empty whenever there does not exist any
square S(i, j), 1 ≤ i ≤ n, whose matching is S(k, α).

Observation 1 (a) Intervals F(S(k, α), j) and
F(S(k′, α), j) are disjoint for k 6= k′, 1 ≤ k, k′ ≤ n. (b)
Moreover, if both the intervals are not ∅ and k < k′

then interval F(S(k′, α), j) is on the right side of the
interval F(S(k, α), j). (c)

⋃n
k=1 F(S(k, α), j) = [1, n].

Proof. (a) Note that for a given α and j, the matching
of S(i, j), 1 ≤ i ≤ n is unique and hence F(S(k, α), j)∩
F(S(k′, α), j) = ∅ for k 6= k′. Statement (b) follows
from Lemma 1. ¤

Lemma 3 For a given α and j, α > (j + 1), if the
matchings of S(i, j) and S(i, j + 1) are S(k, α) and
S(k′, α) respectively then k ≥ k′.

Proof. As the matching of S(i, j) is S(k, α), |S(t, α)−
S(i, j)| ≤ |S(k, α) − S(i, j)| for t = 1, 2, . . . , k − 1, k +
1, . . . , i. Again S(t, α) ∩ S(i, j) ⊃ S(k, α) ∩ S(i, j) for
t = k + 1, . . . , i and S(t, α) ∩ S(i, j + 1) − S(i, j) ⊃
S(k, α)∩S(i, j + 1)−S(i, j) for t = k + 1, . . . , i. Hence,
we have |S(t, α) − S(i, j + 1)| ≤ |S(k, α) − S(i, j + 1)|
for t = k + 1, . . . , i. ¤

Observation 2 For a given α and j, α > (j+1), let the
matching of S(i, j) be S(k, α) and (S(i, j+1)∩S(k, α))−
S(i, j) = ∅. Then the matching of S(i, j + 1) is S(k, α).

CCCG 2008, Montréal, Québec, August 13–15, 2008

Proof. Matching of S(i, j) is S(k, α) and therefore,
|S(k, α)−S(i, j)| > |S(t, α)−S(i, j)| for t = 1, 2, . . . k−1,
and |S(k, α) − S(i, j)| ≥ |S(t, α) − S(i, j)| for t =
k+1, k+2, . . . i. Now, (S(i, j+1)∩S(k, α))−S(i, j) = ∅
implies |S(k, α) − S(i, j + 1)| = |S(k, α) − S(i, j)|.
Hence, |S(k, α) − S(i, j + 1)| > |S(t, α) − S(i, j)| ≥
|S(t, α)−S(i, j +1)| for t = 1, 2, . . . k−1, and |S(k, α)−
S(i, j+1)| ≥ |S(t, α)−S(i, j+1)| for t = k+1, k+2, . . . i.
Hence the result follows. ¤

Lemma 4 For F(S(k, α), j) 6= ∅, α > j +1, either one
of the following is true.

(1) F(S(k, α), j + 1) = ∅
(2) F(S(k, α), j + 1) = F(S(k, α), j)
(3) F(S(k, α), j + 1) ⊂ F(S(k, α), j)
(4) F(S(k, α), j + 1) ⊃ F(S(k, α), j)

There exists at most one value of k, 1 ≤ k ≤ n, that
satisfy Case (3) and similarly, there exist at most one
value of k, 1 ≤ k ≤ n, that satisfy Case (4).

Proof. Let p(xm, yj+1) be a point in P . Suppose
F(S(k, α), j) = [a, b]. If |(S(i, j+1)∩S(k, α))−S(i, j)| =
0 for some i’s, a ≤ i ≤ b, then |(S(r, j + 1) ∩ S(k, α))−
S(r, j)| = 0 for r = i, i+1, . . . , b. In this case, from Ob-
servation 2, the matching of S(r, j+1) is S(k, α). There-
fore, if p /∈ S(k, α) then i = a and F(S(k, α), j + 1) ⊇
F(S(k, α), j). Moreover, if matching of S(b + 1, j) is
S(k′, α) and |(S(b+1, j+1)∩S(k′, α))−S(b+1, j)| = 0,
the matching of S(b + 1, j + 1) is S(k′, α) and then it
implies F(S(k, α), j + 1) = F(S(k, α), j).

Suppose the matching of S(i, j) and S(i, j + 1) are
S(k, α) and S(k′, α) respectively. From Lemma 3,
k′ ≤ k. Let p be in ((S(i, j + 1) ∩ S(k, α)) − S(i, j).
If F(S(k′, α), j) = (c, d] and k′ < k, then p /∈ S(k′, α)
and the matching of S(r, j + 1) is S(k′, α) for r =
d+1, d+2, . . . i. Here, F(S(k, α), j +1) ⊂ F(S(k, α), j)
and F(S(k′, α), j + 1) ⊃ F(S(k′, α), j). In case, i = b,
F(S(k, α), j + 1) = ∅. Hence the lemma follows. ¤

Suppose the matching of S(i − 1, j) and S(i, j) are
S(k′, α) and S(k, α) respectively with k′ < k. Let the
point p(xm, yj+1) lie inside the region ((S(i, j + 1) ∩
S(k, α))−S(i, j) but not inside the region ((S(i−1, j +
1) ∩ S(k′, α)) − S(i − 1, j). Then using similar argu-
ments as in the proof of Lemma 4, F(S(k′, α), j + 1) ⊇
F(S(k′, α), j) and for all k′′ < k′, F(S(k′′, α), j + 1) =
F(S(k′′, α), j). If F(S(k′, α), j + 1) = F(S(k′, α), j),
then F(S(r, α), j+1) = F(S(r, α), j) for r = 1, 2, . . . , n.
When F(S(k′, α), j + 1) ⊃ F(S(k′, α), j), there exist
an integer v, 0 ≤ v ≤ n, such that the matching of
S(v, j + 1) is S(k′, α) but the matching S(v + 1, j + 1)
is not S(k′, α). Suppose the matching of S(v + 1, j)
is S(h, α), then from Lemma 4 along with similar ar-
guments, we can conclude that F(S(r, α), j + 1) = ∅

for r = k′ + 1, k′ + 2, . . . , h − 1, F(S(h, α), j + 1) ⊆
F(S(h, α), j) and F(S(r, α), j + 1) = F(S(r, α), j) for
r = h + 1, h + 2, . . . , n.

Observation 3 For given indices α and β, α ≥ β, with
(yα − yβ) ≥ 1, all nonempty F(S(k, α), β) can be com-
puted in linear time.

4 Algorithm

Here, we are looking for a pair of overlapping squares
where top boundary of the upper square (R1) is at yα

and top left corner of the lower square (R2) is inside the
interior of upper square such that together they cover
maximum number of points of P . Note that R1 and
R2 may together contain less number of points than a
non-overlapping pair with top boundary of upper square
at yα. Below, we describe the algorithm to report the
maximum number of points covered by a pair of squares
with top boundary of the upper square at yα and the
top boundary of the lower square is above the bottom
boundary of the upper square in O(n log2 n) time.

Let the function left(pxi) output the minimum entry
in Lx, say pxj , such that xi − xj is less than or equal
to unity. Then we can compute left(pxi), 1 ≤ i ≤ n in
O(log n) time. Note that left(px1) = px1 . In a similar
way, we define right(.), bottom(.), and top(.). For or-
thogonal range searching on a given points set P in 2D,
we construct range tree R [3] that reports the number of
points in a query rectangle in O(log n) time. The con-
struction time and the space for range tree R are both
O(n log n).

4.1 Data structure and initialization

Let yγ be the bottom(yα) (1 ≤ α ≤ n). Consider an in-
dex β such that |yα−yβ | ≥ 1 and compute F(S(k, α), β)
for all k, 1 ≤ k ≤ n, which are nonempty. Using
observation 3, this computation can be done in linear
time. Let the intervals be [a1, b1], [a2, b2], . . . , [aν , bν]
from left to right such that F(S(ki, α), β) = [ai, bi] for
i = 1, 2, , . . . , ν.

Now we initialize β by γ and subsequently the value β
varies from γ + 1, γ + 2, . . . , α− 1.

Consider a balanced binary search tree T constituted
by x1, x2, . . . , xn, where each value xi corresponds to
a leaf node, and the search is guided by the x-values.
The leaf node corresponding to xi keeps information
about |S(i, β) ∪ S(k, α)|, where the matching of S(i, β)
is S(k, α). Two counter variables M and C are attached
with nodes of T for computing the number of points cov-
ered by S(i, β) along with its matching square for all i.
To start with, the variables M and C corresponding to
all nodes are initialized with zero. Given an interval,
Increment operation modifies T such that count of all
squares with top-left corner within the interval is incre-
mented by one. Similarly, we can define the Decrement

20th Canadian Conference on Computational Geometry, 2008

operation. Detail algorithms for Increment and Decre-
ment operations are discussed by Mahapatra et al. [13].
At any instance with α and β, given a lower square X,
Report operation [13] is able to report the maximum
number of points covered by a pair of squares where the
lower square must be X and the upper square have the
top boundary at yα. It can also report the number of
maximum covered points of a pair of squares whose top
boundaries are aligned with yα and yβ .

Construct another balanced binary search tree T ′ con-
stituted by disjoint intervals [xa1 , xb1], [xa2 , xb2], . . .,
[xaν , xbν] as leaf nodes. A variable W is attached with
each leaf node to keep information of a square. All
squares having left boundary within the interval corre-
sponding to that leaf node are matched with W . Given
a point p, we can report the interval containing p in
O(log n) time. Insertion, deletion and update of an in-
terval can be done in O(log n) time. We now describe
main steps of the algorithm.

For β = γ + 1, γ + 2, . . . , α − 1, execute the following
steps:

1. Suppose the β-th entry of Ly be the point p with
coordinates, say (xm, yβ).

2. Find the interval [a, b] from T ′ containing p and let
the corresponding square be S(k, α).

3. Find the inorder-predecessor of S(k, α), say
S(k′, α) and the corresponding interval is [a′, b′].
3.1 p /∈ S(k, α): Perform Increment operation for

the interval [left(xm), xm] into T .
3.2 p ∈ S(k, α) and p /∈ S(k′, α): Compute

|S(a, β) ∪ S(k, α)| and |S(a, β) ∪ S(k′, α)| by
rectangular range searching from range tree
R. If |S(a, β) ∪ S(k′, α)| ≥ |S(a, β) ∪ S(k, α)|,

3.2.1 the matching of S(a, β) is S(k′, α);
3.2.2 use divide and conquer method within in-

terval [a, b], select an index c such that
F(S(k, α), β) is [c, b];

3.2.3 update the interval [a, b] in T ′ with [c, b]
and [a′, b′] with [a′, c− 1];

3.2.4 perform Increment operation for the in-
terval [left(xm), xc−1] and update the
current optimal count with the value at
the root of T .

3.3 p ∈ S(k, α) and p ∈ S(k′, α): Identify k′′ such
that p /∈ S(k′′, α) but the inorder successor
S(l, α) of S(k′′, α) contains p. Go to Step 3.2
with k ← l, k′ ← k′′.

Finally, the count of the optimal pair with top boundary
of the upper square at yα can be obtained at the root
of T and the corresponding pair can be identified.

4.2 Complexity of the Algorithm

Theorem 5 Given a set P of n points in R2, two dis-
joint or overlapping isothetic unit squares covering max-
imum number of points can be found in O(n2 log2 n)
time using O(n log n) space.

References

[1] A. Aggarwal, H. Imai, N. Katoh, and S. Suri, Finding
k points with minimum diameter and related problems.
Journal of Algorithms, 12, 38–56, 1991.

[2] Gill Barequet, Matthew Dickerson, and Petru Pau,
Translating a convex polygon to contain a maximum
number of points. Computational Geometry Theory and
Applicaions, 8, 167–179, 1997.

[3] M. de Berg, M. Van Kreveld, M. Overmars, and O.
Schwarzkopf, Computational Geometry, Algorithms
and Applications. Springer, Berlin, 1997.

[4] S. Chandran and D. Mount, A parallel algorithm for
enclosed and enclosing triangles. International Journal
of Computational Geometry and Applications, 2, 191–
214, 1992.

[5] A. Datta, H.-P. Lenhof, C. Schwarz, and M. Smid,
Static and dynamic algorithms for k-point clustering
problems. Journal of Algorithms, 19, 474–503, 1995.

[6] Sergio Cabello, J. Miguel Diaz-Banez, Carlos Seara, J.
Antoni Sellares, Jorge Urrutia, Inmaculada Ventura,
Covering point sets with two disjoint disks or squares.
Computational Geometry Theory and Applicaions, 40,
195–206, 2008.

[7] J. Miguel Diaz-Banez, Carlos Seara, J. Antoni Sellares,
Jorge Urrutia, and Imma Ventura, Covering Points Sets
with Two Convex Objects. Proc. 21st European Work-
shop on Computational Geometry, 2005.

[8] Sandip Das, Partha P. Goswami, and Subhas C. Nandy,
Smallest k-point enclosing rectangle and square of ar-
bitrary orientation. Information Processing Letters, 95,
259–266, 2005.

[9] A. Efrat, M. Sharir, and A. Ziv Computing the smallest
k-enclosing circle and related problems. Computational
Geometry, 4, 119–136, 1994.

[10] D. Eppstein and J. Erickson, Iterated nearest neighbors
and finding minimal polytopes. Discrete and Computa-
tional Geometry, 11, 321–350, 1994.

[11] V. Klee and M.L. Laskowski, Finding the smallest tri-
angles containing a given convex polygon. Journal of
Algorithms, 6, 359–375, 1985.

[12] J. Matousek On geometric optimization with few vio-
lated constraints. Discrete and Computational Geome-
try, 14, 365–384, 1995.

[13] Priya Ranjan Sinha Mahapatra, Partha P. Goswami,
and Sandip Das, Covering Points by Isothetic Unit
Squares. Proc. 19th Canadaian Conference on Com-
putational Geometry, 169–172, 2007.

[14] J. O’Rourke, A. Aggarwal, S. Maddila, and M. Baldwin,
An optimal algorithm for finding minimal enclosing tri-
angles. Journal of Algorithms, 7, 258–269, 1986.

[15] F.P. Preparata and M.I. Shamos, Computational Ge-
ometry: An Introduction. Springer, Berlin, (1985).

[16] M. Segal and K. Kedem, Enclosing k points in smallest
axis parallel rectangle. Information Processing Letters,
65, 95–99, 1998.

[17] G.T. Toussaint, Solving geometric problems with the
rotating calipers. Proc. IEEE MELECON, 1983.

