
Triangulating and Guarding Realistic Polygons

G. Aloupis ∗ P. Bose † V. Dujmovic ‡ C. Gray § S. Langerman ¶ B. Speckmann §

Abstract

We propose a new model of realistic input: k-guardable objects. An object is k-guardable if
its boundary can be seen by k guards. We show that k-guardable polygons generalize two
previously identified classes of realistic input. Following this, we give two simple algorithms
for triangulating k-guardable polygons. One algorithm requires the guards as input while
the other does not. Both take linear time assuming that k is constant and both are easily
implementable.

1 Introduction

Algorithms and data structures in computational geometry often display their worst-case per-
formance on intricate input configurations that seem artificial or unrealistic when considered in
the context of the original problem. Indeed, in “practical” situations, many algorithms and data
structures—binary space partitions are a notable example—tend to perform much better than
predicted by the theoretical bounds. An attempt to understand this disparity and to quantify
“practical” or “normal” with respect to input are the so-called realistic input models [7]. Here
one places certain restrictions on the shape and/or distribution of the input objects so that
most unusual hypothetical worst-case examples are excluded. Analyzing the algorithm or data
structure in question under these input assumptions tends to lead to performance bounds that
are much closer to actually observed behavior.

Many realistic input models have been proposed. These include low-density scenes [7], where
it is assumed that the number of “large” objects intersecting a “small” volume is bounded, and
local polyhedra [11], where it is assumed that the ratio of lengths between edges coming from
a single vertex is limited by a constant. One of the most widely studied realistic input models
assumes that input objects are fat, that is, they are not arbitrarily long and skinny. There are
several ways to characterize fat objects—see Section 3 for formal definitions.

In this paper, we propose a new measure to define realistic input: the number of guards that
are required to see the boundary of an input object. We use the term k-guardable to denote
any object whose boundary can be seen by k guards. A rigorous definition of what it means
for a guard to see can be found in the next section. In Section 3, we discuss the connection
between k-guardable polygons and other measures of realistic input. In particular, we show that
(α, β)-covered polygons are O(1)-guardable. (α, β)-covered polygons model the intuitive notion
of fatness for non-convex input: an (α, β)-covered polygon P has the property that every point
p ∈ ∂P admits a triangle inside P with minimum angle at least α and minimum edge length at
least β · diam(P) for given constants α and β.

In Section 4, we describe two algorithms for triangulating k-guardable polygons. Our al-
gorithms, which were designed with simplicity in mind, take O(kn) time, that is, linear time

∗Carleton University & Université Libre de Bruxelles, greg@cg.scs.carleton.ca.
†Carleton University, jit@cg.scs.carleton.ca.
‡McGill University, vida@cs.mcgill.ca.
§TU Eindhoven, {cgray,speckman}@win.tue.nl. C.G. is supported by the Netherlands’ Organisation for Sci-

entific Research (NWO) under project no. 639.023.301. B.S. is supported by the Netherlands’ Organisation for
Scientific Research (NWO) under project no. 639.022.707.

¶Chercheur Qualifié du FNRS, Université Libre de Bruxelles, Belgique, stefan.langerman@ulb.ac.be.

1

assuming that k is constant. If the link diameter—see the next section for a formal definition—
of the input polygon is d, then the algorithm described in Section 4.1 takes O(dn) time—a
slightly stronger result. This algorithm uses the linear-time computation of an edge-visibility
polygon as a subroutine. In Section 4.2, we describe an algorithm that uses only scans of the
input polygon and stacks, but requires the actual guards as input.

Related work. In 1991 Chazelle [4] presented a linear time algorithm to triangulate any sim-
ple polygon. However, after all these years it is still a major open problem in computational
geometry to design an implementable linear-time algorithm for triangulation. There are several
implementable algorithms which triangulate polygons in near-linear time. For example, Kirk-
patrick et al. [16] describe an O(n log log n) algorithm and Seidel [22] presents a randomized
algorithm which runs in O(n log∗ n) expected time, and Amato et al. [2] present another ran-
domized algorithm that runs in O(n) expected time that is based in large part on Chazelle’s
algorithm. We contend that our algorithm is conceptually simpler than the O(n log log n) algo-
rithm and that it has a slight advantage over the Seidel algorithm and the algorithm of Amato et
al. because it is deterministic. It is also interesting to note that the Seidel algorithm requires
Ω(n log n) random bits, which makes it theoretically undesirable in some models of computation.

Relationships between shape complexity and the number of steps necessary to triangulate
polygons have been investigated before. For example, it has been shown that monotone polygons
[23], star-shaped polygons [21], and edge-visible polygons [24] can all be triangulated in linear
time by fairly simple algorithms. Other linear algorithms have been given, under the assumption
that the number of reflex vertices [13] or the sinuosity [5] is bounded by a constant.

The subject of guarding is also well-studied. The book by O’Rourke [19] gives a good overview
of the early results. Perhaps most relevant are the hardness results. Determining whether the
entire interior of a polygon P can be seen by at most k guards is NP-complete [20] and NP-
hard to approximate within a (1 + ε) factor [9] even when P is simple. The same results hold
when only the boundary of P needs to be guarded: it is NP-complete to determine whether
the boundary of P can be seen by at most k guards [17] and this problem is also APX-hard [9].
Finally, it has recently been shown [1] that O(k) guards suffice to see the interior of a polygon
if k guards are required to see the boundary.

Several algorithms and data structures exist for collections of realistic objects. For example,
the problem of ray-shooting in an environment consisting of fat objects has been studied ex-
tensively [3, 6, 14]. However, there are few results concerning individual realistic objects. We
hope that our results on triangulating realistic polygons will encourage further research in this
direction.

2 Tools and definitions

Throughout this paper let P be a simple polygon with n vertices. We assume that P has no
vertical edges. If P has vertical edges, it is easy to rotate it by a small amount until the vertical
edges are eliminated.

We denote the interior of P by int(P), the boundary of P by ∂P , and the diameter of P by
diam(P). The boundary is considered part of the polygon, that is, P = int(P) ∪ ∂P . We say
that a point p is in P if p ∈ int(P) ∪ ∂P .

The segment or edge between two points p and q is denoted by pq. The same notation implies
the direction from p to q if necessary. Two points p and q in P see each other if pq ∩ P = pq.
If p and q see each other, then we also say that p is visible from q and vice versa. We call a
polygon P k-guardable if there exists a set G of k points in P called guards such that every
point p ∈ ∂P can see at least one point in G.

2

A star-shaped polygon is defined as a polygon that contains a set of points—the kernel—each
of which can see the entire polygon. If there exists an edge pq ⊂ ∂P such that each point in
P sees some point on pq, then P is weakly edge-visible. The visibility polygon of a point p ∈ P
with respect to P , denoted by VP (p, P) is the set of points in P that are visible from p—see
Figure 1. Visibility polygons are star-shaped and have complexity O(n). We do not describe the
procedure for computing the visibility polygon in this paper. The following lemma summarizes
the time complexity of computing a visibility polygon.

p

w
P Pw

Figure 1: The visibility polygon VP (p, P) is shaded. Pw is the pocket of w with respect to
VP (p, P).

Let Q be a subpolygon of P , where all vertices of Q are on ∂P . If all vertices of Q coincide
with vertices of P , then we call Q a pure subpolygon. If ∂P intersects an edge w of ∂Q only at
w’s endpoints, then w is called a window of Q. Any window w separates P into two subpolygons.
The one not containing Q is the pocket of w with respect to Q (see Figure 1). Any vertex added
to the polygon (such as the endpoint of a window) is called a Steiner point .

Lemma 1 (El Gindy and Avis [10]) VP (p, P) can be computed in O(n) time.

This algorithm, while not trivial, is fairly simple. It involves a single scan of the polygon and a
stack. See O’Rourke’s book [19] for a good summary.

A concept related to visibility in a polygon P is the link distance, which we denote by LD(p, q)
for two points p and q in P . Consider a polygonal path π that connects p and q while staying
in int(P). We say that π is a minimum link path if it has the fewest number of segments (links)
among all such paths. The link distance of p and q is the number of links of a minimum link
path between p and q. We define the link diameter d of P to be maxp,q∈P LD(p, q). The link
diameter of a polygon may be much less than the number of guards required to see its boundary,
and is upper bounded by the number of guards required to see the boundary. This can be seen
in examples based on the “comb” polygon, that have a small link diameter but need a linear
number of guards—see Figure 2.

Figure 2: A polygon with low link diameter that needs O(n) guards.

3

3 Guarding realistic polygons

In this section we discuss several realistic input models for polygons and their connection to
k-guardable polygons. We first consider the so-called ε-good polygons introduced by Valtr [26].
An ε-good polygon P has the property that any point p ∈ P can see a constant fraction ε of the
area of P . Valtr showed that these polygons can be guarded by a constant number of guards.
Hence ε-good polygons fall naturally in the class of k-guardable polygons. Kirkpatrick [15]
achieved similar results for a related class of polygons, namely polygons P where any point
p ∈ P can see a constant fraction ε of the length of the boundary of P . These polygons can be
guarded by a constant number of guards as well, and hence are O(1)-guardable polygons.

We now turn our attention to fat polygons. One well-studied variant of fat polygons are the
so-called β-fat polygons [27]. A polygon P is β-fat if for every ball b whose center is inside
P and which does not contain P completely, volume(b ∩ P) is at least β · volume(b). If P is
convex, then β-fatness captures the intuition of “fat” polygons nicely. However, non-convex
“comb” polygons with very thin spikes that are very close together also fall into the class of
β-fat polygons. For this reason, Efrat introduced the so-called (α, β)-covered polygons [8]. A
polygon P is (α, β)-covered if for each point p on ∂P there exists a triangle T (p), called a good
triangle of p, such that:

(i) p is a vertex of T (p),

(ii) T (p) is completely contained in P ,

(iii) each angle of T is at least α, and

(iv) the length of each edge of T (p) is at least β · diam(P).

It is easy to show that the classes of (α, β)-covered polygons and ε-good polygons are not
equal. Any convex polygon that is not fat is ε-good but not (α, β)-covered, and the polygon in
Figure 3 is (α, β)-covered but not ε-good.

Figure 3: A polygon P that is (α, β)-covered but not ε-good. By scaling the length of the edges,
the central point of P can be made to see an arbitrarily small fraction of the area of P .

In the remainder of this section we prove that (α, β)-covered polygons can also be guarded
by a constant number of guards and hence are O(1)-guardable polygons.

Let P be an (α, β)-covered polygon with diameter 1 and let p be a point on ∂P . We construct
a circle C of radius β/2 around p and place ⌈4π/α⌉ guards evenly spaced on the boundary of C.
Call this set of guards Gp. By construction, the triangle consisting of p and any two consecutive
guards of Gp has an angle at p of α/2. Hence any good triangle which is placed at p must
contain at least one guard from Gp. Let C ′ be the circle centered at p with radius β/4.

Lemma 2 Let T be a good triangle with a vertex inside the circle C ′. Then T contains at least
one guard from Gp.

4

Proof. Let v be the vertex of T that lies inside C ′. Since T is a good triangle, all of its edges
have length at least β. Also, all of its angles are at least α. Thus α is at most π/3, and no
other vertex of T is inside C.

Let r be the ray that bisects the angle at v and that is partially contained inside T . Assume
that T contains no guards from Gp. Then we can rigidly shift T by moving v along r until it is
on the boundary of C ′, without introducing guards into T . Thus we can restrict to considering
only good triangles that have a vertex on C ′, and which do not intersect C ′. We will show that
such triangles must contain a guard, thus contradicting the assumption just made.

To maximize the angle at v while avoiding the inclusion of a guard in T , it is best to position
r so that it bisects the segment connecting two consecutive guards from Gp. We now show that
even in this configuration, pictured in Figure 4, there must be a guard from Gp in T .

β/4

β/4

δ

g1

g2
p v

C
C ′

r

Figure 4: The guarding set Gp.

We arbitrarily choose two consecutive guards g1, g2, and denote the length of the segment g1g2

by 2δ. Hence tan(α/4) = 2δ/β. Let the angle g1vg2 be denoted by 2θ. We have tan θ = 4δ/β.
Therefore, tan θ = 2 tan(α/4). Since 0 < α/4 ≤ π/12 < π/4, we have 0 < 2 tan(α/4) < tan(α/2)
(by double-angle identities for tan). This implies that tan θ < tan(α/2) and hence 2θ < α. It
follows that T must contain the segment g1g2.

Any good triangle with a vertex on the boundary of C ′ and a different choice of r will also
contain a guard. Thus the original good triangle examined could not have been empty. �

Lemma 2 almost directly provides a guarding set for ∂P .

Theorem 3 Let P be a simple (α, β)-covered polygon. The boundary of P can be guarded by
⌈4π/α⌉⌈2

√
2/β⌉2 guards.

Proof. Assume without loss of generality that the diameter of P is 1. Thus, P has a bounding
square B with area 1. The circle C ′ in the guarding set Gp from Lemma 2 contains a square
with area β2/8. We cover B by ⌈2

√
2/β⌉2 such squares that are each surrounded by a copy of

Gp. Since every point of ∂P is contained in at least one such square, this must be a guarding set
by Lemma 2. Since each copy of Gp contains ⌈4π/α⌉ guards, we need at most ⌈4π/α⌉⌈2

√
2/β⌉2

guards to guard ∂P . �

4 Triangulating k-guardable polygons

We present two algorithms that triangulate a k-guardable polygon. The first algorithm does
not require the guards as input. However, it uses a subroutine that is fairly complicated. The
second algorithm only uses visibility-polygon computation as a subroutine, but it requires the
guards as input. This may seem strange at first given the hardness results mentioned in the

5

introduction. However, given the results of the previous section for (α, β)-covered polygons, we
can easily find a small guarding set in linear time for certain fat polygons.

4.1 Triangulating without guards

In many situations where triangulation is desired, it may be unrealistic to expect a set of guards
as part of the input. In this section we show how to triangulate a k-guardable polygon in O(kn)
time without knowing the guards. The most complicated procedure used in our algorithm is
computing the visibility polygon from an edge in linear time [12]. We begin with some new
notation and definitions.

The edge-visibility polygon, EVP (e, P), of an edge e with respect to polygon P consists of all
points in P that are visible from at least one point on e. We sometimes call EVP (e, P) the weak
visibility polygon of the edge e if the polygon is clear from the context. We define an extended
edge-visibility polygon of e with respect to P , denoted by EEVP (e, P), to be the smallest (in
terms of the number of edges) pure subpolygon of P that contains EVP (e, P). These concepts
are illustrated in Figure 5.

(a) (b)

e

x

y

P (wi)

wi

q

p

Figure 5: (a) The weak visibility polygon of the dotted edge. (b) The associated extended edge
visible polygon. EEVP (e, P) is the union of the light and dark gray regions.

The geodesic between two points in P is the shortest polygonal path connecting them that is
contained in P . The vertices of a geodesic (except possibly the first and last) belong to ∂P—see
Figure 6.

x

v w
y

Figure 6: The geodesic from x to v.

Below, we show that Melkman’s algorithm [18] can find a specific type of geodesic related to
finding the EEVP of a polygon.

Lemma 4 Let x be a vertex of polygon P and let y be a point on edge vw ∈ P . If y sees x,
then the geodesic between x and v: (a) is a convex chain and entirely visible from y, and (b)
can be computed in O(n) time.

6

Proof. Property (a) holds trivially if x sees v. Consider the case where x does not see v. Then,
the triangle (x, y, v), denoted by T , must contain at least one vertex of P in its interior. Let I be
all the vertices of P inside T and let CH(I) be the convex hull of I. The path S = ∂CH(I) \xv
is the geodesic from x to v. Any other path from x to v inside T can be shortened. Thus,
property (a) holds.

To prove property (b), note that since the geodesic we seek is entirely visible from y by
part (a) it is fully contained in VP (y, P). We compute VP (y, P) in linear time. Consider the
polygonal chain from x to v along ∂VP (y, P) that avoids y. By construction of VP (y, P), the
shortest path from x to v is part of the convex hull of this chain. Using Melkman’s algorithm,
we compute the convex hull of a simple polygonal chain in linear time. �

Finally, a weakly edge-visible polygon can be triangulated using a very simple algorithm
known as the Graham scan. The following lemma formalizes that.

Lemma 5 (Toussaint and Avis [24]) Any weakly edge-visible polygon can be triangulated
in linear time.

We now show how to compute and triangulate an extended edge visibility polygon, which is
the main subroutine of our algorithm.

Lemma 6 EEVP (e, P) can be computed and triangulated in O(n) time.

Proof. We begin by computing EVP (e, P) in O(n) time using the algorithm of Heffernan and
Mitchell [12]. This yields a set of windows W and their associated pockets. For each window
wi ∈ W that is not a diagonal of P , we do the following.

Let x be the endpoint of wi closer to e, and let y be the endpoint farther from e. Then x
is a vertex of P , and y is an interior point on some edge pq of P . Without loss of generality
let p be the endpoint of pq that is inside the pocket of wi, as illustrated in Figure 5 (b). Since
x sees y, we can use Lemma 4(b) to compute the geodesic from x to p. Let P (wi) denote the
polygon enclosed by the geodesic from x to p, py and wi. It is simple to verify that the extended
edge-visibility polygon is EEVP (e, P) = EVP (e, P) ∪

(⋃
wi∈W P (wi)

)
.

By Lemma 4 (b), each pocket P (wi) can be computed in time linear in the size of the
pocket of wi. Since pockets are disjoint and can be processed in order,

⋃
wi∈W P (wi), and thus

EEVP (e, P), can be computed in O(n) time.
We now proceed to triangulate EEVP (g, P). Consider P (wi). Let T be the triangle deter-

mined by the points x, y and q. If e sees q, then q sees each vertex in P (wi)∪T by Lemma 4 (a).
Therefore, P (wi) ∪ T is a weakly edge-visible pure subpolygon of P . By Lemma 5, we can tri-
angulate P (wi) ∪ T in O(|P (wi)|) time.

If e does not see q then q ∈ P (wj) for some wj ∈ W with j 6= i. Let Q be the quadrilateral
determined by the endpoints of wi and wj . The polygon Y = P (wi) ∪ P (wj) ∪ Q is a pure
subpolygon of P and each of its vertices is visible from p or q, which means that Y is weakly
edge-visible from pq. This implies that Y can be triangulated using a simple method as before.

It is straightforward to verify that all of the pure subpolygons of EEVP (e, P) triangulated
thus far are pairwise non-overlapping. If T is the union of these subpolygons then the closure
of EEVP (e, P) \ T is a weakly edge-visible pure subpolygon of EEVP (e, P) and thus can also
be triangulated in linear time. This results in a triangulation of EEVP (e, P), as required. �

When EEVP (e, Pi) is triangulated, diagonals of P that are on ∂EEVP (e, Pi) become windows
of new pockets. Each such window serves as the edge from which a new visibility polygon
will be computed and triangulated, within its respective pocket. In this recursive manner we
break pockets into smaller components until all of P is triangulated. The procedure, although
straightforward, is outlined below in more detail. This is followed by the analysis of the time

7

complexity, where we show that the recursion depth is of the order of the number of guards
that suffice to guard ∂P .

We will maintain a queue S of non-overlapping polygons such that each Pi ∈ S has one edge
wi labelled as a window. Thus elements of S are pairs (wi, Pi). We start with S := (w,P),
where w is an arbitrary boundary edge of P . We process the elements of S in the order in which
they were inserted. The main loop of our algorithm is as follows:

TriangulateWithoutGuards(P)

1 S := (w,P), where w is an arbitrary edge of P
2 while S 6= ∅
3 do Choose the next element from S and call it (wi, Pi).
4 Remove (wi, Pi) from S.
5 Compute and triangulate EEVP (wi, Pi).
6 Add the edges of the triangulation to P .
7 for each boundary edge wj of EEVP (wi, Pi) that is a di-

agonal of P ,

8 do Identify Qj as the untriangulated portion of P
whose boundary is enclosed by wj and ∂P .

9 Add the remaining untriangulated portion (wj , Qj) to S.
10 return P .

Theorem 7 The algorithm TriangulateWithoutGuards triangulates an n-vertex k-guardable
polygon in O(kn) time.

Proof. We first note that the EEVP s created by our algorithm define a tree structure T , as
follows. At the root of T is EEVP (w,P). For every window wj of EEVP (wi, Pi), we have
that EEVP (wj , Pj) is a child of EEVP (wi, Pi). The construction of the child nodes from their
parents ensures that no EEVP overlaps with any other and that the triangulation covers the
entire polygon P .

We now show that T has at most 3k levels (a level is a set of nodes at the same distance from
the root) which implies that the main loop of the algorithm performs at most 3k iterations. Let
ℓi, ℓi+1, and ℓi+2 be three successive levels of T , in which all the nodes in ℓi+1 are descendants
of the nodes in ℓi, and where all the nodes in ℓi+2 are descendants of the nodes in ℓi+1. Further,
let G be a point set of size k such that every point p ∈ ∂P sees at least one guard of G. Assume,
for the purpose of obtaining a contradiction, that there are no guards from G in the EEVP s
corresponding to the nodes in levels ℓi, ℓi+1, or ℓi+2.

Let g be a guard which sees into a node ni at level ℓi through window wi. There are two
cases: either g is at a higher level than ℓi or it is at a lower level. If g is in a higher level and
is visible from a window of ni, then g can be in only one level: ℓi+1 (because ℓi+1 contains the
union of all the edge-visibility polygons of the windows of the nodes in ℓi). We have assumed
that this can not happen. Otherwise, if g is in a lower level, g can not see into any level higher
than ℓi, because wi must be the window which created ni.

The combination of these two facts implies that no guard from G can see into ℓi+1. This is a
contradiction to G being a guarding set. Therefore, G must have at least one guard in ℓi, ℓi+1,
or ℓi+2. This implies that there is at least one guard for every three levels, or at most three
levels per guard.

Each level of the tree can be processed in O(n) time by Lemma 6, since all nodes of a level
are disjoint. Therefore, the algorithm terminates in O(kn) time. �

As is apparent from the proof of Theorem 7, our algorithm runs in O(tn) time, where t is the
number of iterations of the while-loop. The above argument also implies a stronger result. The

8

number of iterations, t, of the while loop is proportional to the link diameter, d, of the polygon,
since any minimum link path between two points must have at least one bend for every three
levels. This leads to the following corollary:

Corollary 8 The algorithm TriangulateWithoutGuards triangulates an n-vertex polygon
with link diameter d in O(dn) time.

4.2 Triangulating with a given set of guards

Let G = {g1, . . . , gk} be a given set of k guards in P that jointly see ∂P . In this section we
describe a simple algorithm that triangulates P in O(kn) time. One advantage of this algorithm
is that it does not use any subroutines other than visibility-polygon computation. In particular,
it does not compute the edge-visibility polygon, which is more complicated.

A vertical decomposition of P—also known as a trapezoidal decomposition of P , leading to
the notation T (P)—is obtained by adding a vertical extension to each vertex of P . A vertical
extension of v, denoted vert(v), is the maximal vertical line segment which is contained in int(P)
and intersects v. We sometimes refer to an upward (resp. downward) vertical extension of v.
This is the (possibly empty) part of vert(v) that is above (resp. below) v.

Let g be a guard and w be a window of VP (g, P). Pw denotes the pocket of w with respect
to VP (g, P). The vertical projection onto w is the ordered list of intersection points of w with
the vertical extensions of the vertices of Pw (see Figure 7).

x2

v2

g

Pw

w

x1
x3

v1

v3

Figure 7: The vertical projection onto w is (x1, x2, x3).

Our algorithm finds the vertical decomposition T (P) of P in O(kn) time. In particular, we
show how to compute all vertical extensions of T (P) that are contained in or cross the visibility
polygon of a guard in O(n) time. Since each vertex of P is seen by at least one guard, every
vertical extension is computed by our algorithm. It is well known that finding a triangulation
of a polygon P is simple given the vertical decomposition of P [5]. The most complicated
procedure used in our algorithm has the difficulty level of computing the visibility polygon of a
point.

Below is a high-level description of our algorithm. The details of the various steps will be
discussed later.

9

TriangulateWithGuards(P,G)

1 for each guard g ∈ G
2 do find the visibility polygon VP1(g, P).
3 for each window w in VP1(g, P)
4 do compute the vertical projection onto w and add the result-

ing Steiner points to w.
� After all windows of VP1(g, P) have been processed, we have a

simple polygon VP2(g, P) that includes the points in the vertical
projections as Steiner points on the windows.

5 Compute the vertical decomposition of VP2(g, P). For every vertex
v of VP2(g, P) that is not a Steiner point created in Step 2, add
the vertical extension of v to ∂VP2(g, P), creating VP3(g, P).

� We have now computed the restriction of T (P) to VP (g, P): every
vertical extension that is part of T (VP3(g, P)) is contained in a
vertical extension of T (P) and every vertical extension of T (P)
that crosses VP (g, P) is represented in T (VP3(g, P))

6 for each vertex v of VP3(g, P),
7 do Determine the endpoints of vert(v) on ∂P .

Figure 8 shows a sample execution of our algorithm.

(2) (4) (5) (6)

Figure 8: Sample execution of algorithm TriangulateWithGuards. The line of code is
shown at the top-left of each sub-figure. The guard is depicted by a box, unfilled circles are
new Steiner points, and filled circles are points from which a vertical extension is computed.

By Lemma 1, Step 2 takes O(n) time. We now discuss the other steps of the algorithm.

Step 4: Computing a vertical projection onto a window. Without loss of generality, we
assume that w is not vertical and that int(VP (g, P)) is above w (see Figure 9). Let v be a
vertex of Pw such that vert(v) intersects w. Furthermore, let z be a point at infinite distance
vertically above some point on w. Observe that if we remove the parts of P above w so that
z can see all of w, then z can see v. This implies that we should remove all parts of Pw that
are inside the “vertical slab” above w, so that vertices whose vertical extensions intersect w are
precisely those that form the visibility polygon of z. The technique of computing a visibility
polygon of a point at infinity was first used by Toussaint and El Gindy [25].

We remove all the parts of Pw that are outside the vertical slab directly below w, as follows.
Imagine shooting two rays downward from the start- and end-points of w. We call the rays r1

and r2. We keep two counters called c1 and c2 that are initialized to 0, and are associated to r1

and r2, respectively. Assume that r1 is to the left of r2. We begin scanning ∂Pw at one of the
endpoints of w and proceed toward the other endpoint. If an edge of ∂Pw intersects r1 from the
right, we increment c1 and proceed as follows until c1 is again 0. We continue scanning ∂Pw,

10

x2

v2

P̂w

w x1
x3

v1

v3

z

g

Pw

w

r1 r2

g

Pw

w

r1 r2

(a) (b) (c)

v4

x4

i1

i2
i3

i4

i5

i6

Figure 9: Computing a vertical projection. (a) A polygon that does not wrap around w. (b)
Its vertical projection. (c) A polygon that wraps around w. The counter c2 is incremented at
i1 and i2, decremented at i3, incremented again at i4, and decremented two more times at i5
and i6, at which time it is once again 0.

throwing away edges as we go. If an edge intersects r1 from the right, we increment c1 and if
an edge intersects r1 from the left, we decrement c1. When c1 is 0, we connect the first and
last intersections of ∂Pw by a segment. The procedure is essentially the same when an edge
intersects r2 except that we interchange “right” and “left”. Note that if Pw winds around w
many times, c1 or c2 might be much larger than 1. Finally, once ∂Pw has been traced back
to w, we remove potential intersections between newly constructed line segments along r1 by
shifting them to the left by a small amount proportional to their length. We shift the new
segments along r2 to the right by a small amount proportional to their length. The simplicity
of P implies that the new segments are either nested or disjoint, so we obtain a simple polygon
that does not cross the vertical slab above w. Finally, we remove w and attach its endpoints
to z, thus obtaining polygon P̂w. The vertices of VP (z, P̂w) are precisely those vertices of Pw

whose vertical extensions intersect w and appear as output in sorted order.

Lemma 9 The vertical projection onto w can be computed in O(|Pw|) time.

Proof. The algorithm described in the text consists of a scan of ∂Pw and a visibility polygon
calculation, which has complexity O(|Pw|). Therefore, it remains to show that a point x is
added to w if and only if there is a corresponding vertex vx in Pw whose vertical extension
intersects w at x.

Suppose there is a vertex vx whose vertical extension intersects w. Then vx is visible from z,
so vx is included in VP (z, P̂w) and thus x is added to w. On the other hand, suppose there is a
point x added to w. This occurs if there is a vertex vx which is visible to z through w. Since
this is the case, the vertical extension of vx intersects w. �

Step 5: Computing a vertical decomposition of a star-shaped polygon. Let S be a given
star-shaped polygon and g be a point inside the kernel of S. We assume that the vertices of
S are given in counterclockwise order around S. To simplify the algorithm, we describe only
the computation of the upward vertical decomposition (that is, for each vertex v, we find the
upper endpoint of vert(v)) of the part of S that is to the left of the vertical line through g. See
Figure 10. We say that a vertex v supports a vertical line ℓ if the two edges adjacent to v are
both on the same side of ℓ.

The algorithm for finding the upward vertical decomposition of S consists of a sequence of
alternating leftward and rightward walks: a leftward walk which moves a pointer to a vertex

11

g

pd

pu

vs S

Figure 10: Upward vertical decomposition of the part of S to the left of the guard g.

which supports a vertical line (locally) outside S, and a rightward walk which adds vertical
decomposition edges. The algorithm begins with the leftward walk which starts from the point
directly above g. It ends when the rightward walk passes under g.

The leftward walk simply moves a pointer forward along ∂S until a vertex vs which supports a
vertical line outside S is encountered—so we concentrate on describing the rightward walk. The
rightward walk begins with two pointers, pu and pd, which initially point to vs, the last point
encountered in the leftward walk. The pointers are moved simultaneously so that they always
have the same x-coordinate, with pd being moved forward along ∂S—that is, counterclockwise—
while pu is moved backward along ∂S (imagine sweeping rightward with a vertical line from vs).
If pd encounters a vertex, then a vertical decomposition edge is created between pd and pu. If pu

encounters a vertex v to which a vertical decomposition edge vert(v) is already attached (which
implies that v supports a vertical line), then pu moves to the top of vert(v) and continues from
there. When pd encounters a vertex v that supports a vertical line, the rightward walk ends
and the leftward walk begins anew at v.

Lemma 10 The vertical decomposition of a star-shaped polygon P is correctly computed by
the above algorithm in O(n) time.

Proof. The algorithm outlined in the text maintains the following extension invariant : the
correct upward vertical extension has been found for every vertex to which pd has pointed.
Initially, the invariant is trivially true.

By construction, pd visits all vertices of S that are the endpoints of the edges of the upward
vertical decomposition of S in counterclockwise order. Hence the algorithm constructs a vertical
extension for each of these vertices. It remains to show that the upper endpoint of the vertical
extension is correctly identified. Denote the current position of pd by vd. Again by construction,
pu lies vertically above vd at position vu. We need to show that vdvu is not intersected by an
edge of S.

Consider the triangle gvdvu. Since g sees all of S, gvd and gvu can not be intersected by an
edge of S. This implies that any edge e that intersects gvdvu must intersect vdvu. Furthermore,
e must be an edge in the chain CL, which is the chain from vu to vd in counterclockwise order.
To show that no edge from CL intersects vuvd, we establish the order invariant : CL is always to
the left of pupd. The invariant is trivially true whenever pu and pd point to vs, that is, whenever
we begin a rightward walk. Suppose that the invariant has been true until step k and we will
show that it is still true at step k + 1. Let C ′

L be the chain from pu to pd at step k and CL

be the chain from pu to pd at step k + 1. There are three cases in step k: (a) pd is pointing
to a vertex of S, (b) pu is pointing to a vertex of S without a vertical extension, or (c) pu is
pointing to a vertex v of S with a vertical extension. See Figure 11. In the first two cases, the
invariant is maintained since CL only differs from C ′

L by two segments that by definition both
lie to the left of pupd. Since the vertices in CL come before vd, the correct vertical extension
of each vertex in CL has been computed by the assumption of the extension invariant. This

12

implies that the order invariant is also maintained in the case where pu is pointing to a vertex
v of S with a vertical extension and is moved to the top of vert(v). This is because C ′

L differs
from CL by a segment which is to the left of pd and a chain which must be to the left of pupd

since vert(v) is a valid vertical extension.
Both pd and pu visit every vertex of S at most once, hence the running time is O(n). �

vs

vs

vs

pu

pd

pd

pu

pd

pu(a) (b) (c)

Figure 11: Establishing correctness of the order invariant: three cases.

Step 6: Computing the endpoints of vertical extensions. The final step of the algorithm is
to find and connect the endpoints of the vertical extensions of every vertex of VP3(g, P). Let
v be an arbitrary vertex of VP3(g, P). If both endpoints of vert(v) are on the boundary of
VP (g, P), we have already found and connected them in the previous step. Thus, let us assume
that at least one of the endpoints of vert(v) is not on the boundary of VP (g, P). That is, vert(v)
intersects at least one window of VP (g, P). Since we have already connected the endpoints of
vert(v) ∩ VP (g, P) in the previous step, it is sufficient to find the endpoints of vert(v) that are
outside of VP (g, P). Thus, it suffices to examine vertices that are Steiner points on windows.

Let v1, . . . , vj be vertices on window w, in sorted order. Again without loss of generality, we
assume that int(VP (g, P)) is above w. To find the endpoint of vert(v) that is below w for all

v ∈ {v1, . . . , vj}, we use the visibility polygon VP (z, P̂w) computed in Step 4 of the algorithm.

Note that the vertices of VP (z, P̂w) as well {v1, . . . , vj} are sorted by x-coordinate. Thus we

find the endpoints of {vert(v)|v ∈ {v1, . . . , vj}} by simultaneously scanning in VP (z, P̂w) and
{v1, . . . , vj} (as though performing a merge operation in merge-sort). Since

∑
w |Pw| ≤ n and

the number of Steiner points added to windows is at most n, we find the endpoints of the vertical
extensions of all Steiner points on windows in O(n) time.

Since each guard is processed in linear time, we obtain the following.

Theorem 11 The algorithm TriangulateWithGuards computes the vertical decomposi-
tion of an n-vertex k-guardable polygon in O(kn) time, if the k guards are given.

5 Open problems

Several known classes of realistic polygons are in fact k-guardable. In particular, we have
shown that the boundary of an (α, β)-covered polygon can be guarded by a constant number
of guards depending on α and β. In other words, (α, β)-covered polygons are O(1)-guardable.
We also gave two simple algorithms that triangulate k-guardable polygons in linear time, if k is
a constant. The first algorithm is slightly simpler, but does require the guards as input, while
the second algorithm does not need the guards.

Our work leaves some open problems. First, can the techniques shown here be used to design
a triangulation algorithm which does not depend on the number of guards? Second, are there
other problems that can be solved efficiently for k-guardable polygons? Finally, are there more
general classes of polygons that can be triangulated in linear time with simple algorithms?

13

Acknowledgments

This research was initiated at the Carleton-Eindhoven Workshop on Computational Geometry,
July 18–22, 2005, organized by Mark de Berg and Prosenjit Bose. The authors are grateful to
Mark de Berg for suggesting the problems studied in this paper and Boris Aronov for many
discussions.

References

[1] Louigi Addario-Berry, Jean-Sébastien Sereni, and Stéphan Thomassé. Guarding art gal-
leries: the extra cost for sculptures is linear. In Proc. 11th Scandinavian Workshop on
Algorithm Theory, pages 41–52. Springer-Verlag, LNCS 5124, 2008.

[2] Nancy M. Amato, Michael T. Goodrich, and Edgar A. Ramos. Linear-time triangulation
of a simple polygon made easier via randomization. In Symposium on Computational
Geometry, pages 201–212, 2000.

[3] Boris Aronov, Mark de Berg, and Chris Gray. Ray shooting and intersection searching
amidst fat convex polyhedra in 3-space. Computational Geometry: Theory and Applica-
tions, 41:68–76, 2008.

[4] Bernard Chazelle. Triangulating a simple polygon in linear time. Discrete and Computa-
tional Geometry, 6(5):485–524, 1991.

[5] Bernard Chazelle and Janet Incerpi. Triangulation and shape-complexity. ACM Transac-
tions on Graphics, 3(2):135–152, 1984.

[6] Mark de Berg. Vertical ray shooting for fat objects. In Proc. 21st Annual Symposium on
Computational Geometry, pages 288–295, 2005.

[7] Mark de Berg, A. Frank van der Stappen, Jules Vleugels, and Matthew J. Katz. Realistic
input models for geometric algorithms. Algorithmica, 34(1):81–97, 2002.

[8] Alon Efrat. The complexity of the union of (α, β)-covered objects. SIAM Journal on
Computing, 34(4):775–787, 2005.

[9] Stephan Eidenbenz, Christoph Stamm, and Peter Widmayer. Inapproximability results for
guarding polygons and terrains. Algorithmica, 31(1):79–113, 2001.

[10] Hossam A. El Gindy and David Avis. A linear algorithm for computing the visibility
polygon from a point. Journal of Algorithms, 2:186–197, 1981.

[11] Jeff Erickson. Local polyhedra and geometric graphs. Computational Geometry: Theory
and Applications, 31:101–125, 2005.

[12] Paul J. Heffernan and Joseph S. B. Mitchell. Structured visibility profiles with applications
to problems in simple polygons (extended abstract). In Symposium on Computational
Geometry, pages 53–62, 1990.

[13] Stefan Hertel and Kurt Mehlhorn. Fast triangulation of simple polygons. In Proc. 4th Conf.
Foundations of Computation Theory, pages 207–218. Springer-Verlag, LNCS 158, 1983.

[14] Matthew J. Katz. 3-d vertical ray shooting and 2-d point enclosure, range searching, and arc
shooting amidst convex fat objects. Computational Geometry: Theory and Applications,
8:299–316, 1997.

14

[15] David Kirkpatrick. Guarding galleries with no nooks. In Proceedings of the 12th Canadian
Conference on Computational Geometry (CCCG’00), pages 43–46, 2000.

[16] David G. Kirkpatrick, Maria M. Klawe, and Robert Endre Tarjan. Polygon triangulation
in O(n log log n) time with simple data structures. Discrete & Computational Geometry,
7:329–346, 1992.

[17] Aldo Laurentini. Guarding the walls of an art gallery. The Visual Computer, 15(6):265–278,
1999.

[18] Avraham A. Melkman. On-line construction of the convex hull of a simple polyline. Infor-
mation Processing Letters, 25(1):11–12, April 1987.

[19] Joseph O’Rourke. Art Gallery Theorems and Algorithms. Oxford University Press, New
York, NY, 1987.

[20] Joseph O’Rourke and Kenneth J. Supowit. Some NP-hard polygon decomposition prob-
lems. IEEE Trans. Inform. Theory, 29(IT-30):181–190, 1983.

[21] A.A. Schoone and J. van Leeuwen. Triangulating a starshaped polygon. Technical Report
RUU-CS-80-03, Institute of Information and Computing Sciences, Utrecht University, 1980.

[22] Raimund Seidel. A simple and fast incremental randomized algorithm for computing trape-
zoidal decompositions and for triangulating polygons. Computational Geometry: Theory
and Applications, 1:51–64, 1991.

[23] Godfried T. Toussaint. A new linear algorithm for triangulating monotone polygons. Pat-
tern Recognition Letters, 2:155–158, 1984.

[24] Godfried T. Toussaint and David Avis. On a convex hull algorithm for polygons and its
application to triangulation problems. Pattern Recognition, 15(1):23–29, 1982.

[25] Godfried T. Toussaint and Hossam El Gindy. A counterexample to an algorithm for com-
puting monotone hulls of simple polygons. Pattern Recognition Letters, 1:219–222, 1983.

[26] Pavel Valtr. Guarding galleries where no point sees a small area. Israel Journal of Mathe-
matics, 104:1–16, 1998.

[27] A. Frank van der Stappen. Motion Planning Amidst Fat Obstacles. PhD thesis, Dept. of
Computer Science, Utrecht University, 1994.

15

