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Abstract

In this note we showed that a p(≥ 2)-center location
problem in general networks can be transformed to the
well known Klee’s measure problem [3]. This resulted
in an improved algorithm for the continuous case with
running time O(mpnp/22log∗ n log n). The previous best
result for the problem is O(mpnpα(n) log n) where α(n)
is the inverse Ackermann function [9]. When the under-
lying network is a partial k-tree (k fixed), by exploit-
ing the geometry inherent in the problem we showed
that the discrete p-center problem can be solved in
O(pnp log kn) time.

1 Introduction

The network p-center problem is defined on a weighted
undirected network G = (V (G), E(G)), where each ver-
tex v ∈ V (G) has a non-negative weight w(v) and each
edge e ∈ E(G) has a positive length l(e). Let A(G)
denote the continuum set of points on the edges of G.
For x, y ∈ A(G), π(x, y) denote the shortest path in G
from x to y, and d(x, y) denote the length of π(x, y).
Let D(G) be the set of demand points (or the demand
set) and X (G) be the set of candidate facility locations
in G. In a p-center problem, a set X of p centers is to
be located in X (G) so that the maximum (weighted)
distance from a demand point in D(G) to its nearest
center in X is minimized, i.e.,

min
X⊆X (G),|X|=p

{F (X,D(G)) = max
y∈D(G)

{w(y) · d(y, X)}}.

Here d(y,X) = minx∈X d(y, x) and F (X,D(G)) denotes
the cost of serving the demand set D(G) using facilities
in X.

A value r > 0 is feasible if there exists a set of at
most p points (centers) in X (G) such that the distance
between any demand point in D(G) and its nearest cen-
ter is not greater than r. An approach to test whether a
given positive value is feasible is called a feasibility test.

Our study in this paper is restricted to the case where
D(G) = V (G). When p centers are restricted to be
vertices of G, we call it a discrete problem. Accord-
ingly, the problem is called a continuous problem when
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X (G) = A(G). The continuous/discrete problems have
been shown to be NP -hard in general networks [5]. But,
center problems are no longer NP -hard when either p
is constant [5, 7, 9], or the underlying network is re-
stricted to be a specialized network, such as a tree [5],
a cactus [1], or a partial k-tree (fixed k) [6]. In the
paper we study p-center problems in general networks
and partial k-trees (k fixed) for a constant p and pro-
vide improved algorithms by exploiting the geometric
properties of the problems.

2 Continuous p-center problem in general networks

The best known algorithms [5, 7, 9] to solve the contin-
uous p-center problem in a general network are based
on the following two simple observations.

Observation 1 [5] There exists a p-center solution
such that all the centers are intersection points of ser-
vice functions of pairs of vertices on edges and therefore,
the optimal objective value is of the form (w(u) · w(v) ·
L(u, v))/(w(u) + w(v)), where L(u, v) is the length of
the shortest path connecting u and v through edge e for
some pair of vertices u, v ∈ V (G).

Therefore, there are at most O(n2) candidate points on
each edge e where centers may be located in an optimal
solution. Also, each candidate point determines a can-
didate optimal cost. Let R denote the set of O(mn2)
candidate values. Based on Observation 1, Kariv and
Hakimi [5] proposed an O(mpn2p−1 log n/(p− 1)!)-time
algorithm for finding an optimal p-center.

The second observation is for feasibility tests of the
continuous p-center problem.

Observation 2 [7] If r is feasible, then there is a p-
center solution in which each center is located at a
(weighted) distance of exactly r from some vertex and
all vertices are covered with service cost ≤ r.

The advantage of Observation 2 is that only O(mn) can-
didate points are needed to be considered for a feasibil-
ity test. Based on this property, Moreno [7] proposed
an O(mpnp+1)-time algorithm to test the feasibility of
a given value r. Since the optimal service cost, denoted
by rp, is an element of a set R (Observation 1), rp can
be found by performing O(log n) feasibility tests.
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Tamir [9] improved Moreno’s result [7] by efficiently
solving a feasibility test for the 2-center problem in
O(m2n2α(n)) time. Here α(n) is the inverse Ackermann
function. Therefore, the O(mpnpα(n) log n) bound is
achieved for the continuous p-center problems.

Next we present an improved algorithm for the con-
tinuous p-center problem in general networks.

2.1 Main idea and overall approach

To achieve a better upper bound, we continue to de-
crease the size of the set that contains an optimal p-
center. Observation 3 shows that instead of O(mn)
candidate points, only m candidate continuous regions
(i.e., edges) and n candidate points (i.e., vertices) are
considered for a feasibility test.

Observation 3 If r is feasible, then there is a p-center
solution in which every edge (not including its two end-
points) contains at most one center and all vertices are
covered with service cost ≤ r.

A local feasibility test of r is to determine if there
exists a set of p centers on a given set Ep′ of p′ (0 ≤
p′ ≤ p) edges {e1, . . . , ep′} (note that each edge contains
one center and does not include its two endpoints) and
a given set of p−p′ vertices such that all vertices can be
served within r. It is easy to see that the feasibility test
of r can be completed by solving O((m+n)p) = O(mp)
local feasibility tests of r on all possible subsets of p′

edges and p− p′ vertices, 0 ≤ p′ ≤ p.
Our algorithm is described as follows.

Step 1: Compute R that contains the optimal cost rp.

Step 2: Perform a binary search over R. At each iter-
ation, test the feasibility of a non-negative value r
as follows. For each set Ep′ ⊆ E(G) of p′ edges and
each set of p− p′ vertices, 0 ≤ p′ ≤ p,

Step 2.1: remove all vertices that can be covered
by p− p′ vertices with service cost ≤ r; and

Step 2.2: for the remaining vertices, execute the
local feasibility test of r on the set Ep′ as de-
scribed in the remaining part of this section.

It is sufficient to show our approach for a local feasi-
bility test of r on a set Ep of p edges. The main idea
is to transform the local feasibility test of r on Ep to a
general geometrical problem called p-dimensional Klee’s
measure problem (for short, KMP) [3].

Definition 1 (Klee’s Measure Problem) Given a
set of intervals (of the real line), find the length of their
union.

The natural extension of KMP to d-dimensional space
is to ask for the d-dimensional measure of a set of d-
boxes. A d-box is the cartesian product of d intervals

in d-dimensional space. It is known that, given a set of
n d-boxes, a d(≥ 2)-dimensional KMP can be solved in
time O(nd/2 log n) using O(n) storage [3], which can be
reduced to O(nd/22log∗ n) [3] (log∗ denotes the iterated
logarithm). Thus, a feasibility test can be solved in
O(mpnp/22log∗ n) time if we are able to transform a local
feasibility test into a KMP. The following theorem is
then implied.

Theorem 2 The continuous p-center problems, for p ≥
2, can be solved in O(mpnp/22log∗ n log n) time.

In the remaining part of this section, we show the
process of transforming a local feasibility test to a p-
dimensional KMP.

2.2 Transformation of a local feasibility test to a
p-dimensional KMP

Let us consider the case where p = 2. The transfor-
mation for the case where p > 2 can be developed in a
similar way. Let e1 : u1v1 and e2 : u2v2 be the two edges
to test the local feasibility of r. A local 2-center solu-
tion is composed of two points (not vertices) in which
one point lies on e1 and the other one lies on e2.
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Figure 1: Mapping a 2-center local feasibility test to a
2-dimensional KMP.

We consider a 2-dimensional space in which xi-axis
represents edge ei, i = 1, 2. Let u1 and u2 be the origin,
as shown in Figure 1(b). In this coordinate system, the
xi-coordinate of a point represents a location on edge
ei with respect to ui, i = 1, 2. Therefore, a point in this
2-dimensional space can be considered as a possible 2-
center solution on edges e1, e2. We denote a point y by
(x1(y), x2(y)). Clearly, only points within the bounded
rectangular area H : {y|0 < x1(y) < l(e1), 0 < x2(y) <
l(e2)} are candidate 2-center solutions on e1, e2.

For a vertex v, there is at most one continuous re-
gion on each edge ei, i = 1, 2, denoted by Ri(v), which
contains all points on ei with (weighted) distance to v
larger than r. It is possible that Ri(v) is empty for
some i (∈ {1, 2}), in which case v can be served by
any 2-center solution on e1, e2 with service cost ≤ r.
In Figure 1(a), the bold (partial) edge of e1 (resp. e2)
is R1(v) (resp. R2(v)). Let ai(v) (resp. bi(v)) be the
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left (resp. right) endpoint of Ri(v), i = 1, 2. Note that
Ri(v), i = 1, 2 must be an open region.

A rectangular area in the 2-dimensional space (the
shadow part in Figure 1(b)) is obtained for every de-
mand vertex v, denoted by H(v), which is constructed
from the two continuous regions R1(v), R2(v). That is,
H(v) = {y|x1(y) ∈ R1(v), x2(y) ∈ R2(v)}. It is easy
to see that any 2-center solution (point) in H(v) cannot
cover v with a service cost ≤ r and any 2-center solution
in H\H(v) can cover v with a service cost ≤ r. In Fig-
ure 1, the 2-center solution X = {α1, α2} can cover v
with a service cost ≤ r, but any solution in the shadow
area cannot. We call H(v) the forbidden area of v. Note
that, the boundary of H(v) is not included in H(v).

We compute such forbidden areas for all remaining
vertices. Thus, the local feasibility test on edges e1, e2 is
transformed into the following question: does the union⋃

v∈V (G)H(v) of forbidden areas cover H? If the answer
is ‘yes’ then r is infeasible on edges e1, e2, otherwise r
is feasible. This question can be answered by solving a
2-dimensional KMP on a new set of rectangles, which
are constructed from these forbidden areas. We have
to be careful since the boundary of a forbidden area is
not forbidden. This is handled by appropriately shrink-
ing/expanding the boundary appropriately. The details
are omitted in this note. Thus a local feasibility test on
edges e1, e2 can be solved in O(n log n) time. Hence we
now have the following theorem.

Theorem 3 The continuous 2-center problems in a
general network can be solved in O(m2n log 2n) time.

The extension of the above approach to the case when
p > 2 is straightforward. Now a local p-center solu-
tion is represented as a point in a p-dimensional box
(p-box) H′ and for each demand vertex v, we obtain a
p-box in H′ containing all p-center solutions that serve
v with a service cost > r. Thus, the local feasibility test
on edges e1, . . . , ep, is transformed into the following p-
dimensional Klee’s measure problem: does the union of
O(n) axis-parallel p-boxes cover H′? Therefore, we have
the following lemma.

Lemma 4 A local feasibility test of the weighted con-
tinuous p-center problem on p edges e1, · · · , ep can be
solved in O(np/22log∗ n) time, for p > 1.

This establishes Theorem 2.

3 Discrete p-center problems in a partial k-tree

A partial k-tree is a graph whose treewidth is k. It is
known that a tree decomposition (of treewidth k) of a
partial k-tree G (fixed k), denoted by T D(G), can be
found in linear time [4].

Given a tree decomposition T D(G) of treewidth k, an
O(p2nk+2) algorithm [6] was proposed to solve the dis-
crete p-center problems, which is based on the dynamic
programming technique.

In fact, the approach of Granot and Skorin-Kapov [6]
can be adopted to solve the continuous p-center problem
by combining the result from Observation 2. Due to
page restrictions the discussions of the continuous p-
center problem in a partial k-tree are omitted here.

Theorem 5 Given a tree decomposition (of treewidth
k) of a partial k-tree, the continuous p-center problem
can be solved in O(p2n2k+3 log n) time.

In this section, we present an O(pnp log kn)-time al-
gorithm for the discrete p-center problem in a partial
k-tree when p is small. Note that the discrete p-center
problem, p ≥ 2, in a general network is trivially solvable
in O(pnp+1) time by testing all possible solutions.

3.1 An O(pnp log kn)-time algorithm

A distance query of a pair of points x, y in a network
is to obtain the distance between x, y. Considering
the tight relationship between the service cost and dis-
tance queries, an efficient approach is to preprocess the
network so that distance queries can be efficiently an-
swered. This approach is particularly promising when
the network is sparse [4]. Chaudhuri and Zaroliagis
[4] gave algorithms for distance queries that depend on
the treewidth of the input network. Their algorithms
can answer each distance query in O(1) time for con-
stant treewidth networks after O(n log n) preprocessing.
Based on this result, we introduced a two-level tree de-
composition structure [1] on a partial k-tree network,
which can be built on any partial k-tree G in O(n log 2n)
time requiring O(n log 2n) storage space for k = 2 and
in O(nk log k−1n) time requiring O(nk log k−1n) storage
space for k > 2. Given such a two-level tree decom-
position structure, the service cost of any set X of p
centers to the demand set V (G), i.e., F (X, V (G)), can
be answered in time O(p log 2n) for k = 2 and in time
O(pk log k−1n) for k > 2. The main idea behind this
two-level tree decomposition data structure is briefly
described below for the case when G is a partial 2-tree.
Recently similar idea has been used in [2] to compute
some graph properties.

Given a subgraph G′ represented by a subtree of
T D(G) and a point x outside G′, there is a 2-
separator in G′, say {u1, u2}, between G′ and x.
The service cost of x to cover v ∈ V (G′) is w(v) ·
min {d(v, u1) + d(u1, x), d(v, u2) + d(u2, x)}. Let a =
d(x, u1)− d(x, u2) and a′ = d(v, u1)− d(v, u2). Clearly
the shortest path π(v, x) goes through u1 if a + a′ < 0,
otherwise π(v, x) goes through u2.

Based on the above observation, we create two lists
of the vertices in G′, J1 and J2. The vertices of J1
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are sorted in the increasing order of χ1(·) where χ1(v)
is the distance difference from a vertex v(∈ V (G′)) to
the 2-separator {u1, u2}, i.e., χ1(v) = d(v, u1)−d(v, u2).
The vertices of J2 are sorted in the increasing order of
χ2(·) where χ2(v) = d(v, u2)−d(v, u1) for all v ∈ V (G′).
These two lists J1 and J2 are associated with u1 and
u2 respectively.

It is not difficult to see that, by constructing a bal-
anced binary search tree over J1 (resp. J2) and ap-
plying the fractional cascading technique, F (x, V (G′))
can be computed in O(log |V (G′)|) time for any point x
outside G′.

A two-level tree decomposition of G Since the tree
decomposition T D(G) of G might not be balanced, we
add another balanced tree structure over T D(G), such
that the height of the new tree T D(G) is logarithmic.
We call such a balanced tree structure T D(G) a two-
level tree decomposition of G. There are several meth-
ods to achieve this, such as centroid tree decomposi-
tion, spine tree decomposition etc. We can see that a
two-level tree decomposition data structure of a par-
tial 2-tree can be computed in O(n log 2n) time requir-
ing O(n log n) storage space and the service cost of a
set of p points in the partial 2-tree can be answered in
O(p log 2n). Thus,

Theorem 6 Given a tree decomposition (of treewidth
2) of a partial 2-tree G, the discrete p-center problem
can be solved in O(pnp log 2n) time.

0
d(v, u2)− d(v, u1)

v ∈ V (G′)

d(x, u1)− d(x, u2)

d(v, u3)− d(v, u1)

d(x, u1)− d(x, u3)

Figure 2: The set of vertices in V (G′) to which the
shortest path from x goes through u1.

In the case when G is a partial k-tree, given a sub-
graph G′ represented by a subtree of T D(G) and a point
x outside G′, there is a k-separator in G′ between G′ and
x. Refer to Figure 2 in which G is a partial 3-tree. All
vertices in V (G′) are embedded in a 2-dimensional space
(note that it is a (k − 1)-dimensional space when G is
a partial k-tree). Given a point x with its distances to
the 3-separator {u1, u2, u3}, all the vertices lying above
and right of the bold line in Figure 2 are the vertices in
V (G′) to which the shortest path from x goes through
u1. The service cost of x to these vertices can be com-
puted in O(log |V (G′)|) time by the combining priority
search tree and the fractional cascading technique after
O(|V (G′)| log |V (G′)|) preprocessing time.

Similarly, when G is a partial k-tree, we can com-
pute F (x, V (G′)) in O(k log k−2|V (G′)|) time after
O(k|V (G′)| log k−2|V (G′)|) preprocessing time. Hence,
for k > 2, a two-level tree decomposition data structure
of a partial k-tree can be computed in O(nk log k−1n)
time requiring O(nk log k−1n) storage space such that
the service cost of a set of p points in the partial k-tree
can be answered in O(pk log k−1n).

We have the following theorem.

Theorem 7 Given a tree decomposition (of treewidth
k > 2) of a partial k-tree G, the discrete p-center prob-
lem can be solved in O(pknp log k−1n) time.

4 Future work

For the general p-center problem in which the demand
set contains all points of the underlying network (i.e.,
D(G) = A(G)), a candidate set containing the optimal
solution value is characterized in Tamir’s paper [8]. In
spite of the nice structure, the size of this set is not
polynomial even for simple structures such as partial 2-
trees. Until now, no efficient algorithm is known for the
problem in a general network or a partial k-tree.
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